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4 Decoupling
• Decoupling from local equilibrium;

• Electroweak and week Interaction rates;
• Particle distributions after decoupling;
• Decoupling and Freeze-Out

• Neutrino decoupling;
• Electron-positron Annihilation;
• Cosmic Neutrino Background;
• Beyond thermal equilibrium: Boltzmann Equation
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Equilibrium condition, interaction timescale, and interaction rate:
Thermal equilibrium of a fluid species can be established if the interaction 
rate, Γ(#), is larger than the expansion rate, % # = (̇/( :

Γ # ≫ %(#)
The timescale for particle interactions, #+ = 1/Γ, is therefore much shorter 
than the characteristic timescale of expansion, #- = 1/%:

The interaction rate is the number of interaction events of the species per 
unit of time. It is given by:

where . is the number density of target particles, /, is the interaction cross 
section and, 0, is the relative speed between particles. 
The SI unit of Γ ``one over second”: Γ = 1 2 3 = 456.
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Equilibrium condition, interaction timescale, and interaction rate:
For example, in the interaction process:                               one has:

• Γ" = $%&'"% is the iteration rate of the particle species 1
• Γ% = $"&'"% is the iteration rate of the particle species 2 ('%"= '"%)
• Γ( = $)&'() is the iteration rate of the particle species 3
• Γ) = $(&')( is the iteration rate of the particle species 4 (')(= '())

Reverting the equilibrium condition, Γ ≫ +, one should expect that a given 
particle specie has conditions to decouple from the thermal bath when

,
- ≲ 1

For a relativistic fluid the expansion rate of the universe reads (SI):

where, 012 is the Planck Mass:
<latexit sha1_base64="hvRoSGaYRHUpxY+oDkPaAePJM1g="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:
From this, one obtains (in natural units):

Let us now estimate the interaction rate, Γ = #$%, for the fluid of relativistic 
particles: 

• Since particles are relativistic: % ∼ 1
• The number density in equilibrium is: #) = * +

,- .) /+ ∝ /+
• The interaction cross section will depend of the type of interaction and 

mediators. For interactions mediated by bosons of mass 12:

where 32 is the generalized structure constant with the gauge boson X

(photon, massless bosons)

(massive bosons)

<latexit sha1_base64="t0uhVHrEthuE/WQL+2jZUcahal0="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:
So the decoupling condition, Γ/# ≪ 1, becomes:

So:
• At high temperature (& ≳ 100 GeV – the electroweak symmetry breaking) 

all interactions are mediated by massless Gauge bosons. For the 
electroweak interaction, ) = 0.01, this gives: 

So thermal equilibrium via electroweak interactions is possible for

100 GeV ≲ & ≲ 1001 GeV
Above the 1001 GeV (the Grand Unification Theory) scale the Universe is 
not able to acquire an equilibrium state via the electroweak interaction.
Actually it may have never been in thermal equilibrium!

<latexit sha1_base64="FGLSyvaDuWbLNqfcIhzUeF4H0eg="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:

• At lower temperature (! ≲ 100 GeV – below the electroweak symmetry 
breaking) the weak interaction between relativistic particles is mediated by 
massive bosons, %& . One has:

Which drops below unity ' ≲ ( )*+.

So relativistic particles interacting via weak force (e.g. neutrinos) are able to
remain in equilibrium with the fluid in the temperature range:

1 MeV ≲ ! ≲ 100 GeV
Below this temperature they should decouple from the fluid.
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Key events in the thermal history of the universe

Particle species interacting via the 
weak force have conditions to 
attain thermal equilibrium

Electroweak interacting species 
may attain thermal equilibrium up to 
the GUT 10#$GeV scale 
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Particle distributions after decoupling
Let us now study what happens to the phase space distribution of a given particle 
species, !(#, %, & > &(),  after that species decouples from the fluid at time &(.
The number of particles within the volume element *+*,% around the point (#, %) of 
the phase space is:

If no particles are created or destroyed after decoupling, the left hand side of this 
equation remains constant.  On the right hand side, we know that the volume element 
element scales with -,. For the momentum we have: 

• For massless particles (e.g. radiation) momentum scales as energy;
• For massive particles we also have that momentum scales as energy (m is the rest 

mass of the particle species).
So, for massless or massive particles: 
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Particle distributions after decoupling
Let us now study what happens to the phase space distribution of a given particle 
species, !(#, %, & > &(),  after that species decouples from the fluid at time &(.
The number of particles within the volume element *+*,% around the point (#, %) of 
the phase space is:

So the shape of the distribution function does not change after decoupling. 
However ! depends on %, so it’s argument scales with time as -./. We can then relate 
at decoupling, %( , with the momentum after decoupling, %, as

where -( is the scale factor at decoupling - = -(&().  

