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1.  Introduction

In the context of the changes planned for the SI in 2018 [1] 
the kilogram will be redefined and several physical constants, 
among them the Boltzmann constant kB, will be fixed to a cer-
tain value. The kelvin will be newly defined by the amount of 
energy kBT [2, 3]. This makes the ideal gas law not a new, but 
a more attractive alternative route with new perspectives for 
National Metrological Institutes to realize the pressure scale 
by measuring gas density. Over the past two decades there have 
been several research activities at The National Institute of 
Standards and Technology (NIST), Physikalisch-Technische 
Bundesanstalt (PTB) and the Technical Research Institute 
of Sweden AB (SP) (now a part of the Research Institutes of 
Sweden AB, RISE) to measure gas density by optical methods 
[4–10]. The goal of this paper is to propose the framework for 
how these optical techniques will provide SI traceability for 

the pascal with some emphasis on the research programs of 
NIST and PTB.

The meter convention does not define physical quantities, 
but is concerned that these are expressed in the International 
System of Units, the SI [11]. This means that any fundamental 
physical equation expressing the quantity under consideration 
can be used to express the unit of the quantity in the SI. It 
also means that a derived unit can often be expressed in dif-
ferent ways by combining base units with derived units having 
special names. e.g. the pascal can be written as kg m−1 s−2, 
but also as N m−2 (see equation (1) following), because the 
newton (N), a unit of force, is nothing more than a special 
name for kg m s−2. Similarly, the Pa may be written as J m−3, 
(see equation  (4) following), because the joule is another 
name for N m. Since the unit of the pascal can be expressed 
as J m−3, it is a unit that may be thought of as ‘energy per unit 
volume’, or even more simply as ‘energy density’.
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Traditionally, pressure p is defined as the quotient of the 
physical quantities of force F and area A, i.e.

p =
F
A

.� (1)

Herein, a certain force F acts normally on a well defined plane 
area A. For many practical applications this is a convenient 
definition, since by knowing p the force F acting on a certain 
area A can be easily calculated. While equation (1) is a con-
venient definition for applications where force is the primary 
concern (for example in structural engineering applications), 
it is not the best definition of pressure in other applications, 
such as when we are considering the number of gas molecules 
in a vacuum chamber. In this regime, the number density of 
gas molecules is a better definition [12].

For gas pressures, at present there are several types of pri-
mary standards in use: mercury-based U-tube manometers 
and piston gauges give the most accurate realization of pres
sure around 100 kPa, but may be extended to lower pressures 
of about 1 Pa with oil-based U-tube manometers, or to higher 
pressures up to about 1000 MPa using piston gauges. Static 
and continuous expansion systems extend the scale down to 
10−9 Pa. These systems, however, need traceability to U-tube 
manometers or piston gauges to be SI traceable to pressure.

If the primary standard is realized by a piston gauge, the 
pressure p of a fluid is balanced by the gravitational force of 
the mass m of a piston plus optional additional mass pieces 
acting on the effective area Aeff of the piston-cylinder assembly

p =
mg
Aeff

.� (2)

The traceability is accomplished by calibrated mass pieces, 
the locally known acceleration of gravity g and the geometri-
cally determined effective area.

If the primary standard is realized by a closed U-tube 
manometer filled with a liquid, a differential pressure p 
between the evacuated side of the U-tube (at pressure p0) and 
the test side of the U-tube is determined by the difference Δh 
of the height of the liquid in the two tubes with respect to a 
horizontal plane:

p = ρg∆h� (3)

ρ is the mass density of the manometer fluid.
In both types, it is necessary to have a reference side that is 

evacuated to a level such that its pressure p0 is much smaller 
than p and, in the ideal case, is negligible compared to p.

We endeavour to establish a new kind of primary standard 
for gas pressure that is based upon Boltzmann’s constant, 
unlike manometers and piston gauges described above which 
are based on equation (1). Our proposed primary standard for 
gas pressure applies the ideal gas law in the form

p = ρNkBT� (4)

where ρN is the number density, i.e. number of molecules N 
per volume V:

ρN =
N
V

.� (5)

In the SI, the number N can also be expressed in terms of ν, 
the amount of substance (unit: mole) of the gas species. The 
proportionality constant that relates them is the Avogadro con-
stant, NA:

N = νNA.� (6)

The relation of k to the molar gas constant R is obtained from 
another form of the ideal gas law

p = ρνRT� (7)

where ρν is the molar density, i.e. the amount of substance ν 
per volume V. It is evident from equations (4) to (7) that

R = kBNA.� (8)

Both NA and kB will be defining constants in the new SI having 
exact values with no attributed uncertainty. So, also the molar 
gas constant R will be exact.

As already mentioned, in the new SI, the kelvin will be 
equal to the change of thermodynamic temperature that results 
in a change of thermal energy kBT [3]. Looking at equation (4) 
it becomes clear that the definition and realization of pressure 
p by this equation is an appealing way to provide traceability 
for this derived quantity. This is achieved if the number den-
sity ρN can be accurately measured in a traceable manner. As 
mentioned earlier, this method is an attractive way to realize 
pressures in the vacuum range.

Optical methods can provide an accurate measurement of 
ρN, because molecules interact with electromagnetic radia-
tion. Whether dispersion, absorption, fluorescence or other 
light–matter interaction is best exploited depends on the range 
of pressure, the gas species and desired accuracy of the reali-
zation. As is often the case in metrology, the best accuracy can 
be achieved by using systems that are as simple as possible. 
e.g. such a system may consist of atoms or molecules in a 
vacuum (where the ideal gas law applies), well isolated from 
each other and where their interaction with electromagnetic 
radiation is calculable ab initio. This is essentially the simplest 
form of the model that we propose for the measurement of ρN 
and thus the future for realization of the pascal. Alternately, 
if pressure can be established by some other means and is 
treated as a known in equation  (4), we can use the density 
measurement as a future realization of the kelvin in accord-
ance with the Mise en Pratique of the kelvin [13].

In section 2 we will outline how well the assumption of 
isolated molecules is met and what the limits are. In section 3 
we shall describe how gas density can be measured by optical 
methods. We will focus on the measurement models and their 
assumptions and the possible influence of the assumptions on 
accuracy and quality of traceability. We include the rate of 
loss method where molecules are cooled to near 0 K by optical 
methods, trapped in a magnetic field, lost from the trap by col
lisions with the surrounding gas molecules and sensed by flu-
orescence. In section 4 we will review the ab initio calculation 
of the interaction of atoms and molecules with electromagnetic 
radiation in the meaningful frequency range for refractivity 
and absorption measurements. Section 5 will outline present 
or proposed experimental set-ups to realize the optical meas-
urement methods used to determine the number density ρN. A 
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discussion of the proposed methods, including the advantages 
and drawbacks compared to the existing methods of pressure 
realization will follow in section 6, before we draw some con-
clusions in the final section.

2.  Ideal and real gas

Equations (4) and (7) describe the state of an ideal gas, where 
the molecules do not interact through long-ranged forces and 
can be simulated as ‘hard spheres’ that experience pure elastic 
collision without any loss of energy. In addition, it is assumed 
that the volume of all the ‘hard spheres’ is negligible com-
pared to the macroscopic volume V of the container filled by 
the gas. In reality, the molecules interact by electromagnetic 
forces, mainly of the van-der-Waals type, and exhibit a finite 
internal volume.

Both effects depend on ρN, or equivalently ρν:

	 •	The internal volume of all molecules, which is related to 
the total volume V, is proportional to N or ρN

	 •	In general, when the molecules are far apart from each 
other, there will be no force between them. When two 
molecules approach each other, the electron clouds first 
attract, then overlap brings strong repulsive forces into 
play. The total collision rate is proportional to ρ2

N  or ρ2
ν  

and will cause a deviation from the ideal gas law.

When the above considerations are taken into account, a 
description for a ‘real gas’ is given by the following power 
series in ρν:

p = ρνRT
(
1 + B (T) ρν + C (T) ρ2

ν + . . .
)

,� (9)

where B(T) is the density virial coefficient of second order, 
C(T) of third order. These and the higher coefficients depend 
on temperature T. Higher orders take into account multi-mol-
ecule collisions, the change of collision rate with effective 
molecule diameter etc. It is clear that the influence of higher 
orders drops rapidly with lower pressures, particularly at gas 
pressures less than one atmosphere (referred to as the vacuum 
regime).

