Universo Primitivo 2018-2019 (10 Semestre)

Mestrado em Física - Astronomia

Chapter 6

6 Big Bang Nucleosynthesis

- Initial Conditions;
- Nuclear statistical equilibrium;
- Neutron abundance;
- Helium abundance;
- Comparison with observations
- BBN as a probe of cosmology and fundamental physics

References

Big-Bang Nucleosynthesis

Initial conditions

Initial Conditions: After QCD phase transition and $\boldsymbol{T} \gtrsim \mathbf{1 0} \mathbf{~ M e V}$ protons and neutrons...

- remain in equilibrium with the fluid due to weak interactions involving neutrinos.
- First atomic nuclei form in equilibrium via 2-body nuclear reactions between protons and neutrons
- The proton to neutron ratio is given by $n^{e q} / p^{e q}$

By $\mathbf{T} \sim \mathbf{1 - 0 . 7} \mathbf{~ M e V}$,

- weak interactions can no longer keep protons and neutrons in equilibrium
- Free neutrons decay into protons by $T \sim 0.8$, while atomic nuclei remain in equilibrium
- Neutrinos decouple, and n / p start to deviate from the equilibrium value

By $T \sim 0.7-0.5 \mathrm{MeV}$,

- The production of deuterium, $n+p \rightarrow D+\gamma$, ceases when the number of neutrons decrease.
- Light atomic nuclei are then formed by 2-body reaction (3 body reactions are very unlikely).

Big-Bang Nucleosynthesis

Initial conditions

Main nuclear reactions

that can be establish during this phase

Big-Bang Nucleosynthesis

 (BBN) is able to predict the observed abundances of light elements!
Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

Let us assume a given atomic nucleus $A=n+p$ nucleons (A is the nuclear mass number, n is the number of neutrons, and p is the number of protons of the nucleus. The nuclear charge is given by the atomic number $Z=p$.

The number density of this nuclear species at equilibrium is given by the nonrelativistic expression derived in Series 2 (exercise 5.1):

$$
n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} \exp \left(\frac{\mu_{A}-m_{A}}{T}\right)
$$

where the chemical potential needs to account for the number of protons and neutrons that make up the nucleus

$$
\mu_{A}=Z \mu_{p}+(A-Z) \mu_{n}
$$

We can also write similar equations to the free (non-relativistic) protons and neutrons, noticing that both these particles have 2 degrees of freedom (spin).

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

i.e., neutrons and protons have also non-relativistic equilibrium densities given by the previous expression $\left(\mathrm{A}=1, g_{A}=2\right)$:

$$
\begin{aligned}
n_{n} & =2\left(\frac{m_{n} T}{2 \pi}\right)^{3 / 2} e^{-\left(m_{n}-\mu_{n}\right) / T} \\
n_{p} & =2\left(\frac{m_{p} T}{2 \pi}\right)^{3 / 2} e^{-\left(m_{p}-\mu_{p}\right) / T}
\end{aligned}
$$

The nuclear biding energy, B_{A}, of a nucleus with atomic mass, A, is defined as the difference between the total mass of free nucleons and the mass of the nucleus:

$$
\begin{aligned}
B_{A} & =Z m_{p}+(A-Z) m_{n}-m_{A} \\
m_{A} & =Z m_{p}+(A-Z) m_{n}-B_{A}
\end{aligned}
$$

Using these expressions in n_{A} (the previous slide) and approximating $m_{A}=A m_{B}$ where $m_{B}=m_{p}=m_{n}$ one obtains (series exercise):

$$
n_{A}=\frac{g_{A}}{2^{A}} A^{3 / 2}\left(\frac{m_{B} T}{2 \pi}\right)^{3(1-A) / 2} n_{p}^{Z} n_{n}^{A-Z} e^{B_{A} / T}
$$

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

This shows that abundance of a nuclear species, critically depends on :

- the abundance of protons and neutrons at a given T;
- the binding energy to temperature ratio, B_{A} / T