Is constant if no particles 
are created/destroyed
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Particle distributions after decoupling
So the distribution function at decoupling, !", can be written as

Note that #" evolves as #" = # %"/%. The right hand side of this equation is therefore 
the distribution function after decoupling,

where we drop # because ' is independent of position. So one has two possibilities:

• The species decouples while it is relativistic (e.g. (; massless neutrinos)

So ' keeps its functional form if the temperature, ), scales as:
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Particle distributions after decoupling
We therefore conclude that the temperature of decoupled relativistic species
also scales with the inverse of the scale factor (! = !# $#/$) as it happens
for relativistic species in thermal equilibrium (!& ∝ (∗*

+,/- $+, ). 

However when a species 
decouples, (∗* , decreases 
and therefore the 
temperature of the fluid, !& ,
decreases at a lower rate 
then the temperatures 
of the decoupled species. 
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Particle distributions after decoupling
The number density of a relativistic species after decoupling scales as:

• The species decouples while it is non-relativistic (! ≫ #)

this distribution has the same functional form of a distribution of non-relativistic
particles with temperature and chemical potential given by: 
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Particle distributions after decoupling
Using these scalings in the expressions for the number density of a non-
relativistic species one obtains that, after decoupling the number density scales
as: 

this means that if a particle species decouples when it is non-relativistic, its 
number density also scales as:
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!",$ = 2.726

Particle distributions after decoupling
Example: photons (relativistic) 

!",* = 2.726 1 + -* ∼ 3000 K

Relativistic: Non-Relativistic: 

CMB
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Decoupling and Freeze-out
As massive particles decouple their abundances are Boltzmann suppressed by !"#/%. 
While in equilibrium, for & ≫ ( one should expect that )/T+ is constant (because ) ∝ T+).
However these predictions assume that the decoupling species is always in equilibrium as 
it density is being supressed. In reality this hypothesis cannot hold at very low temperatures, 
& ≪ (, because particle abundances become too small to be able to achieve equilibrium.

At high enough (/& one 
should expect that the real 
number density departures from 
the equilibrium prediction: 

In fact beyond  (/& larger 
than ~10 the ratio )./._12/T+
becomes constant again. The 
density, )./._12, is the non-
equilibrium Freeze-Out 
density.
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Neutrino decoupling:
Neutrinos are coupled to the thermal bath via week interaction processes like: 

Below 10 MeV these particles and photons are the remaining particles of the 
fluid. The effective degrees of freedom are:

Using this in the Friedman equations 

Combining with the expression for Γ one concludes that neutrinos decouple 
below at about 1 MeV (accurate calculation yields " = 0.8 MeV) . 
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Electron-positron annihilation
Electron-positron annihilation occurs soon after the neutrino decoupling. In fact, as 
soon as ! ≲ 1.022 MeV electron-positron pair creation becomes less effective, and 
the interaction 

progressively moves to the right (more *+/ *-being destroyed than created). 

• Neutrino decoupling occurs 
around ! ∼ 0. 8 MeV;

• *+/ *- annihilation occurs 
around ! ∼ 0. 5 MeV, with a 
transition 0.1 ≲ !/MeV ≲ 1

• But these processes partially 
overlap: neutrino decoupling 
is not over when electro-
positron annihilation starts

Neutrino 
decoupling

*±

2∗
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Electron-positron annihilation
Let us now compute the effective degrees of freedom of relativistic particles before 
neutrino decoupling and after electron-positron annihilation. 

Before neutrino decoupling (! ≳ # $%&):
Relativistic particles species are the ', )± and ./, so:

After electron-positron annihilation (! ≲ 1. 3 $%&):
Relativistic particles species are just the ' and ./ (note that neutrinos are already 
decoupled but they remain relativistic and therefore contribute to the entropy):

Since entropy is conserved one has: 
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Electron-positron annihilation
So one can write:

But after decoupling neutrino temperature scales as:                                                       .
Moreover, since !",$%&'(% = !*, $%&'(%, one has:

Decoupling from thermal equilibrium
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Electron-positron annihilation
From which one concludes that:

So after decoupling the neutrino temperature is somewhat smaller than the the 
photon temperature: 

With this result one can estimate the relativistic degrees of freedom for ! ≲ 0.5 MeV:

Which explains the difference between )∗+ and )∗ at low temperatures
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Electron-positron annihilation
However, this result is only valid if the decoupling of neutrinos was instantaneous (and 
happened before the beginning of the electron-positron annihilation). 
But these processes are not instantaneous and in fact overlap in time. Part of the energy and 
entropy of the electron-positron annihilation leaks into the remaining relativistic species,  
increasing their temperature, via an decrease of !∗# and !∗ (as discussed in slide 13).