The temperature dependence of the virial coefficients can 
be understood by the interplay of kinetic and potential energy: 
When the temperature and kinetic energy of the molecules is 
low, the weakly attractive force between molecules has a signif-
icant influence and causes the pressure to be reduced compared 
to an ideal gas. When the kinetic energy of the molecules is 
high, the weak attractive force is less important than the strong 
repulsive force and the pressure reduction is less strong or even 
positive (B increases) for some gas species. At very high temper
atures the kinetic energy allows the molecules to run against the 
repulsive force allowing them to move closer together which 
causes the pressure (and B) to slightly decrease again.

For estimating the influence of different virial coefficients 
on the realisation of the pascal, table 1 gives values of the pres
sure correction caused by the specific coefficients. The domi-
nating term due to real gas properties arises from the second 
density virial coefficient B(T). For helium, starting with the 
first ab initio calculation [14], this virial coefficient has been 

extensively studied during the last 15 years by several groups 
of theorists. The most recently published calculated values are 
given in [15]. The values are in very good agreement with ab 
inito values derived in [16] and with the experimental value 
obtained in [17] at T  =  273.16 K.

For the third virial coefficient, theoretical calculations are 
much more involved and therefore only one ab initio calcul
ation is available [18] together with the result of a simplified 
theory by [15]. Experimental values have been published by 
several groups, the last one in [17], and the agreement is more 
than sufficient regarding the small influence at low pressures 
(see table 1).

3.  Measurement of number density  
of gas by optical methods

3.1.  Refractive index method

Electromagnetic (EM) waves travelling through a gaseous 
medium interact with the electrons and to a lesser extent with 
the nuclei of the molecules in that medium. Depending on 
the frequency of the EM wave, either absorption or disper-
sion occurs. In the case of absorption, the frequency of the 
EM wave is in resonance with one of the possible molecule 
quantum state transitions. In the case of dispersion, even if the 
frequency is far from resonance, the EM wave polarizes the 
molecules with the net effect of reducing the speed c of the EM  
wave and the wavelength λ. The reduction depends on the fre-
quency ν of the EM wave and is described by the refractive 
index n(ν):

c =
c0

n (ν)� (10)

with c0 the speed of light in an ideal vacuum.
From this equation, it is shown that the simplest descrip-

tion of refractive index of a gas is the ratio of the speed of light 
in vacuum divided by the speed of light in the gas at a given 
pressure. The relation of n to ρN for an isotropic homogeneous 
medium is obtained by the Lorentz–Lorenz equation  [19]. 
An EM wave with frequency ν induces in each molecule an 
oscillating dipole with frequency ν. All the emitted dipole 
waves give rise to an effective field acting on other dipoles. 
Therefore, two electric fields, the incident field E of the EM 

Table 1.  Relative pressure correction δp/p caused by the virial 
coefficients B and C, as well as the second refractivity virial 
coefficient bR (see section 4) calculated at 273 K using the literature 
data for B, bR and C (for references see section 2 (He) and section 6 
(Ar)).

p (Pa)

δpB/p  
(parts in 106)

δpbR/p  
(parts in 106)

δpC/p  
(parts in 106)

He Ar He Ar He Ar

1 0.005 0.007 0.000 0.000 0.000 0.000
10 0.05 0.07 0.000 0.002 0.000 0.000
100 0.5 0.7 0.004 0.017 0.000 0.000
1000 5 7 0.044 0.17 0.000 0.000
10 000 50 70 0.44 1.7 0.002 0.018
100 000 500 700 4.4 17 0.2 1.8
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wave and the sum 
∑

l
Ejl of all oscillating dipole fields Ejl (the 

field from dipole l at the position of dipole j), make up the 
total field acting on dipole j. The sum extends over all dipoles 
except the jth one. If we assume a non-magnetic medium, the 
magnetic field will not influence the dynamic equilibrium.

The secondary electric field created by the oscillating 
dipoles has a very interesting consequence, known as the 
extinction theorem [19]: The incident wave may be regarded 
as extinguished at any point within the medium by destruc-
tive interference with the dipole field and replaced by a wave 
of propagation with a different velocity described by equa-
tion (10). This extinction theorem can be proved by integral 
equations, but also in the framework of Maxwell’s electro
magnetic theory. As a consequence of the extinction theorem 
the relation, known as Lorentz–Lorenz equation, holds:

α

3 ε0
ρN =

NAα

3 ε0
ρν = ARρν =

n2 − 1
n2 + 2

� (11)

where α is the dynamic polarizability of the individual mole-
cule and AR the molar dynamic polarizability. This equation is 
entirely analogous to the Clausius–Mossotti equation of elec-
trostatics. It has to be repeated that this equation  is true in 
general, but two basic assumptions need to be made:

	(1)	The primary limitation of equation (11) is the assumption 
that interatomic or intermolecular forces between gas 
atoms or molecules do not affect the interaction with the 
electromagnetic field. These can be taken into account 
by introducing refractivity virial coefficients in a manner 
analogous to equation (9).

	(2)	In addition, equation  (11) does not include magnetic 
effects, which are small but have a non-negligible influ-
ence on measurements of the highest accuracy. Non-zero 
magnetic susceptibility χ can be taken into account by 
replacing α with (α  +  χ) in equation (11).

The refractive index in the visible spectrum is  >1, but for 
gaseous media it is also very close to 1. For this case equa-
tion (11) can be simplified to:

α

2ε0
ρN = n − 1� (12)

showing that the refractivity, n  −  1, is approximately propor-
tional to ρN. Deviations from the linear approximation are 
about 0.3% for nitrogen (or air) at 20 °C and 105 Pa. This 
shows that for highest accuracy, the simplification of equa-
tion (12) cannot be made.

The interatomic or intermolecular forces can be taken into 
account by introducing refractivity virial coefficients bR and 
cR in a manner analogous to equation (9):

n2 − 1
n2 + 2

= ARρν
(
1 + bR (T) ρν + cR (T) ρ2

ν + . . .
)

.� (13)

Note that bR and cR must not be confused with the often defined 
refractivity virial coefficients BR  =  ARbR and CR  =  ARcR. 
Equation  (13) does not include magnetic effects, which are 
very small but can be added to the dominating terms [20] as 
described before for the magnetizability.

To express pressure in terms of the refractive index a combina-
tion of equation (9) and equation (12) is needed. In an analogous 
case to that of the dielectric constant, described in detail in [21], 
an expression can be easily derived in this paper. Comparable 
to the measurement of capacitances with and without gas for 
dielectric-constant gas thermometry, the resonance frequency of 
a mode-locked (see section 5.1) optical cavity is measured with 
ν( p ) and without gas ν(0) for determining the refractive index n. 
In a simplified case of a non-deformable cavity (effective com-
pressibility equal to zero, κeff  =  0), this would lead to the fol-
lowing quantity deduced from experiment

µκ=0 =

(
ν(0)
ν( p)

)2

κ=0
− 1

(
ν(0)
ν( p)

)2

κ=0
+ 2

.

�

(14)

Following the derivation of a working equation in [21], a com-
bination of the equation  (9), (13) and (14) leads to the fol-
lowing p versus μκ=0 relation:

p =
RT
AR

(
µκ=0 + µ2

κ=0
(B − bR)

AR
+ µ3

κ=0
C − 2BbR + 2b2

R − cR

A2
R

+ . . .

)
,

�
(15)

Giving up the assumption of no deformation, for a homoge-
nously deformed cavity, the change l( p )/l(0)  =  (1  +  κeffp) of 
the length l with pressure is the relevant deformation, where 
κeff is the effective length compressibility of the cavity, leads 
to:

(
ν(0)
ν( p)

)2
− 1

(
ν(0)
ν( p)

)2
+ 2

=
(1 + κeffp)

2 · n2 − 1

(1 + κeffp)
2 · n2 + 2

≈ (1 + 2κeffp) · n2 − 1
(1 + 2κeffp) · n2 + 2

= µ.

� (16)
In the approximated term of equation  (16), the extremely 
small (κeffp)2 term was discarded. The combination of equa-
tions (9), (13) and (16) leads finally to:

p =
RT

AR + 2·κeffRT
3

(
µ+ µ2

(
B − bR − 2·κeffRT

3

)

AR + 2·κeffRT
3

+ . . .