It is useful to write the nuclear abundances in terms of mass fraction abundances, X_{A}, defined as:

$$
X_{A} \equiv \frac{n_{A} A}{n_{B}} \quad \text { where } \quad n_{B}=n_{p}+n_{n}+\sum_{A} A n_{A}
$$

This definition allows to write the following conservation equation of nuclear abundances

$$
\sum_{A} X_{A}=1
$$

Using n_{A} in the expression of X_{A} one has:

$$
X_{A}=\frac{g_{A}}{2^{A}} A^{5 / 2}\left(\frac{m_{B} T}{2 \pi}\right)^{3(1-A) / 2} \frac{n_{P}^{Z} n_{n}^{A-Z}}{n_{B}} e^{B_{A} / T}
$$

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

The density ratio in the previous expression can be written as:

$$
\frac{n_{p}^{Z} n_{n}^{A-Z}}{n_{B}}=\frac{n_{p}^{Z}}{n_{B}^{Z}} \frac{n_{n}^{A-Z}}{n_{B}^{A-Z}} n_{B}^{A-1}=X_{p}^{Z} X_{n}^{A-Z} n_{B}^{A-1}=X_{p}^{Z} X_{n}^{A-Z} n_{\gamma}^{A-1} \eta^{A-1}
$$

Where we introduce the baryon to photon ratio defined as:

$$
\eta \equiv n_{B} / n_{\gamma} \quad \text { where, } \quad n_{\gamma}=\frac{2}{\pi^{2}} \zeta(3) T^{3}
$$

η is a central quantity in BBN. It can be calculated at present ($T_{0}=2.7525$):

$$
\eta=2.74 \times 10^{-8} h^{2} \Omega_{B}
$$

Using these expressions in X_{A} (of the previous slide) one has (check all the steps!):

$$
\begin{aligned}
X_{A} & =\frac{g_{A}}{2^{A}} A^{5 / 2}\left(\frac{m_{B} T}{2 \pi}\right)^{3(1-A) / 2} X_{p}^{Z} X_{n}^{A-Z}\left(\frac{2}{\pi^{2}} \zeta(3) T^{3}\right)^{A-1} \eta^{A-1} e^{B_{A} / T} \\
& =g_{A} A^{5 / 2} 2^{-A+A-1-3(1-A) / 2} \pi^{-2 A+2-3(1-A) / 2} \zeta(3)^{A-1} T^{(1-A)(-3+3 / 2)} m_{B}^{3(1-A) / 2} \eta^{A-1} X_{p}^{Z} X_{n}^{A-Z} e^{B_{A} / T} \\
& =g_{A} \zeta(3)^{A-1} 2^{-5 / 2+3 / 2 A} \pi^{-1 / 2-1 / 2 A} A^{5 / 2} T^{-3(1-A) / 2} m_{B}^{3(1-A) / 2} \eta^{A-1} X_{p}^{Z} X_{n}^{A-Z} e^{B_{A} / T},
\end{aligned}
$$

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

Which can be written in a nicer way...

$$
X_{A}=F(A)\left(\frac{T}{m_{B}}\right)^{3(A-1) / 2} \eta^{A-1} X_{P}^{Z} X_{n}^{A-Z} e^{B_{A} / T}
$$

where

$$
F(A)=g_{A} A^{5 / 2} \zeta(3)^{A-1} \pi^{(1-A) / 2} 2^{(3 A-5) / 2}
$$

This expression allows one to explicitly compute the mass fraction abundances of any nuclear species assuming nuclear statistical equilibrium. In particular one has:

