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Chapter 2
2. The Standard Model of Cosmology (SMC)

* Fundamental assumptions;
* The GR equations and the Friedmann-Lemaitre-Robertson-
Walker solution;
*  FLRW models:
*  Dynamic equations;
*  Energy-momentum conservation;
*  Fluid components and equations of state;
*  Cosmological parameters;
* The Friedmann equation: the evolutionary phases of the
Universe; exact solutions: age of the Universe;
* Distances; horizons and volumes;
* The accelerated expansion of the Universe;
* Problems with the SMC: Horizon; Flatness; Relic particles;
origin of perturbations; primordial Isotropy and homogeneity
* The idea of Inflation
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SMC: Mathematical framework

Fundamental assumptions:

 The Universe is homogeneous and isotropic when
observed on large scales and expands uniformly
with respect to any position

e The dynamics of space-time is described by
Einstein's theory of general relativity (GR).

1 8rG
Gab = Rab - §Rgab = p_4Tab + Agab

for the Universe to be homogeneous and isotropic the stress-
energy tensor has to be that of a perfect fluid

) )
Tab = (P + %)Uan - I_'zgab
C C

SMC: Mathematical framework

The cosmological constant in the GR equation:

le -+ Aguu — 87TGTuV (A as “cosmological constant”)
A -
le = 81@G (T/,w — %g‘w> = 87TGT,“,, (A as “vacuum energy”)

The Einstein tensor, Ricci tensor and Ricci scalar are:

1
G”u — Rp_u - 7gl_“/R

2
B a 1B
RIW = qu,a - rza,u + rzupa,"i - ruﬁrbu‘
R = gﬂVRuu
1
Fl:,\ = iglw(gau,/\ + Jary — gw\,a) Guv\ = (’)ga,,/(?x’\

where,

3
ds® = Z gudX*dX" = g, dXH*d X"
w,rv=0




SMC: Mathematical framework

Einstein Equation:

Gu + Aguy = 87GT,,

Albert Einstein
1879-1955

SMC: Mathematical framework

Geodesic Equation:

In the absence of non-gravitational forces, free falling
particles move along “geodesics”, described by the so
called Geodesic equation.

dUu*
B orrarrB _
T+ Th U =0
where,
Ut = axH four-velocity of the particle along its
~ ds free-falling path X#(s)

B
Sz—m/ ds .
Ja

/ X*(N)

Figure 1.4: Paramcterisation of an arbitrary path in spacctime, X*(\).
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SMC: Mathematical framework

Fundamental assumptions:

 The Universe is homogeneous and isotropic when
observed on large scales and expands uniformly
with respect to any position

e The dynamics of space-time is described by
Einstein's theory of general relativity (GR).

1 87G P p
Gap = Rap — iRgﬂb = (3_4T01) + Agab Tar = (/) T E)Uan B C_‘zgab
In these conditions the solution of the Einstein equation is the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

dr 2

2 24,2 2
ds® = c°dt® — a (t) [m

+ 1% (d6? + sin® 0d¢2)]

SMC: Mathematical framework

 Dynamical equations:
(result from the Einstein equations and govern the time evolution of a(t))

a\? 8nG A ke? Friedmann equation
o) T 3PT T3 T2
é _ _47rG ( 3 P ) E Raychaudhuri
a 3 Pt 2 + 3 (or acceleration) equation

* Energy momentum conservation: v, T, = T* . =0
the covariant derivative reads: v, 7%, = 9,T", + ) T, T, T =0

L j124

the v = 0 (time) component of this equation gives:

a ) 5 . .
p=—3— (p + 1_2) = d (p(:za3) = —pd ((13) Energy conservation
a c equation

2
p =wpc -1<w<l1 Equation of State (EoS)

for fluids with constant EoS parameter, w, the solution is:

p(t) = p; (a(t) ) o 10

a;




SMC: Mathematical framework

Covariant derivative:

Covariant deriative.—The covariant derivative is an important object in differential geometry and it

is of fundamental importance in general relativity. The geometrical meaning of V,, will be discussed
in detail in the GR course. In this course, we will have to be satisfied with treating it as an operator

that acts in a specific way on scalars, vectors and tensors:

e There is no difference between the covariant derivative and the partial derivative if it acts on
a scalar

Vuf=0.f. (1.3.83)

e Acting on a contravariant vector, V¥, the covariant derivative is a partial derivative plus a

correction that is linear in the vector:
V.V =0,V¥ + l";;,\l"\ . (1.3.84)

Look carefully at the index structure of the second term. A similar definition applies to the

covariant derivative of covariant vectors, w,,
Vwy = Ouwy — T w 1.3.85
pn = uwy — Tl . (1.3.85)

Notice the change of the sign of the second term and the placement of the dummy index.

For tensors with many indices, you just repeat (1.3.84) and (1.3.85) for each index. For each
upper index you introduce a term with a single +I', and for each lower index a term with a

single —I":

Vo TH 2 P N Do TH 12 1 Vv
a7 T’\" i 2 TA,\ 4
[‘ln,\ e ‘AI'|I'_v 7 I"rv,\ " “l»,:/_. v T
—oe (1.3.1\’“)

— TN, T TN, Trpe
" -

Avann viA-w

This is the general expression for the covariant derivative. Luckily, we will only be dealing
with relatively simple tensors, so this monsterous expression will usually reduce to something 11

managable.

SMC: Mathematical framework

* EoS for different energy density components:

e w=1/3 (radiation)

ao\* (1) [a\? 1
p'y=p'70 (—0) —_— g O(—4 —_— a.octl/z.
a a a
w=0 (matter)
ao\? @, [a\* 1 _,
Pm = Pmo0 (_) — X -3 a X t2/3.
a a a

*w=-1 (cosmological constant)

pr = A/81G = —P, B, a oc eVAt

(1) after integration of the Friedmann equation with k =0, A=0, p =p,.
(2) after integration of the Friedmann equation with k =0, A=0, p = p,,. 12
(3) after integration of the Friedmann equation with k =0, A = 8nGp,, p =0



SMC: FLRW models

e Cosmological parameters:

8nG A kc?
st smE T eEm s © Z_Qi+QA+Qk =1
I3

a(t
H(t) = a(t) Hubble parameter
a(t)
2
Pe = 8H Critical energy density
- 8nG
Q‘A =0
Q.>1
Mater-energy Vacuum or Curvgture
density parameters: dark energy density
Q= P Z& -y ) density parameter
pe “pc ' parameter Q<1
k=-
p =D pi includes all matter and
¢ radiation components
Q = pi (baryons, dark mater, o
i = Perit radiation, ...) k=0

SMC: FLRW models

* Friedmann equation revisited

) 8 G k2 Ac?
Hz(t) . T(ﬂr +/)-rn.) - F + T
= H; [Qm ( . ) + Qo ( . ) + Qo ( . ) + QAO]
4 T 1 ] I

Dark Matter + Dark Energy (Q, = 0)
effect the expansion of the universe

Qn Qa
. 3 0.3 0.7
The evolutionary 03 0.0

0.0

1.0

fate of the
Universe is
determined by
cosmological
parameters

Relative size of the universe
N
T
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-10 Now 10 20 30
Billions of Years

MAFP990350



SMC: Exact solutions of the Friedmann equation

Scale factor:

d alt a\ ™" a\? a\?
d lt. ) = HDJ l o QO <+ Qn:U ( ) T+ Q"(; ( ) o Q.\U [l - ( ) ]
t ag Qg Qg Qg

for a critical density (Qx = Q4 = 0) universe, gives:

alt 314w 2/@(1+w))
©) _ ( ( )Hot) Redshift:
% 2 E — E,
&- 2 7 = =
— ———— E
H®) = 5= 3w R
=X-1=
. —Ht_ 4
» Age of the Universe: —aT T
— 20 __
- a
g =52 1
t=Hy' / : dz
0 V1= Q0+ Quoz! + Quoz—2 — Qy (1 — 22) 15

SMC: Concordance Cosmology

Combination of different observational datasets...