)
,

� (17)
where terms cubic in μ have been discarded but should be 
included when doing precise measurements at high pressures. 
Beside the fact that the κeff term is multiplied by the factor 
2, equation (17) is a complete analogy to the expression for 
dielectric measurements [21]. Equation  (17) shows that the 
significant impact of the compressibility is mainly linear. 
For an optical cavity made from a typical glass, κeff  =  1/
(3B)  ≈  10−11 Pa−1, where B is the bulk modulus. Neglecting 
this compressibility would lead to a measurement error of 
3% with helium and 0.37% with argon. This shows that the 
deformation of the cavity is one of the main challenges of this 
technique.

Conceptually, all the discussion above applies to the fixed 
length optical cavity discussed in section 5.1, but the details 
of the method in section  5.1 are different, requiring some 
modification of the analysis. Rather than measuring optical 
frequencies directly, a more attractive approach is based on 
measurements of the difference frequency between a reference 
cavity and a measurement cavity. For the device described 
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in section 5.1, both the reference and measurement cavities 
are subject to changing pressure, and in principle this would 
largely cancel the effects of uniform pressure distortions (bulk 
modulus) that are discussed above. In practice, the effect of 
bulk modulus continues to play a role for reasons discussed in 
the references [9, 22].

3.2.  Absorption method

In the case of absorption, the frequency ν of the EM wave is 
in resonance with one of the possible molecule quantum state 
transitions of the gas molecules in the medium through which 
the EM wave is travelling and is described by the following:

hν = E2 − E1,� (18)

where E1 and E2 are the corresponding energy levels of the 
quantum states |1〉 and |2〉. Absorption occurs when the mole-
cule’s energy state is increased by the absorption of the photon 
with energy hν. This normally unstable state of the molecule 
decays by either spontaneous emission or by stimulated emis-
sion from ambient black body radiation or from the present 
EM wave. The probability for the first event is independent 
of the surrounding electromagnetic field, the second is pro-
portional to the energy density of the surrounding electro
magnetic field as is also the case for absorption.

When the number density of molecules is measured by 
absorption, it is important that the probability for spontaneous 
emission Pspont is much larger than the one for stimulated 
emission Pstim. The extent to which this condition is fulfilled 
needs to be checked in each special case and depends on the 
molecular transition and the incident laser power density. As 
an example, in thermal equilibrium the ratio due to black body 
radiation is given by

Pspont

Pstim
= exp

(
hν
kT

)
− 1.� (19)

Near 296 K and at a frequency of 3 · 1014 Hz (λ  =  1 µm) Pspont 
is about 1021 times larger than Pstim, for 6 · 1013 Hz (λ  =  5 
µm) still by a factor of 104 greater, but for wave lengths  >5 
µm stimulated emission can play a significant role for black 
body radiation.

When absorption occurs, the amplitude of the EM wave is 
reduced along the path in the gas. It is the incident power that 
can be measured by a physical detector. This incident power 
per area (in radiometry called irradiance, in spectroscopy 
intensity, I) is proportional to the square of the amplitude of 
the EM wave. The amount of energy absorbed by the gas, ΔI, 
is equal to that lost from the initial intensity I(z) (before it 
passes through a differential path length Δz). Hence, for a 
wave at frequency ν, the loss of intensity in traversing Δz is 
given by

∆I (ν) = −k (ν) I (ν, z)∆z,� (20)

with k(ν) the absorption coefficient describing the reduction 
of intensity.

Normally, absorption and dispersion are described by the 
complex number n̂ (ν),

n̂ (ν) = n (ν)− iκ (ν) ,� (21)

where the imaginary part κ describing absorption is signifi-
cant only near a molecular transition.

k(ν) is proportional to the imaginary part of the refractive 
index κ(ν), equation (21) and its frequency dependence can 
be described by many sophisticated line shape functions [23–
29], the most wide-spread being the Voigt-profile which is a 
convolution of a Gaussian function and a Lorentz function. 
The latter describes the frequency dependence of a damped 
harmonic oscillation, and the Gaussian function describes the 
Doppler broadening due to the molecular motion.

For accurate measurements of gas density by absorption, 
k(ν) must be described by a single line transition and not be 
influenced by neighbouring absorption lines. In addition, k(ν) 
needs to be independent from I. This is the case, when the 
population density between upper and lower state is not sig-
nificantly disturbed by the incident EM wave (linear absorp-
tion) which needs to be checked in each particular case and 
depends on the depletion and refilling rate of the two involved 
states |1〉 and |2〉. Note that the depletion and refilling rates 
are influenced by several factors, including fluorescence into 
other states, by collisions, by diffusion in and out of the inter-
action volume of the EM wave, and the (laser) intensity of the 
EM wave.

When the above considerations are taken into account, the 
case of linear absorption of equation (20) takes the following 
form:

I (ν, z) = I0 (ν) exp {−k (ν) z} ,� (22)

where I(ν) is the transmitted intensity at ν after passing 
through a path length z in the medium and I0(ν) is the incident 
intensity entering the absorbing medium.

To relate this to quantities generally used in absorption 
spectroscopy we change to wave numbers

ν′ =
ν

c
= λ−1,� (23)

and write

k (ν′) = S · Φ (ν′ − ν′c) · ρN,� (24)

where ρN is the number density of the absorbing molecules, S 
is the so called line intensity or line strength of the molecular 
transition, and Φ (ν′ − ν′c) is the form or line shape function 
with the line center at ν′c, for which

1 =

∫ ∞

−∞
Φ (ν′ − ν′c) dν′.� (25)

Also we denote the total path length through the medium with 
L and rewrite equation (22) as

I (ν′, L) = I0 (ν
′) exp {−S · Φ (ν′ − ν′c) · ρN · L} .� (26)

In spectroscopic practice, it is rather difficult to accurately 
determine ν′ and to accurately know Φ at the same position ν′. 
(Among other influences, the line shape depends on the par
ticular transition and the temperature). For this reason, only 
the measurement of the complete absorption profile of the line 
will lead to a high accuracy determination of gas density.
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There are basically two approaches to determine ρN for 
a known S [29]: parametric line shape fitting and non-para-
metric numerical integration over the spectrum. The latter 
method can be handled analytically in an easier manner and 
we prefer to present this method of evaluation.

After taking the logarithm of equation (26) and integrating 
over the full spectrum, we obtain the absorbance curve area 
Aline:

Aline = −
∫ +∞

−∞
ln
{

I(ν′)�I0(ν′)

}
dν′ = S · ρN · L.

� (27)
Hence, the gas number density is determined by the numerical 
integral Aline, the line strength S and the path length L:

ρN =
Aline

S · L
·

� (28)
We repeat that this model equation is valid for linear absorp-
tion, negligible induced emission and a sufficiently isolated 
line. Finally we note that only the gas density (or partial pres
sure) of the interacting molecules can be measured and a pure 
gas of this kind is needed when the measured gas density (par-
tial pressure) must be identical to the total gas density (total 
pressure).

3.3.  Rate of loss method

Since the early days of laser-cooling and trapping of ultra-
cold atoms, it has been known that the loss-rate of ultra-cold 
atoms from a magnetic trap is largely determined by collisions 
of the background gas in the vacuum with the ultra-cold atoms 
[30]. We propose to invert this relationship, thus employing an 
ensemble of trapped ultra-cold atoms to act as a sensor of the 
background gas density in the vacuum. To date, a wide variety 
of atoms have been laser-cooled and trapped, but the alkali-
metal atoms are the best candidates for vacuum sensor atoms 
because of their hydrogen-like atomic structure and the avail-
ability of low-cost lasers with wavelengths near the resonant 
transitions. The ensuing discussion in this section will assume 
that alkali-metal atoms are the sensor atoms, although much 
of the discussion can be generalized to other atoms. The col
lisional loss-rate of ultra-cold atom density ρS from a magn
etic trap is given by

dρS

dt
= −klossρNρS − k2ρ

2
S − k3ρ

3
S.� (29)

The first term represents the loss of ultra-cold atoms due to 
collisions with the background gas of density ρN in the vacuum 
and is the quantity of interest; this will be discussed in detail 
below. The second term is the loss rate due to inelastic two-
body collisions between sensor atoms in the trap. For alkali 
atoms, these collisions are typically mediated via the magn
etic dipole–dipole interactions. Such collisions can cause the 
internal angular momentum to change in one of the atoms. To 
conserve angular momentum, the atom is excited to a higher 
angular momentum state of the trap. Typically, the energy 
stored in the internal angular momentum of the atom is large 
compared to the trap depth, and thus these collisions result in 
loss. The third term represents a three-body loss rate among 

