Errata of Soft Matter Physics

Masao Doi

Updated 2018/01/17
page 26, eq.(2.79)

$$
\begin{array}{r}
\mu_{i}=\mu_{i}^{0}(T)+P v_{i}+k_{B} T \ln \phi_{i}+\sum_{j=1}^{n}\left(2 v_{i} A_{i j}-k_{B} T\right) \phi_{j} \\
\rightarrow \quad \mu_{i}=\mu_{i}^{0}(T)+P v_{i}+k_{B} T \ln \phi_{i}+\sum_{j=1}^{n}\left(2 v_{i} A_{i j}-\frac{v_{i}}{\underline{v_{j}}} k_{B} T\right) \phi_{j}
\end{array}
$$

page 26, problem (2.6)
eq.(2.63) \rightarrow eq.(2.62)
page 27, eq.(2.82)

$$
\begin{array}{r}
f(\phi)=\frac{k_{B} T}{v_{c}}\left[\sum_{i=1,2} \frac{1}{N_{i}} \phi_{i} \ln \phi_{i}-\chi\left(\sum_{i=1,2} \phi_{i}\right)^{2}\right] \\
\rightarrow \\
f(\phi)=\frac{k_{B} T}{v_{c}}\left[\frac{(1-\phi) \ln (1-\phi)}{}+\sum_{i=1,2} \frac{1}{N_{i}} \phi_{i} \ln \phi_{i}-\chi\left(\sum_{i=1,2} \phi_{i}\right)^{2}\right]
\end{array}
$$

page 34
The paragraph after eq.(3.15) must be corrected. The text says "any tensor \boldsymbol{E} can be written as $\boldsymbol{E}=\boldsymbol{Q} \cdot \boldsymbol{L}$, where \boldsymbol{L} is a diagonal tensor, and \boldsymbol{Q} is an orthogonal tensor." This statement is not correct. The correct statement is: "any tensor \boldsymbol{E} can be written as $\boldsymbol{E}=\boldsymbol{Q} \cdot \boldsymbol{S}$, where \boldsymbol{S} is a symmetric tensor, and \boldsymbol{Q} is an orthogonal tensor." This correction is needed since from eq.(3.17)
 any orthogonal tensor \boldsymbol{q}.
Despite the correction, the subsequent statement "any uniform deformation is equivalent to a combination of orthogonal stretching (represented by \boldsymbol{L}) and rotation" is correct (although the rotation here must be understood to be described by \boldsymbol{Q} and \boldsymbol{q}).
The author thanks Dr. Konstantin Volokh for pointing out this error.

page 49, problem (3.4)

$\lambda_{1}=1 \rightarrow \lambda_{3}=1$

page 50, problem (3.7)

Add the following sentence at the end of the problem.
"Assume that the polymer in the solution cannot get into the gel."
page 92, eq.(5.71)

$$
\begin{aligned}
& F[\psi]=N\left[k_{B} T \int d \boldsymbol{u} \psi(\boldsymbol{u}) \ln \psi(\boldsymbol{u})+\frac{U}{2} \int d \boldsymbol{u} \int d \boldsymbol{u}^{\prime}\left(\boldsymbol{u} \cdot \boldsymbol{u}^{\prime}\right) \psi(\boldsymbol{u}) \psi\left(\boldsymbol{u}^{\prime}\right)\right] \\
& \rightarrow \quad F[\psi]=N\left[k_{B} T \int d \boldsymbol{u} \psi(\boldsymbol{u}) \ln \psi(\boldsymbol{u})=\frac{U}{2} \int d \boldsymbol{u} \int d \boldsymbol{u}^{\prime}\left(\boldsymbol{u} \cdot \boldsymbol{u}^{\prime}\right) \psi(\boldsymbol{u}) \psi\left(\boldsymbol{u}^{\prime}\right)\right]
\end{aligned}
$$

page 92, eq.(5.74)

$$
\frac{k_{B} T}{U} x=\operatorname{coth} x
$$

$$
\rightarrow \quad \frac{k_{B} T}{U} x=\operatorname{coth} x-\frac{1}{x}
$$

page 111, eq.(6.85)

$$
\rightarrow \quad \zeta_{\alpha \beta} \frac{d x_{\beta}}{d t}+F_{r \alpha}=0
$$

page 113, eq.(6.105)

$$
G(n, m, t)=\frac{1}{\sqrt{2 \pi \lambda t}} \exp \left[-\frac{(n-m)^{2}}{2 \lambda t}\right]
$$

$$
\rightarrow
$$

$$
G(n, m, t)=\frac{1}{\sqrt{\underline{4} \pi \lambda t}} \exp \left[-\frac{(n-m)^{2}}{\underline{4} \lambda t}\right]
$$

page 132, eq.(7.105)

$$
\rightarrow \quad \begin{aligned}
\frac{\partial \psi}{\partial t} & =D_{r} \mathcal{R} \cdot\left(\mathcal{R} \psi+\frac{\mu_{m} \boldsymbol{u} \times \boldsymbol{H}}{k_{B} T} \psi\right) \\
\frac{\partial \psi}{\partial t} & =D_{r} \mathcal{R} \cdot\left(\mathcal{R} \psi=\frac{\mu_{m} \boldsymbol{u} \times \boldsymbol{H}}{k_{B} T} \psi\right)
\end{aligned}
$$

page 135 , eq.(7.126)