$$
\begin{array}{rlr}
\mathrm{D}: & X_{2}=16.3\left(\frac{T}{m_{B}}\right)^{3 / 2} \eta e^{B_{2} / T} X_{n} X_{p}, & B_{2}=2.22 \mathrm{MeV} \\
{ }^{3} \mathrm{He}: & X_{3}=57.4\left(\frac{T}{m_{B}}\right)^{3} \eta^{2} e^{B_{3} / T} X_{n} X_{p}^{2}, & B_{3}=7.72 \mathrm{MeV}\left({ }^{3} \mathrm{He}\right) \\
{ }^{3} \mathrm{H}: & & B_{3}=6.92 \mathrm{MeV}\left({ }^{3} \mathrm{H}\right) \\
{ }^{4} \mathrm{He}: & X_{4}=113\left(\frac{T}{m_{B}}\right)^{9 / 2} \eta^{3} e^{B_{4} / T} X_{n}^{2} X_{p}^{2}, & B_{4}=28.3 \mathrm{MeV} \\
& X_{12}=3.22 \times 10^{5}\left(\frac{T}{m_{B}}\right)^{33 / 2} \eta^{11} e^{B_{12} / T} X_{n}^{6} X_{p}^{6}, & B_{12}=92.2 \mathrm{MeV}
\end{array}
$$

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

These abundances are constrained by the conservation equation which, if one neglects other elements, reads:

$$
X_{n}+X_{p}+X_{2}+X_{3}+X_{4}+X_{12}=1
$$

The neutron and proton fractions are related. Their mass fractions in equilibrium can be easily obtained. We know that

$$
\left(\frac{n_{n}}{n_{p}}\right)_{\mathrm{eq}}=\left(\frac{m_{n}}{m_{p}}\right)^{3 / 2} e^{-\left(m_{n}-m_{p}\right) / T}
$$

Dividing the numerator and the denominator on left hand side of this equation by n_{b} one obtains:

$$
\left(\frac{n_{n}}{n_{p}}\right)_{\mathrm{eq}}=\left(\frac{X_{n}}{X_{p}}\right)_{\mathrm{eq}} \simeq e^{-Q / T}
$$

Note that expressions for X_{n} derived in the previous slides assume the approximation $m_{B}=m_{p}=m_{n}$. If this approximation is taken rigorously then $X_{n} / X_{p}=1$. However the mass difference ($Q=m_{n}-m_{p}$) in the exponential should not be ignored whereas it is smaller impact on the ratio of masses of the right hand side of n_{n} / n_{p}.

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

Also note that, since the mass fraction abundances add up to one

$$
X_{n}+X_{p}+X_{2}+X_{3}+X_{4}+X_{12}=1
$$

and nuclear synthesis occurs via 2-body reactions (such as those in slide 5):

- Heavier nuclear species are only effectively produced after the lighter ones are produced. This is the case of Helium-4 which is only produced via 2-body reaction involving Deuterium or Hidrogen-3
- If the abundance fraction of a given nuclear species increases, this happens at the expenses of the some other species (which has it's fraction reduced)

So one can define an estimate of the temperature at which a given nuclear species is effectively produced by setting $\boldsymbol{X}_{\boldsymbol{A}} \sim \mathbf{1}$. this can only happen for $T \ll B_{A}$ so that the exponential term in X_{n} compensates η (the baryon to photon ratio) term, which is small.

$$
X_{A}=F(A)\left(\frac{T}{m_{B}}\right)^{3(A-1) / 2} \eta^{A-1} X_{P}^{Z} X_{n}^{A-Z} e^{B_{A} / T} \sim 1
$$

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

From this previous expression on can derive an approximate equation to compute the temperature of effective production of a given nuclear species, T_{A}. Setting $X_{A} \sim X_{n} \sim$ $X_{p} \sim 1$, taking the logarithm of X_{A} and droping $\ln F(A)$, gives:

$$
0=\frac{3}{2}(A-1) \ln \left(\frac{T_{A}}{m_{B}}\right)+(A-1) \ln \eta+\frac{B_{A}}{T_{A}}
$$

which can be used with iterative numerical methods to estimate T_{A},

$$
\begin{aligned}
T_{A} & \approx-\frac{B_{A}}{\frac{3}{2}(A-1) \ln \left(\frac{T_{A}}{m_{B}}\right)+(A-1) \ln \eta} \\
& =\frac{B_{A}}{A-1} \frac{1}{\ln \eta^{-1}+\frac{3}{2} \ln \left(\frac{m_{B}}{T_{A}}\right)} .
\end{aligned}
$$

For example, using this expression for Deuterium, one obtains:

$$
T_{D}=\frac{2.22}{1} \frac{1}{\ln \left(2 \times 10^{-8} \Omega_{B} h^{2}\right)^{-1}+\frac{3}{2} \ln \left(\frac{1 \mathrm{GeV}}{T_{D}}\right)}
$$

Similar equations can be derived for other nuclear species.