sensor atoms in the trap, i.e. three atoms interact to form an 
alkali dimer while a third atom absorbs the excess momentum. 
The kinetic energy of the dimer and third atom are typically 
much larger than the trap depth, and thus all three are ejected. 
To disentangle these loss mechanisms and ensure that the loss 
rate is accurately correlated to the gas density, we consider the 
timescales of the various loss mechanisms at density scales 
of interest. Mechanisms with timescales that are significantly 
different in magnitude or character (i.e. non-exponential) from 
loss due to background collisions can be separated out. For  
ρS ~ 1010 cm−3, the time scale for the kloss term will typically 
dominate those of k2 and k3. Consider, for example, 87Rb as a 
sensor atom in an extreme high vacuum (XHV) background 
with ρS ~ 1010 cm−3. For 87Rb, there are three magnetically 
trappable states: |1,−1〉, |2, 2〉, and |2, 1〉 (here we use the nota-
tion |F, mF〉, where F is the total angular momentum of the 
atom and mF is the total angular momentum component along 
the axis defined by the external magnetic field). Suppose we 
choose to magnetically trap the |1,−1〉 state for use as sensor 
atoms. The time scale for klossρN is approximately 2  ×  104 s 
for background hydrogen density of ρN  =  104 cm−3 (XHV). 
This timescale is inversely proportional to the background 
density ρN and will thus become smaller as the background 
density increases. This is much smaller than the time scale 
for the two-body loss rate, which is  >3  ×  106 s for magnetic 
fields less than 0.1 mT or that for three-body loss, which is 
2  ×  108 s at low magnetic fields. In general, the contributions 
of k2 and k3 can be minimized by the proper choice of sensor 
atom and trapped state. In addition, only the kloss term can be 
modelled by a single exponential function, which allows the 
loss-rate due to collisions with the background gas to be dis-
tinguished from the other loss rate terms. Therefore, the k2 and 
k3 terms in equation (29) can be neglected. In designing the 
apparatus, one must also consider non-collisional loss rates, 
such as those due to spin-flips caused by non-adiabatic trans
ition through a zero in the magnetic field, or by evaporative 
cooling. The former can be eliminated by proper choice of 
magnetic field configuration (such as the Ioffe–Pritchard trap 
[31, 32]), and the latter by proper choice of atom. A detailed 
examination of the loss-rate mechanisms is the subject of a 
manuscript under preparation by the authors.

Having disentangled other loss mechanisms as described 
above, the number density of ultra-cold atoms in a magnetic 
trap can be modelled as exponentially dependent on the 
loss-rate:

ρS = ρS,0e−t/τ .� (30)

The measured loss-rate is given by

τ−1 = klossρN,� (31)

where kloss is a loss-rate coefficient; a fundamental atomic 
property that may be written as the thermally-averaged col
lision cross section

kloss = 〈νσ〉� (32)

where σ = σ(v) is a total collision cross section between an 
ultra-cold atom and an ambient molecule in the vacuum with 
a velocity (v) distribution consistent with thermodynamic 
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equilibrium (compared to the ambient gas molecules, the low 
temperature and narrow velocity distortion of the ultra-cold 
atoms makes the difference between lab-frame and center-of 
mass velocity irrelevant). The pressure may then be determined 
via equation (4). Thus using cold-atoms to sense the number 
density of gas in the vacuum is both an absolute vacuum sensor 
and primary standard because it depends on a measured loss-
rate (time) and fundamental atomic property kloss.

Presently, kloss is known from semi-classical estimates 
[33]; an ab initio calculation for the Li  +  H2 collision system 
is presently underway at NIST. Molecular hydrogen, H2, is the 
most common and therefore important residual gas (mostly 
due to outgassing from stainless steel and other metals) in 
the ultra-high vacuum (UHV) pressure regime, and the Cold 
Atom Vacuum Standard (CAVS) will ultimately rely on pre-
cise knowledge of the theoretically determined Li  +  H2 cross 
section. Other gases contribute as minor constituents of the 
background or as calibration or test gases purposefully intro-
duced into the vacuum, such as N2, H2O, He, Ar, or CO2. 
For these gases, the thermalized rates are expected to be 
on the order of 10−9 cm3 s−1 and vary by only about 20%. 
Consequently, in the UHV environment, where typically 95% 
of background gas is H2, uncertainty in the exact composition 
of the remaining gas is a small contribution to the total uncer-
tainty. For highest accuracy calibrations, ultra-high purity H2 
gas can be leaked into the CAVS. However, the CAVS can be 
used to directly measure the background gas. To be used as 
a background sensor, kloss must be known for the constituent 
gases or, alternatively, a relative gas sensitivity factor (relative 
to kloss for H2) must be known. In practice, a gas sensitivity 
factor can be determined (theoretically or experimentally) 
relative to the known theoretically determined kloss for H2, 
thus transferring SI traceability to the gas sensitivity factors. 
Experimental determinations are discussed is section 5.6.

4.  Ab initio calculations of atomic and molecular 
parameters

High accuracy, ab initio quantum calculations of the relation-
ship of refractivity to pressure are only possible for helium gas 
at the present time, due to the complexity of other atoms or 
molecules. Only for helium can the refractivity be calculated 
much more accurately than it can be measured. The calcul
ations thus provide a basis for determining pressure from 
refractivity measurements with an uncertainty below what is 
currently possible for pressure measurements. Recent results 
of Puchalski et al [20] are the most accurate to date and pro-
vide a strong theoretical foundation for helium refractivity. 
The central focus of this work was computing the atomic 
polarizability of helium with a fractional uncertainty of 1 · 
10−7 at optical frequencies. Relativistic and quantum eletro-
dynamics (QED) effects were included in the calculation. 
Finite-mass effects, including the leading relativistic correc-
tion, were also taken into account. Finite nuclear size effects 
were calculated and found to be essentially negligible. The 

uncertainty of the result was dominated by the uncertainty in 
the estimation of the α4 QED correction to the static polar-
izability. It was argued that neglected terms, such as higher-
order QED recoil corrections, should be negligible at the level 
of 1 · 10−7. It was carefully ascertained that basis-set conv
ergence errors also were negligible. There have been a number 
of previous calculations of the static polarizability of helium, 
most recently Łach et  al [34], and there has been one pre-
vious ab initio calculation of the dynamic polarizability [35]. 
Differences between previous calculations and the result of 
Puchalski et al are well understood, indicating that the calcul
ations are on a firm footing.

In addition to the polarizability calculation, Puchalski et al 
[20] reviewed previous work regarding diamagnetic suscepti-
bility and virial coefficients for density and refractivity. The 
diamagnetic susceptibility has only been calculated for the 
static case but is sufficiently small that any likely frequency 
dispersion can be safely ignored. Combining these results 
with the new result for polarizability gives an ab initio theor
etical result for refractivity as a function of temperature and 
pressure. Puchalski et al believe that the estimated fractional 
uncertainty is less than 1 · 10−6 for pressures up to 3 MPa [20]. 
An experimental determination of the pressure independent 
static polarizability AR with 2 ppm relative uncertainty [36] is 
in agreement with the theoretical work [20]. Throughout this 
document, ‘uncertainty’ always refers to standard uncertainty.

Concerning the electrical interactions, the second refrac-
tivity virial coefficient plays an important role. The difference 
between the second dielectric virial coefficient bs(T), which is 
relevant for the static case, and the refractivity virial coefficient 
bR(T) is small (at a wavelength of 632 nm at T  =  273.16 K 
about 3% [37]). Therefore it is sufficient to refer to calcul
ations of bs(T), for which two fully quantum statistical ab initio 
calculations for helium are available [37, 38]. The difference 
between the values of these calculations is on the level of 10%. 
A recently performed calculation of bs(T) in the semi-classical 
approximation [39] supports the value published in [37]. At the 
moment, the experimental data is not of sufficient uncertainty 
to judge between the two theories but for the pressure range 
shown in table 1, a 10% uncertainty is sufficient to perform 
accurate pressure measurements on the ppm level.