A more accurate computation (taking into account the variation of !∗#(%) and !∗(%)) gives:

!∗ = 3.38 ; !∗# = 3.94
In order to keep the calculation of the effective degrees of freedom simple, it is usual to define a 
quantity, -.//, known as effective number of neutrino species, so that:

Where 0122 = 3.046 (0122 is by itself a parameter that can be fit by CMB 
observations). If neutrino decoupling was instantaneous 0122 = 3.

3.38
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Cosmic Neutrino Background 
A Cosmic Neutrino background (C"B) should be present in the universe since decoupling. Its 
temperature should scale with with the inverse of scale factor and it is related to the CMB 
temperature (which also scales with the inverse of the scale factor) as:

(which corresponds to $",& = 0.17 meV).

Plugging this result in the expression of the neutrino number and energy densities one obtains:

Assuming /011 = 3.046 and the observed values of the CMB densities, one obtains 5",& =
112 cm89 and Ω_",& = 0.00014 (assuming massless neutrinos).
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Beyond thermal equilibrium: the Boltzmann Equation
Equilibrium quantities such as density expression derived in the previous chapter assume that 
the decoupling species is always in equilibrium as it density is being supressed. In reality this 
hypothesis cannot hold at very low temperatures, ! ≪ #, because particle abundances 
become too small to be able to achieve equilibrium. The formal way of computing out of 
equilibrium densities is through the use of the Boltzmann equation (see next slides)  

Out of equilibrium 
density, $%

Equilibrium density, 
$%
&'

Freeze Out density, 
$()&&*&+,-. ≠ $%

&'
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Boltzmann Equation
In the absence of interactions the number density of the decoupled species obeys to the 
conservation equation:

This follows from the fact that the number of particles in a physical volume remains 
constant after decoupling !" = !$," &'(. 

One can generalise this expression to include interactions: 

Where the left hand side is equivalent to the above equation and in the right hand side 
one adds a collision term, )"[ !+ ], that accounts for sinks / )"[ !+ ] sources of the 
density of the species !" due to interaction (collisions) with other species !+ . 
The latter equation is known as the collisional Boltzmann equation.  
When )" !+ = 0 one obtains the collisionalless Boltzmann equation (on the top) 
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Boltzmann Equation
The form of the collision term !"[ $% ] depends on the type of interaction. For interactions of 
2 particles species (3 body interactions are in principle much less likely):

(this means that species 1 annihilates with species 2, giving rise to species 3 and 4. Conversely 
species 3 and 4 annihilate back to species 1 and 2). 

To follow the out of equilibrium evolution of, for example, '( one needs to take into account the 
balance of efficiency of the reaction between 1 and 2, that originates a sink of density, and the 
(reverse) reaction between 3 and 4, that originates a source of '(.  This can be translated into 
the collisional Boltzmann by replacing the collision term )*[ '+ ] with 2 terms:

where ,$-$. is a sink term describing the destruction of particles (due to the 
reaction to the right) and /$0$1 is a source term describing the creation of 
particles of type 1 (due to the reaction to the left). 
Naturally, each term should be proportional to the densities of each pair.
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Boltzmann Equation

The parameters ! and " can be written as:

- is the thermally averaged cross section (!#$#% = Γ$#$)

- " needs to be related to ! so that the right hand side of the equation vanishes
when particles are in equilibrium. 

Where the densities inside the parenthesis are equilibrium densities #(
)*. Thus:
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Boltzmann Equation
It is instructive to write this equation in terms of the number of particles in a commoving 
volume, defined in chapter 3: 

which is a conserved quantity (i.e. as long as the average number of particles is 
conserved) resulting from the entropy conservation equation. Using !" = $"% one 
finds:

Note that:

• The factor Γ'/) describes the interaction efficiency. 
• The 2nd term in the parenthesis characterises deviations from equilibrium.  
• If *+ ≪ -, the r.h.s of the equation is supressed and $'freezes out.
• If *+ ≫ - equilibrium is rapidly established. For example, if $' ≫ $'/0 the r.h.s

becomes more negative (more particles are destroyed). If $' << $'/0 the r.h.s
becomes less negative (more particles are created). Both of these push $' → $'/0.   