$$
\rightarrow \quad \Phi=\frac{\eta}{4} h \int_{0}^{a} d r 2 \pi r\left(\frac{d v}{d r}\right)^{2}, ~ \begin{aligned}
\underline{2}
\end{aligned} \int_{0}^{a} d r 2 \pi r\left(\frac{d v}{d r}\right)^{2}
$$

page 135, problem (7.1) (b)

$$
\Phi=(\pi / 2) \eta h \dot{h}^{2} \rightarrow \Phi=4 \pi \eta h \dot{h}^{2}
$$

page 136, eq.(7.132)

$$
\rightarrow \quad \mu\left(x, x^{\prime}\right)=-\frac{\partial}{\partial x}\left[\frac{n(x)}{\zeta} \frac{\partial}{\partial x^{\prime}} \delta\left(x-x^{\prime}\right)\right]
$$

page 162, three lines below eq.(8.126)
by eq.(8.20) \rightarrow by eq.(8.20) except for numerical factor $\sqrt{3}$
page 163, eq.(8.137)

$$
\chi\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right)=\frac{\bar{n}}{k_{B} T}\left[g_{m d}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, 0\right)-g_{m d}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t\right)\right]
$$

\rightarrow

$$
\chi\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right)=\frac{\bar{n}}{k_{B} T}\left[\underline{g_{d}}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, 0\right)-\underline{g_{d}}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t\right)\right]
$$

page 164, eq.(8.141)

$$
\frac{\partial \delta \phi}{\partial t}=\frac{\phi_{c}}{\xi} \nabla^{2}\left[a\left(T-T_{c}\right) \delta \phi+\phi_{c} \kappa_{s} \nabla^{2} \delta \phi-h(\boldsymbol{r})\right]
$$

\rightarrow

$$
\frac{\partial \delta \phi}{\partial t}=\frac{\phi_{c}^{2}}{\xi} \nabla^{2}\left[a\left(T-T_{c}\right) \delta \phi=\kappa_{s} \nabla^{2} \delta \phi-h(\boldsymbol{r})\right]
$$

page 164, eq.(8.142)

$$
S_{d}(\boldsymbol{k}, t)=\frac{k_{B} T}{a\left(T-T_{c}\right)+\underline{\phi_{c}} \kappa_{s} \boldsymbol{k}^{2}} \exp \left[-\alpha_{\boldsymbol{k}} t\right]
$$

$$
\rightarrow
$$

$$
S_{d}(\boldsymbol{k}, t)=\frac{k_{B} T}{a\left(T-T_{c}\right)+\kappa_{s} \boldsymbol{k}^{2}} \exp \left[-\alpha_{\boldsymbol{k}} t\right]
$$

page 164, eq.(8.143)

$$
\rightarrow
$$

$$
\begin{gathered}
\alpha_{\boldsymbol{k}}=\frac{\phi_{c} \boldsymbol{k}^{2}}{\xi}\left[a\left(T-T_{c}\right)+\underline{\phi_{c}} \kappa_{s} \boldsymbol{k}^{2}\right] \\
\alpha_{\boldsymbol{k}}=\frac{\phi_{c}^{2} \boldsymbol{k}^{2}}{\xi}\left[a\left(T-T_{c}\right)+\kappa_{s} \boldsymbol{k}^{2}\right]
\end{gathered}
$$

page 164, eq.(8.145)

$$
A=\int_{0}^{h} d x \frac{K_{e}}{2}\left(\frac{\partial u}{\partial x}\right)^{2}-[u(h)-u(0)] w
$$

\rightarrow

$$
A=\int_{0}^{h} d x \frac{K_{e}}{2}\left(\frac{\partial u}{\partial x}\right)^{2} \pm[u(h)-u(0)] w
$$

page 164, eq.(8.146)

$$
\rightarrow
$$

$$
\begin{aligned}
& \Phi=\frac{1}{2} \int_{0}^{h} d x \frac{\dot{u}^{2}}{\underline{2} \kappa} \\
& \Phi=\frac{1}{2} \int_{0}^{h} d x \frac{\dot{u}^{2}}{\kappa}
\end{aligned}
$$

page 196, problem (9.7)
$d=1 \mathrm{~nm}$ in water $\rightarrow d=5 \mathrm{~nm}$ in water
page 199, 3 lines below eq.(10.8)
Delete the following last sentence of the paragraph "The $p K$ of acid is less than 7 and the $p K$ of base is larger than 7."

This is completely my mistake. I may add the following in the text.
The dissociation of base BOH

$$
\begin{equation*}
\mathrm{BOH} \leftrightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-} \tag{1}
\end{equation*}
$$

is described by

$$
\begin{equation*}
\log _{10} \frac{1-\alpha}{\alpha}=\mathrm{pK}_{\mathrm{BOH}}-\mathrm{pOH}=\mathrm{pK}_{\mathrm{BOH}}-14+\mathrm{pH} \tag{2}
\end{equation*}
$$

page 221, problem (10.1)
$p K=9.3$ for $\mathrm{NH}_{4} \mathrm{OH} \rightarrow p K=4.7$ for $\mathrm{NH}_{4} \mathrm{OH}$
page 221, problem (10.4)
by eq.(10.30) \rightarrow by eq.(10.27)
page 235 , line 2
(see eq.(5.11)) \rightarrow (see eqs.(5.11) and (5.23))

page 246, Fig.E. 1

The label of the y-axis: $\left\langle F_{j}(t)\right\rangle_{x+\delta x} \rightarrow\left\langle F_{\underline{i}}(t)\right\rangle_{x+\delta x}$