Similar to a priori quantum calculations of refractivity, 
a priori calculations for line intensities S are rather difficult 
and expensive due to the complexity of atoms or molecules. 
Accurate calculations of molecular line intensities require 
accurate dipole momentum and potential energy surfaces, both 
of which are generally not available. Nevertheless, Polyanski 
et al [40] succeeded to perform such calculations for 12C16O2 
line intensities for the (20 012)–(00 001) band and obtained 
agreement with a recent experimental value [27] on the level 
of 6 · 10−4 (relative difference between the experimental and 
theoretical values), within the uncertainty of the experimental 
value, however, amounting to 4.2 · 10−3. At present, these 
values indicate the level of uncertainty that can be achieved 
by ab initio quantum calculations for line intensities S.
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5.  Experimental realizations of optical methods  
to determine number density

5.1.  Refractive index measurement by fixed length optical 
cavity

A fixed-length optical cavity provides a relatively simple and 
straightforward mechanism for determining the refractive 
index of a gas. If a laser is servo-locked in resonance with a 
Fabry–Perot cavity filled with gas, the frequency f of the laser 
is given approximately by:

f =
mc0

2nL
,� (33)

where m (the mode order) is the integer number of wavelengths 
in the cavity, and L is the length of the cavity. If gas density 
changes, causing n to change, the servo adjusts f so as to main-
tain resonance with the cavity. Hence frequency changes track 
changes in refractive index, in a manner governed by equa-
tion (33). If a measurement of the initial frequency fi is made 
at vacuum, where n  =  1 exactly, and a second measurement ff 
is carried out at some pressure of interest, refractivity (n  −  1) 
can be determined from equation (33) applied to the two fre-
quency measurements:

(n − 1) =
fi − ff +∆m

( c0
2L

)
ff

,� (34)

where Δm is the change in mode order between the initial and 
final measurements. A traditional method of determining the 
length L of the cavity or mode order m is to measure of the 
free spectral range (FSR) of the cavity [41, 42]; FSR measure-
ments might be used to determine m and thus Δm, with proper 
consideration given to the effect of dispersion in the gas. Other 
approaches can also be used to determine Δm, where the sim-
plest is to rely on approximate knowledge of the pressure, as 
measured by an ancillary gauge of modest accuracy, to derive 
an estimate for Δm that is rounded to the nearest integer.

When highest possible accuracy is required, it is also nec-
essary to consider additional effects not captured in equa-
tion (33) or (34). In particular, determining the physical length 
L of the cavity via FSR measurements requires consideration 
of mirror phase shifts and, for sub- part-per-million accuracy, 
diffraction effects (the Gouy phase shift). More important, 
equation  (34) must be modified to correct for an additional 
effect of significance, namely, the length of the cavity changes 
in response to pressure changes, as was mentioned in sec-
tion 3.1. The resulting modifications to equation (34) due to 
Gouy phase, mirror phase shifts, and pressure-induced length 
changes are discussed in [7, 9]. See also the discussion of 
section 3.

The frequency f of the laser is determined by measuring the 
frequency difference between the laser and a reference laser 
of known frequency (beat frequency measurement). Lowest 
noise and drift and the least sensitivity to thermal variations 
can be achieved if the reference laser is servo locked to a 
second cavity, built on the same spacer as the measurement 
cavity, and held at vacuum at all times.

The NIST has designed a fixed-length optical cavity (FLOC) 
following the principles described above [9]. The cavity is 

shown in figure 1. Four mirrors are silicate bonded to the ends 
of a spacer. Two of the mirrors are bonded to the ends of the 
slot at the top of the device. This forms a Fabry–Perot cavity 
that is open to its surroundings and contains the gas for which 
the pressure is to be measured. In practice, the entire cavity is 
held in a copper chamber that forms a vacuum chamber. The 
other two mirrors are bonded to the ends of a hole to form an 
enclosed reference cavity that can be continuously pumped to 
vacuum. A pedestal (not visible in figure 1) is bonded to the 
bottom of the spacer body with a hole for pumping the refer-
ence cavity. The spacer body, mirror substrates, and pedestal 
are made from Corning ULE4 (Ultra Low Expansion glass), 
silicate bonded together to form a near-monolithic structure. 
In equilibrium, the chamber is isothermal at the millikelvin 
level. The volume of the enclosure is minimized so as to mini-
mize pV work that will disturb the thermal equilibrium when 
gas is admitted to the chamber.

When the FLOC is used with a gas of known refractive 
index, the achievable uncertainty is limited by variations in 
the length of the cavities with changing pressure. The changes 
in length of the measurement cavity are almost entirely due 
to the bulk modulus of the material. The reference cavity has 
additional changes due to bending of the windows (the mirror 
substrates). These effects are easily corrected through a com-
bination of measurements and calculations, but uncertainties 
in the bulk modulus and in the position of the resonant modes 
in the reference cavity limit the attainable accuracy [9, 22].

The FLOC potentially has a very broad range of opera-
tion from less than one pascal to 3 MPa. As mentioned in sec-
tion 4, it is currently believed [20] that virial coefficients for 
helium are known with sufficient accuracy that the refractivity 

Figure 1.  FLOC dual Fabry–Perot cavity, supported slightly above 
the copper base of a combined pressure chamber/thermal enclosure.

4 Certain commercial equipment is identified in this paper to adequately 
describe the experimental procedure. Such identification does not imply 
recommendation or endorsement by NIST or PTB, nor does it imply that the 
equipment identified is necessarily the best available for the purpose.
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as a function of pressure can be calculated up to 3 MPa with 
less than 1  ×  10−6 relative uncertainty which indicate that the 
FLOC could potentially replace part of the pressure scale that 
traditionally has been dominated by piston gauges. The vari-
ation of bulk modulus with pressure will cause a nonlinearity 
that must be taken into account; this has been measured for 
ULE [43]. The resulting nonlinearity in pressure measurement 
is about 10 µPa Pa−1 at 3 MPa. The uncertainty of this correc-
tion is currently estimated to be less than 1 µPa Pa−1.

On the low pressure side, the FLOC has a potential oper-
ating range extending down to the regime of ionization gauges. 
The current NIST version is not optimized for low pressure 
operation but nevertheless shows good performance. When 
compared to an ionization gauge, the FLOC noise level was 
only 0.1 mPa for 1 s averages. In principle, sub micropascal 
measurements might be possible. Lasers locked to Fabry–
Perot cavities near room temperature have achieved fractional 
frequency stabilities below 10−16 for averaging times on the 
order of 1 s [44, 45], where the basic limitation is thermal noise 
(in the mirror substrate, the coatings, and the cavity spacer). 
For typical gas species such as nitrogen, oxygen, and water 
vapour, this thermal noise floor corresponds to about 4  ×  10−7 
Pa. However, the stability degrades rapidly as the measure-
ment time increases, and as a practical matter the measure-
ment floor will be limited by thermal or temporal instabilities 
of the cavity and by outgassing.

5.2.  Variable length optical cavity

The complications of pressure distortions in a fixed-length 
cavity (section 5.1) can be eliminated by working at con-
stant pressure and using a cavity of variable length (VLOC) 
[46]. The basic concept is to measure the same physical dis-
placement ΔL in vacuum and in gas. In the gas, the apparent  
displacement is ΔL′  =  nΔL. From the measured vacuum 
displacement ΔL and the difference in the two measured  
displacements, (n  −  1)ΔL, the refractivity (n  −  1) can be 
determined. Then

n − 1 =
∆L′ −∆L

∆L
.� (35)

One of the most important features of the system will be its 
ability to measure the refractive index of any gas put into the 
cavity with a measurement uncertainty that is lower than cur
rently published values. Thus, the VLOC will provide the 
needed link between helium’s refractive index determined 
from ab initio quantum calculations and the refractive index 
of a common calibration gas such as nitrogen. A variable-
length system is nearing completion at NIST and will be used 
as a primary pressure standard with helium as the working 
medium.

One conceptual method of achieving this goal is shown in 
figure 2. This scheme employs four Fabry–Perot interferom-
eters to measure optical lengths, based on frequency meas-
urements of lasers locked to the cavities similar to what was 
previously described for the FLOC. Three are in vacuum and 
one in gas. The four interferometers are built on two base-
plates. One baseplate is simply a flat plate of ULE glass that 

has four flat mirror coatings on the surface. The second base-
plate has curved mirrors silicate bonded to a ULE plate. A 
bellows (not shown for clarity) allows for varying the length 
of the tube between the two baseplates, and one baseplate is 
mounted on a precision stage to change the cavity length. The 
tube encloses the centre interferometer and can be filled with 
gas while the outer interferometers are maintained at vacuum. 
The outer three interferometers measure the vacuum displace-
ment and also monitor angular tilts of the moving baseplate.