Big-Bang Nucleosynthesis

Nuclear Statistical equilibrium

Solving these type of equations, one obtains the following effective temperatures of production of the Deuterium, Tritium, and Helium-4:

$$
T_{D} \approx 0.07 \mathrm{MeV} ; \quad T_{3 \mathrm{H}} \approx 0.11 \mathrm{MeV} ; \quad T_{4} \mathrm{He} \approx 0.28 \mathrm{MeV} .
$$

These temperatures can be converted to time using the Friedmann equation expressed in terms of temperature of the effective degrees of freedom in energy

$$
H=\sqrt{\frac{\hbar c}{3 M_{p l}^{2}} \frac{\pi^{2}}{30} g_{*} T^{4}}=\frac{\pi}{3}\left(\frac{g_{*}}{10}\right)^{1 / 2} \frac{T^{2}}{M_{p l}}
$$

where we assume radition domination.
Taking $g_{*}=3.38$ one can derive the following expression for the beginning of the nucleosynthesis,

$$
t_{\mathrm{nuc}}=132 \mathrm{~s}\left(\frac{0.1 \mathrm{MeV}}{T_{\mathrm{nuc}}}\right)^{2}
$$

Big-Bang Nucleosynthesis

Neutrons abundance

The production of nuclear elements within the mechanism of Big-Bang nucleosynthesis is directly related with the abundance of free neutrons, and the evolution of n_{B} or the baryon to photon ratio. One can tell the story of neutrons in a few steps:

Big-Bang Nucleosynthesis

Neutrons abundance

Step 0 (Equilibrium): Above $T \sim 1 \mathrm{MeV}$ protons and neutrons are in equilibrium via the nuclear reactions

$$
\begin{aligned}
& n+\nu_{e} \leftrightarrow p^{+}+e^{-} \\
& n+e^{+} \leftrightarrow p^{+}+\bar{\nu}_{e}
\end{aligned}
$$

The relative abundance of neutrinos to protons is then given by the equilibrium prediction:

$$
\left(\frac{n_{n}}{n_{p}}\right)_{\mathrm{eq}}=\left(\frac{m_{n}}{m_{p}}\right)^{3 / 2} e^{-\left(m_{n}-m_{p}\right) / T}
$$

Where $m_{n}-m_{p}=Q=1,293 \mathrm{MeV}$ is the mass difference between neutrons and protons. So the fraction of neutrons at equilibrium can be approximated by:

$$
X_{n}^{\mathrm{eq}} \simeq \frac{n_{n}^{\mathrm{eq}}}{n_{p}^{\mathrm{eq}}+n_{n}^{\mathrm{eq}}}=\frac{n_{n}^{\mathrm{eq}} / n_{p}^{\mathrm{eq}}}{1+n_{n}^{\mathrm{eq}} / n_{p}^{\mathrm{eq}}} \simeq \frac{e^{-Q / T}}{1+e^{-Q / T}}
$$

where $n_{B} \simeq n_{n}+n_{p}$ is used in the first equality and $m_{n} / m_{p} \simeq 1$ is used in the last equality. At $T=0.8 \mathrm{MeV}$ this gives,

$$
X_{n}^{\mathrm{eq}}(0.8 \mathrm{MeV})=0.17
$$

Big-Bang Nucleosynthesis

Neutrons abundance

Step 1 (Decoupling): As neutrinos decouple and positron-electron annihilation occurs, neutrons are forced to also decouple from the fluid. From the previous sides one expects that the freeze out abundance of neutrons should be close to:

$$
X_{n}^{\infty} \sim X_{n}^{\mathrm{eq}}(0.8 \mathrm{MeV}) \sim \frac{1}{6}
$$

To confirm this expectation one needs to integrating the Boltzmann equation for the interactions that keep neutrons and protons in contact with the plasma. As seen in Chapter 4, the Boltzmann equation for the 2-body interaction $1+2 \rightleftarrows 3+4$ is:

$$
\frac{1}{a^{3}} \frac{d\left(n_{1} a^{3}\right)}{d t}=-\langle\sigma v\rangle\left[n_{1} n_{2}-\left(\frac{n_{1} n_{2}}{n_{3} n_{4}}\right)_{\mathrm{eq}} n_{3} n_{4}\right]
$$

For interactions of the form $n+l \leftrightarrows p^{+}+l$, where l is a lepton tightly bound to the plasma one obtains:

$$
\frac{1}{a^{3}} \frac{d\left(n_{n} a^{3}\right)}{d t}=-\Gamma_{n}\left[n_{n}-\left(\frac{n_{n}}{n_{p}}\right)_{\mathrm{eq}} n_{p}\right]
$$

Since leptons are tightly bound to the fluid one has: $n_{l}=n_{l}^{e q}$, and $\Gamma_{n}=\left\langle n_{l} \sigma v\right\rangle_{1}$,

Big-Bang Nucleosynthesis

Neutrons abundance

Step 1 (Decoupling): The solution of the Boltzmann equation is numerical. To compute the free neutron's fraction, X_{n}, one needs to use its definition (in slide 8) and compute the densities of all baryon species in the fluid at a given time.
However one can simplify the calculation of X_{n} using the following approximations:

- before neutron decoupling $n_{b} \simeq n_{n}+n_{p}$
- the total number of baryons is conserved, i.e., $n_{b} a^{3}=$ constant.

Using these assumptions the Boltzmann equation can be written as:

$$
\frac{d X_{n}}{d t}=-\Gamma_{n}\left[X_{n}-\left(1-X_{n}\right) e^{-\mathcal{Q} / T}\right]
$$

To perform this integration, it is useful to make a change of variable $x=Q / T$, giving

$$
\frac{d X_{n}}{d x}=\frac{\Gamma_{n}}{H_{1}} x\left[e^{-x}-X_{n}\left(1+e^{-x}\right)\right]
$$

where H_{1} is the x-independent part of the Hubble rate written as a function of x.

$$
H=\sqrt{\frac{\rho}{3 M_{\mathrm{pl}}^{2}}}=\underbrace{\frac{\pi}{3} \sqrt{\frac{g_{\star}}{10}} \frac{\mathcal{Q}^{2}}{M_{\mathrm{pl}}} \frac{1}{x^{2}}, \quad \text { with } g_{\star}=10.75 ~ . ~}_{\equiv H_{1} \approx 1.13 s^{-1}}
$$

Big-Bang Nucleosynthesis

Neutrons abundance

Step 1 (Decoupling):

The exact form of Γ_{n} depends on the lepton particles being considered. It's calculation can be done in Quantum Field Theory. Using the approximation:

$$
\Gamma_{n}(x)=\frac{255}{\tau_{n}} \cdot \frac{12+6 x+x^{2}}{x^{5}}
$$

where $\tau_{n}=886.7 \mathrm{~s}$ is the neutron half-time decaying period.
With these expressions the numerical integration of the Boltzmann equation (blue curve) would give:

$$
X_{n}^{\infty} \equiv X_{n}(x=\infty)=0.15
$$

if neutrons wouldn't decay (Step 2)... This is similar to the result in slide 17. So just before Neutron decay one has: $n_{B} \simeq n_{p}+n_{n} \Longleftrightarrow 1 \simeq X_{p}+X_{n}$ and