The challenge of any such approach is to assure that the 
average change in physical length ΔL of the central Fabry–
Perot cavity must be precisely the same as the change in 
average length of the outer three Fabry–Perot cavities. Our 
goal is to achieve a relative uncertainty of 1  ×  10−6 in pres
sure measurements employing helium, which requires no 
more than 3 pm inequality in the displacements for a dis-
placement of 15 cm. The near-monolithic baseplate structures 
establish the physical relationship between the internal and 
external interferometers with picometer stability, which is one 
requirement needed to assure that the displacements are equal. 
Possible pressure distortions are constant during a displace-
ment measurement and therefore do not affect the measure-
ment result, but bellows spring forces vary with displacement 
and might distort the relative positions of the mirrors on the 
baseplates. Finite element calculations show that, with careful 
design, the resulting errors can be kept below 1 pm.

The need for precise equality of the changes in physical 
lengths of the helium and vacuum cavities carries with it sev-
eral demanding requirements. Perhaps the most demanding is 

Figure 2.  Conceptual drawing of variable length optical cavity.

Figure 3.  Cross-sectional view of the NIST VLOC, showing 
bellows section (B) ULE mirror assemblies (M). Piezo stage for  
tip-tilt control (P), and a portion of the translation stage (S).
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to minimize Abbe errors due to pitch and yaw of the moving 
optic. When angular motion errors are present, the average 
of the vacuum displacements will not equal the physical dis-
placement of the central interferometer unless the location 
of the central cavity mode is carefully adjusted to zero Abbe 
offset. Even with the Abbe offset reduced to micrometers, it is 
still necessary to keep pitch and yaw errors at submicroradian 
levels. To eliminate pitch and yaw, we expect to use the three 
vacuum interferometers to measure pitch and yaw with sub-
nanoradian precision and provide feedback to a piezo stage 
so as to maintain a constant orientation of the moving optic 
assembly relative to the fixed optic assembly.

Further considerations require that roll and straightness 
errors be minimized and that the cavity modes are aligned to 
each other and to the direction of stage motion at the micro-
radian level [46].

A cross-sectional view of the final apparatus is shown in 
figure 3.

5.3.  Interferometric method

The refractive index of air is an important parameter for inter-
ferometric length measurements of material measures, and for 
interferometric length measurements in air, the uncertainty in 
air refractive index can be one of the leading sources of error. 
For this reason, methods for the accurate determination of air 
refractive index have been established and refined. In case of 
using large field imaging interferometers, typically designed 
for the primary realization of the length of gauge blocks, it is 
preferable to determine the average air refractive index along 
the measured length interferometrically by using a vacuum 
cell as refractometer. In this approach a permanently evacuated 
vacuum cell is installed beside a gauge block to be measured 
and the air refractive index is determined from the comparison 
of optical path lengths in vacuum and air by interferometry. 
Figure 4 schematically shows such vacuum cell (left) with end 
faces that are closed by optical flat windows made of a homog-
enous transparent material. At the right side of figure  4, a 
typical interference phase topography, as from a measurement 
with PTB’s Kösters-Interferometer [47], is shown. Circular 
regions of interest (ROIs) are defined at positions of the air 
pathway (top and bottom) and the vacuum pathway (centre) 
within which the (unwrapped) phase values are averaged.

The vacuum cell provides a common geometrical length, 
lcell, valid for both, the pathway of light inside the vacuum cell 
and the pathway through air. lcell can therefore be expressed in 

terms of multiples of interference orders (i: integer order, q: 
fractional order) in two different ways:

lcell = (ivac + qvac)
λvac

2
= (iair + qair)

λvac

2n
,� (36)

in which the suffix ‘vac’ indicates the vacuum pathway and the 
suffix ‘air’ indicates the air path. According to equation (36) 
the refractivity of air can be written as:

n − 1 =
(iair − ivac + qair − qvac)λvac/2

lcell
.� (37)

Using several light sources of different wavelengths λk , the 
corresponding integer interference orders, ĩk = iair,k − ivac,k, 
can be determined by utilizing a coincidence criterion [48]. 
The fractional order of interference, q̃k = qair,k − qvac,k, is 
obtained from the measured interference phase topography:

q̃k =
1

2π

[
1
2
(
φ1

air + φ2
air

)
− φvac

]

k
,� (38)

in which φ1
air, φ

2
air and φvac denote averaged phase values 

obtained within the ROIs shown in figure 4, right. Installation 
of such interferometer equipment including a refractometer 
cell inside a vacuum chamber is possible, for example, with 
PTB’s ultraprecision interferometer (UPI) [49], which allows 
extraction of zero offset length differences q̃k · λk/2 when 
both the cell and the interferometer are evacuated. This offset 
is caused by refractive index inhomogeneities of the cell win-
dows and is dependent on the window thickness and slightly 
on the wavelength, but also on the actual position of the cell 
windows with respect to the light beam (adjustment). The 
measured zero offset (up to 40 nm found for 10 mm thick win-
dows) is used as a correction to equation  (37). For highest 
accuracy measurements of air refractive index (e.g. as in [50]) 
such zero measurements are absolutely required.

In principle the above mentioned approach can be 
applied for any gas, not only air. According to the rela-

tionship ngas − 1 = (i+q)λvac/2
lcell

, the relative uncertainty 

u(ngas − 1)/(ngas − 1) is equal to the quadrature sum of 
the relative uncertainties u (λvac)/λ vac and u (lcell)/lcell. 
Considering air under normal conditions as an example, rela-
tive uncertainty of 10−8 for λvac causes an absolute uncer-
tainty contribution of only 2.8 10−12 for the air refractivity 
at 20 °C. Similarly, a typical relative uncertainty of 10−6 for 
lcell causes an absolute uncertainty contribution of only 2.8 
10−10. The attainable uncertainty of ngas − 1, however, is lim-
ited by the uncertainty of the fractional interference order via 

Figure 4.  Scheme of pathways when using a vacuum cell for the interferometric measurement of the air refractive index. Reproduced from 
[48] © IOP Publishing Ltd. All rights reserved.
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the absolute contribution λvac/2
lcell

u(q). In case of the UPI the 

fractional order of interference can be extracted on a level of 
about 3 · 10−4 [49]. Consequently, a 420 mm long vacuum 
cell installed inside the UPI generally allows absolute gas 
refractivity measurements on a level approximately 3 · 10−10. 
Considering additional uncertainties (including contributions 
for the offset correction and window deformation) an overall 
standard uncertainty of the air refractivity is estimated to be 
approximately 5 · 10−10. This value is equivalent to a pressure 
variation of less than 0.2 Pa. Provided, that the air temper
ature measurement system/network is highly accurate, as it 
is for PTB’s UPI, it is consequently possible to measure the 
‘normal’ pressure of air by imaging interferometry on a rela-
tive level of approximately 2 · 10−6.

5.4.  Speed of light measurement

Equation (10) can be used to measure the refractive index by 
the speed of light in a gas medium. Different experimental 
set-ups are possible. A light pulse can be sent along a known 
path length and the time measured for this length. Also, a 
continuous EM-wave may be modulated with a relatively 
low frequency (compared to the optical frequency) in the 
MHz range and be sent to a detector via two different paths 
of known length. The phase difference between the two paths 
is measured.

Measurement range and resolution are improved with the 
use of shorter pulses and longer path lengths. Figure 5 shows 
a set-up, where the time difference is measured between 
two identical geometrical paths. One path travels through an 
evacuated chamber, the second through a chamber with a gas 
medium. By using multi-pass cells the time difference between 
the two branches can be increased (right part in figure 5).

When femtoseconds lasers are used, refractive index n for 
a single wave length has to be replaced by the group refractive 
index ñ . The time difference Δt of the beams through two 
branches, one in vacuum with c0, one in a gas medium with 
c0/ñ, but identical length l, is given by

∆t = (ñ − 1)
l

c0
.� (39)

With a laser pulse of about 30 fs duration a time resolution 
of about δt  =  3 fs should be possible by a cross-correlation 
measurement [51]. With l  =  30 km this gives a resolution of 
the refractivity δ (ñ − 1) of 3 · 10−11, which, for helium with 
a refractivity of 3 · 10−5 (100 kPa, 296 K), gives a relative 
uncertainty due to resolution of 10−6.

If a frequency resolved technique is used for the cross- 
correlation measurement, the additional benefit of a frequency 
spectrum allows to compare the measured dispersion with the 
ab initio calculated dynamic polarizability which is more 
uncertain than the static polarizability. Such a technique is the 
frequency-resolved optical gating (FROG) [52].

In addition to resolution, there are uncertainty contributions 
from temperature, from thermal expansion, pulse dispersion, 
and compression caused by the increase of pressure of the gas, 
which all should be of the same order of 10−6 (relative).

Compression of the mirror materials leads to a change of 
radius of curvature in a multipass cell. With the use of a spe-
cial type [53] of multireflection cell after Herriott [54], how-
ever, a change in the ratio of radius of curvature divided by the 
mirror distance leads to a beam walk of the out-coupled beam. 
By controlling the mirror distance with respect to an external 
reference and consideration of the beam walk, the influence of 
compression can be corrected.

Pulse dispersion may be solved in the future by measuring 
the pulse delay not in the time domain, but frequency domain 
with a dual frequency comb [55]. This may also greatly 
improve the resolution in optical path length, but present state 
of the art has not advanced far enough for this review to give 
more details.

To limit the contribution of the temperature to a relative 
uncertainty of 10−6 in pressure, 0.3 mK uncertainty is needed. 
With vacuum vessels of dimensions to host beam path lengths 
in the kilometer range, this is not realistic. If, however uncer-
tainties of a factor of 10 higher can be accepted, the speed 
of light measurement is a useful, but expensive, method to 

Figure 5.  Michelson setup for optical time-of-flight measurements. (Left) With normal arms. (Right) Using optical multipass cells to 
increase the path lengths of both arms and thus the delay times and resolution.
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measure gas pressure. The effort includes a fs-laser, a fast and 
sensitive detector, mirrors with large diameters and corre
sponding large vacuum chambers with a temperature stability 
of several millikelvin. One must keep in mind, that the spec-
trum of the laser emission should be far away from any pos-
sible absorption lines of the used gas. In addition, the laser 
power must be small enough, so that the laser beam itself is 
not changing the refractivity, for example by non-linear effects 
or by building up a plasma [56].

5.5.  Absorption method

The absorption experiment needs a laser as a monochromatic 
source of an EM wave with frequency ν, a detector suitable 
for the frequency ν, and a well defined path length of the EM 
wave through the absorbing medium.

For a fundamental method, it is necessary to determine 
the full integral of the absorbing line as described in equa-
tion (27). To this end, the laser has to be tuned not only across 
the absorption line, but also far outside from it to detect I0. The 
Lorentz-part of the form function compared to the Gaussian 
part decreases quite slowly with distance from the line centre: 
About 100 times of the full width at half maximum (FWHM) 
are needed to reduce intensity to a level of 10−4 of the peak 
height. Since pressure broadening increases the FWHM of 
the Lorentz-part, it is rather difficult to accurately determine 
the integral at higher pressures (>100 Pa). Fortunately, the 
FWHM of the Gaussian part is much larger than that of the 
Lorentz part, even in the infrared.

The molecular transition must be carefully selected so that 
it can be assumed that no other transition nearby the absorp-
tion line disturbs the measurement of I0.

To achieve a reasonable resolution, the absorption paths 
need to be enlarged, e.g. by multi-pass cells. Herriott cells [54] 
are very useful for this purpose, because the path length can 
be easily changed and determined with an uncertainty  <10−3. 
In a Herriott cell, at particular distances of the mirrors the 

number of reflections within the cell is defined and therefore 
so is the path length.

Figure 6 shows an experimental set-up for a gas density 
measurement by absorption method [57]. The beam is split 
into three channels. One channel is used to calibrate the fre-
quency or wave number axis in situ, the second channel to 
normalize the detector to intensity changes of the laser, the 
third is the measuring channel. A special feature of the exper
imental set-up shown in figure 6 is that the absorption length 
can be changed by about one order of magnitude (from 6 m 
to 70 m) by a movable mirror, with still enough intensity for 
measurement.

With such a set-up and full traceability of all auxiliary 
equipment it is possible to achieve an uncertainty of pressure 
realization for CO2 of 0.5 % in the range from about 10 Pa to 
1 kPa with the largest contribution from uncertainty of line 
intensity [27].

Another powerful method to increase the effective optical 
path length is cavity-ring-down-spectroscopy (CRDS) [58]. 
For this technique, a laser beam is injected into a high finesse 
cavity consisting of two mirrors (figure 7). When the laser 
frequency is in resonance with the cavity, intensity in the 
cavity builds up to a maximum determined by the quality of 
the resonator (cavity finesse), a factor on the order of 105. If 
the incoming beam is suppressed suddenly, an exponentially 
decaying intensity leaks out of the cavity. This decay rate 
depends on losses caused by the imperfect reflectivity of the 
mirrors, scattering (Rayleigh, Mie), and (of primary interest 
here) molecular absorption. The effective beam path in the cell 
may amount to several kilometers for a cavity a few centime-
ters long. The comparison of the decay times for the evacuated 
cavity and for the same cavity filled with the gas of interest 
allows for the calculation of the molecular absorption. The 
calculation is based on a modified version of equation (22):

I (ν, t) = I0 (ν) exp {−t/τ (ν)}� (40)

where the decay time τ (ν) is given by

τ (ν) =
n
c
· l

1 − R − X − l · k (ν)
.� (41)

Here l is the distance between the mirrors, R is the reflectivity 
and X  are the losses caused by scattering. For high finesse 
cavities, effective dwell times per photon inside the cavity of 
100 µs are easily achieved even within small dimensions of 
some decimetres, corresponding to an effective optical path 
length of 30 km.

With the combination of sufficient laser power and a 
finesse that is high enough, it is possible to saturate the molec-
ular absorption, leading to a transparent medium. In that case, 
it is possible to measure in one step without evacuating the 
cavity, simply by comparing the first part of the decay curve, 
with the second part. The first part is accompanied by a decay 
time equal to that of an evacuated cavity, caused by the satur
ation effect, while the second part is affected additionally by 
the molecular absorption. This technique is called saturated-
absorption CRDS (SCAR) [59]. With SCAR it was already 
possible to achieve a resolution of 43 parts in 1015 (ppq) in 

Figure 6.  Experimental set-up of a gas density measurement by 
the absorption method [57]. BS beam splitter, OCE open confocal 
etalon, CH chopper, PD photo detector, no. 1 for frequency 
determination, 2 for laser intensity (reference), 3 for absorption 
signal. The chopper is used for lock-in-detection of the signals from 
PD2 and 3. The position of the left mirror of the Herriott cell in the 
vacuum chamber can be changed in situ.
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14CO2 detection [60]. This corresponds to a partial pressure of 
4.3 · 10−9 Pa and is therefore not far from the XHV.

5.6.  Cold atom traps

Cold atom traps have the potential to measure the lowest gas 
densities by optical methods, i.e. in ultrahigh vacuum (UHV) 
and extreme high vacuum (XHV). NIST and others are pres-
ently exploring using ultra-cold atoms to sense the absolute 
number density of molecules in vacuum [61–65], the NIST 
project is explained in more detail in an accompanying article 
also in this issue [66].

Figure 8 represents a potential prototype cold-atom vacuum 
standard (CAVS) using Li as a sensor atom that is currently under 
construction at NIST. Initial laser-cooling and trapping of atoms 
is done in the pre-cooling trap region, creating a needle-like 
beam of atoms that flow through the baffle tube into the sensing 
trap. These atoms are now are further cooled to sub-millikelvin 
temperatures and held in a magnetic trap, at which point they 
become sensor atoms. A gas molecule in the vacuum may strike 
a sensor atom, knocking it out of the trap, so the loss rate of atoms 
from the trap becomes a measure of background particle number 
density. The number of atoms in the trap is detected using pho-
tonic techniques, such as absorption imaging. The pressure of the 
test vacuum system is determined from the loss rate of Li atoms 
from the sensing trap according to equation (30).

To develop the CAVS, the loss-rate coefficients must be 
both theoretically and experimentally determined. NIST will 
experimentally determine cross sections  or rate-coefficients 

for collisions of cold alkali-metal atoms with H2 and many 
other molecules by building a dynamic expansion standard in 
tandem with the CAVS, which allows us to generate a known 
gas pressure in the CAVS. By setting a known pressure and 
measuring the trap lifetime, the cross sections leading to trap 
loss are determined. In parallel, NIST will develop accurate 
theoretical and efficient computational models to determine 
the collision rate coefficient between the Li alkali metal atoms 
and the background gas. Comparison between these and the 
experimentally determined loss rates will be essential for 
validating our methods and uncertainty. Ultimately, a primary 
CAVS will depend upon theoretically calculated loss-rate 
coefficients and relative gas sensitivity factors (relative to H2) 
as discussed in detail in the companion paper appearing in this 
issue [66].