$$
X_{p} \simeq 1-X_{n}=0.85 ; X_{n} / X_{p} \simeq 0.17
$$

Big-Bang Nucleosynthesis

Neutrons abundance

Step 2 (Neutron decay): The decoupled neutrons also decay into protons via the process:

$$
\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{\nu}_{e}
$$

which has a half-time decaying period of $\tau_{n}=886.7 \pm 0.8 \mathrm{sec}$. This can only start effectively enough when the universe is as old as this decaying period).
To include neutron decay into the calculation we simply multiply the freeze-out abundance by a exponential term characteristic of nuclear decaying processes:

$$
X_{n}(t)=X_{n}^{\infty} e^{-t / \tau_{n}}=\frac{1}{6} e^{-t / \tau_{n}}
$$

Where t is related to temperature via a temperature time relation, as:

$$
t=132 \mathrm{~s}\left(\frac{0.1 \mathrm{MeV}}{T}\right)^{2}
$$

This decaying mechanism has strong implications for the nuclear species synthesis.

Big-Bang Nucleosynthesis

Helium abundance

Step 3 (Helium fusion): Helium is produced via the reactions:

$$
\begin{aligned}
\mathrm{D}+p^{+} & \leftrightarrow{ }^{3} \mathrm{He}+\gamma, \\
\mathrm{D}+{ }^{3} \mathrm{He} & \leftrightarrow{ }^{4} \mathrm{He}+p^{+}
\end{aligned}
$$

that require the existence of Deuterium, which is produced via: $n+p^{+} \leftrightarrow \mathrm{D}+\gamma$ So, helium cannot be produced before a sufficient amount of deuterium is formed.
The helium fraction abundance by the end of BBN can be estimated as follows:

- Until before neutron decay all baryons are in the form of free protons and neutrons: $n_{B}^{i} \simeq n_{p}^{i}+n_{n}^{i}$
- By the end of BBN hydrogen (p) and helium nuclei are the $1^{\text {st }}$ and $2^{\text {nd }}$ most abundant elements (other nuclei are residual): $n_{B}^{f} \simeq n_{p}^{f}+4 n_{4}^{f}{ }_{\mathrm{He}}$
- By the end of BBN about half of the initial neutrons are inside helium nuclei (because each nucleus of helium contains 2 neutrons): $n_{4}^{f} \mathrm{He}=n_{n}^{i} / 2$

Using baryon conservation: $n_{p}^{f}+4 n_{{ }_{4} \mathrm{He}}^{f}=n_{p}^{i}+n_{n}^{i}$
Under these approximations, the Helium mass fraction abundance becomes:

$$
X_{{ }_{4} \mathrm{He}}=\frac{4 n_{4 \mathrm{He}}^{f}}{n_{p}^{f}+4 n_{{ }_{4} \mathrm{He}}^{f}}=\frac{4 n_{n}^{i} / 2}{n_{p}^{i}+n_{n}^{i}}=\frac{2 n_{n}^{i}}{n_{p}^{i}+n_{n}^{i}}=\frac{2 n_{n}^{i} / n_{p}^{i}}{1+n_{n}^{i} / n_{p}^{i}}=\frac{2 X_{n}^{i} / X_{p}^{i}}{1+X_{n}^{i} / X_{p}^{i}} \simeq \frac{2 / 7}{1+1 / 7} \simeq \frac{1}{4}
$$

Big-Bang Nucleosynthesis

Numerical evolution of mass fraction abundances of light elements:
Time [min]

Big-Bang Nucleosynthesis

Comparison with observations:

Helium 4: constraints from ionized gas (metal poor) clouds
Deuterium: constraints
from metal poor quasar
absorption systems

Helium 3: is hard to constraint. Limits estimated from solar system and HII (metal abundant) regions in our galaxy
 from metal poor quasar absorption systems
Helium 3: is hard to
constraint. Limits
estimated from solar
system and HII (metal
abundant) regions in our
galaxy

Lithium 7: constraints from low metallicity population II stars in our galaxy.