Other challenges to creating the absolute CAVS include 
understanding and, where possible, preventing other mech
anisms that lead to atom loss from the trap. For example, atom-
loss due to non-adiabatic spin-flip transitions as the trapped 
atoms move toward a region of zero magnetic field can be 
avoided by careful design of the magnetic trap. Similarly, the 
effect of background atoms colliding with trapped cold atoms 
with a glancing angle, which lead to heating but not loss, can 
be minimized by making the magnetic trap shallow. Collisions 
between two or more cold atoms in the trap can also lead to 
trap loss, but these are avoided by maintaining a low density 
of trapped cold atoms. In our case, the mean free path of the 
cold atoms will be on the order of 10 m but the cold atom 
cloud is on the order of micrometer.

This new way to realize UHV and extreme-high vacuum is 
both a primary standard and a sensor of vacuum. Ultimately, 
it is photon-based metrology because the number of sensor 
atoms in the trap is photonically-probed.

6.  Discussion

Gas density compared to pressure is the more appropriate 
quantity to characterize the vacuum state. Optical methods 
have an advantage in that they are based on the number den-
sity of gas in the vacuum and these are accessible through 
interactions of light with matter. It has been shown by NIST 
[10] that optical methods can become fundamental standards 

Figure 7.  Principle of cavity-ring-down-spectroscopy. The laser’s power output can be switched off within several nanoseconds, e.g. by the 
use of a pockels cell. The cavity mirrors have a high finesse in the order of several thousand. The detector must be fast enough to resolve 
the delay times. Typically, a cooled detector is used, to enhance the signal to noise ratio.

Figure 8.  Schematic representation of the proposed cold-atom 
vacuum standard (CAVS).
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and have the potential to provide a new route of SI traceability 
for the pascal.

The refractive index method with an optical cavity of vari-
able length has the pospect of becoming the most accurate 
method to realize pressure and gas density. The NIST VLOC 
is projected to achieve an uncertainty near 1 part in 106, signif-
icantly better than what has been achieved by manometers and 
comparable to what has been recently achieved with piston 
gauges [67].

The FLOC is a simpler, more robust device than is the 
VLOC, suitable for wider use beyond NMIs. Its primary dis-
advantage relative to the VLOC is that it is subject to pres
sure-induced changes in the mechanical length of the cavities, 
which must be measured and corrected or calculated from 
known values of material elastic constants. For pressures 
above 100 Pa, best performance will probably be achieved if 
the pressure distortions are evaluated by comparison of FLOC 
pressure measurements to the VLOC.

An attractive alternative is to employ the FLOC as an inde-
pendent standard using two gasses for which the relationship 
of refractivity to pressure is well known, either from theory 
(for helium) or from experimental measurements (potentially 
measured to high accuracy with the VLOC). This can be 
done without requiring direct comparison to a known pres
sure standard, working under the assumption that the only 
significant error in the FLOC is pressure distortion. If, for 
example, measurements of refractivity are made for helium 
and nitrogen with both at the same pressure (where the pres
sure need not be known), then the two measured refractivi-
ties can be used to determine two unknowns; (a) the unknown 
pressure and (b) the pressure distortion of the FLOC. In effect, 
the known refractivities of the two gasses serve as a mech
anism for traceable dissemination of the Pascal where trace-
ability is provided by the atomic/molecular properties of the 
gasses in place of a direct comparison to a primary standard. 
(Except in the case of helium, there is indirect comparison 
to the pressure standard that was used when the gas refrac-
tive index was determined experimentally.) The uncertainty 
of pressure measurement using the two-gas dissemination 
method is potentially a few parts in 106 at atmospheric pres
sure, if the refractivity of nitrogen can be measured with com-
parable uncertainty. Note that it is still necessary to separately 
establish traceability of the FLOC temperature sensor and the 
time base for frequency measurements.

If the FLOC is tested with three known gasses, this will 
uncover any possible contamination of one of the gasses used 
for pressure dissemination. Three-gas tests combined with 
other internal consistency checks can be used to verify con-
tinued proper operation of all components of the system other 
than the temperature sensor. This subject is treated in detail in 
a coming publication [22].

With this distortion correction, the FLOC should be able 
to extend the high accuracy of the VLOC to a much broader 
pressure range, conceivably spanning 9 orders of magnitude 
from millipascal to megapascal.

For argon no ab initio calculations of polarizability on the 
ppm level are available. This, however, may change in the 

future by combining accurate DCGT (dielectric-constant gas 
thermometry [21]) measurements of the static polarizability 
with ab initio calculations of the frequency dependence and 
the magnetizability. New ab initio calculations of the virial 
coefficients have been performed during the last years [18, 
68–71]. After experimental proof of these data, argon can be 
used as measuring gas. With the eight times larger polariz-
ability, argon holds the advantage of being less sensitive to 
impurities and deformation under pressure.

The absorption method has been proved to be suited as a 
primary standard [4] in the high and medium vacuum, with 
the uncertainty of pressure realization below 1 %. For high 
sensitivity, long path lengths are needed which increases the 
effort.

The refractivity, speed-of-light and absorption measure-
ments may benefit from using two or more detection frequen-
cies. Redundancy is increased, but also important parameters 
may be analyzed at the same time. e.g. with cavities, the 
influences of compression may be distinguished from refrac-
tivity, for absorption, there is an additional measurement of 
temperature, and in the VLOC, measurements of dispersion 
would uncover any possible contamination of the helium in 
the cavity. From the technical point of view, however, the use 
of different frequencies increases complexity and a number of 
technical details have to be considered. Future investigations 
should reveal where the effort of using multiple frequencies 
will be beneficial.

One might point out that all optical methods are gas species 
sensitive. Comparing this to the present methods of pressure 
realization in the vacuum regime, however, one can note that 
all these methods require knowledge of the gas composition. 
In the case of a static expansion system [72], corrections for 
real gas behavior is needed, and in continuous expansion sys-
tems the dependence of conductances on gas species is needed 
[72]. In addition, also with the present methods, not all gas 
species are suitable for pressure realization, e.g. condensa-
tion or adsorption must be avoided. In addition, we should 
note that many types of vacuum gauges are gas sensitive and 
require a pure gas for calibration.

For the CAVS, the collision cross sections and therefore the 
loss-rate coefficients are expected to have minimal dependence 
on gas species composition in the vacuum in most cases, and 
thus the CAVS represents a large improvement over existing 
sensor technology in the UHV and XHV regions. Moreover, 
when considered as a standard, it is fundamental and based on 
ab initio quantum mechanical theory. In contrast, the current 
state of the art standard at the lowest pressures, the continuous 
expansion method [72], produces a known, calculated pres
sure in a chamber and is intrinsically not primary because it 
scales down the pressure from a calibrated gauge. Continuous 
expansion systems are standards to calibrate gauges, not them-
selves sensors. The CAVS is both a standard and a sensor, and 
it is this duality that will ultimately make the CAVS a disrup-
tive technology, because it is intrinsically fundamental and 
delivers a zero-length traceability chain. Its practicality and 
applicability will be further advanced through efforts to min-
iaturize the atom trap and its supporting photonics and optics.
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7.  Conclusions

For over three and half centuries, we have relied upon the mer-
cury manometer and for the past century on piston gauges for 
traceability to the pascal. This realization method was based 
upon measurements of force per area. While this has served 
the community well for high pressure, optical methods are 
now emerging to replace these measurement methods in the 
vacuum regime and perhaps up to 3 MPa. The optical methods 
intrinsically measure gas number density. In the vacuum 
regime, it may be advantageous to shift emphasis away from 
pressure toward number density, which is much more relevant 
for low pressure applications and which eliminates the uncer-
tainty associated with temperature measurement. At higher 
pressures, force per area will continue to be relevant, but in 
this regime also the optical density measurements have sig-
nificant strengths and can improve pressure measurement 
capabilities.

The paper has presented optical measurements methods 
of gas density that are promising from today’s viewpoint. It 
remains to be seen which methods will dominate and which 
methods may face technological challenges limiting wide-
spread adoption.
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