WMAPS3 parameters

Parameter Value Description
Basic parameters
Ho TD.QE é kms'! Mpc'1 Hubble parameter
Q 0.0444 109042 Baryon density
appt0.025 Total matter density (baryons +
00 05 g; 10 O 0266 9,040 dark matter)
A T 0.0797 0.0 Optical depth to reionization
A 0815008 Scalar fluctuation amplitude
... allow us to B ‘ ,
. s 0.9487 015 Scalar spectral index
].mp 0ose Derived parameters
1 y 4 +0.06 —26
COHStralntS on & EaucEnergy o 0'943_0’09 %10 Critical density
. kg/m
COS mOIO glca]‘ QA 0.7321'3:3;2 Dark energy density
p arame t Cers Zion 10 53 g Reionization red-shift
g UW?fggig Galaxy fluctuation amplitude
. — 4013 9
Z QZ + QA + Qk 1 to 13'73—017 x 10 Age of the universe
i years



SMC: Cosmological parameters after Planck

From: Planck collaboration. XVI. arXiv:1303.5076
Table 2. Cosmological parameter values for the six-parameter base ACDM model. Columns 2 and 3 give results for the Planck
temperature power spectrum data alone. Columns 4 and S combine the Planck temperature data with Planck lensing, and columns
6 and 7 include WMAP polarization at low multipoles. We give best fit parameters (i.e. the parameters that maximise the overall
likelihood for each data combination) as well as 68% confidence limits for constrained parameters. The first six parameters have
flat priors. The remainder are derived parameters as discussed in Sect. 2. Beam, calibration parameters, and foreground parameters
(see Sect. 4) are not listed for brevity. Constraints on foreground parameters for Planck+WP are given later in Table 5.

Planck Planck+lensing Planck+WP
Parameter Best fit 68% limits Best fit 68% limits Best fit 689 limits
QA 0.022068  0.02207 = 0.00033  0.022242  0.02217 =0.00033  0.022032  0.02205 = 0.00028
QAR 0.12029 0.1196 = 0.0031 0.11805 0.1186 = 0.0031 0.12038 0.1199 + 0.0027
10060c « oo vne s 1.04122 1.04132 = 0.00068 1.04150 1.04141 = 0.00067 1.04119 1.04131 = 0.00063
0.0925 0.097 = 0.038 0.0949 0.089 +0.032 0.0925 0.0897)013
0.9624 0.9616 = 0.0094 0.9675 0.9635 = 0.0094 0.9619 0.9603 + 0.0073
3.098 3.103 = 0.072 3.098 3.085 £ 0.057 3.0980 3.08970 03
0.6825 0.686 = 0.020 0.6964 0.693 = 0.019 0.6817 0.6851)01%
0.3175 0.314 = 0.020 0.3036 0.307 = 0.019 0.3183 0.3155)018
0.8344 0.834 = 0.027 0.8285 0.823 £ 0.018 0.8347 0.829 + 0.012
11.35 114739 11.45 108731 11.37 11.1£1.1
67.11 674+ 1.4 68.14 67.9x+15 67.04 67.3x1.2
2215 2.23+0.16 2215 2,192 2215 2.196* 050
Quh*. o 0.14300 0.1423 = 0.0029 0.14094 0.1414 = 0.0029 0.14305 0.1426 + 0.0025
QR 0.09597 0.09590 = 0.00059 0.09603 0.09593 = 0.00058 0.09591 0.09589 + 0.00057
Yoo 0.247710  0.24771 =0.00014  0.247785  0.24775 £0.00014  0.247695  0.24770 = 0.00012
Age/Gyr . ........ .. 13.819 13.813 + 0.058 13.784 13.796 + 0.058 13.8242 13.817 = 0.048
N 1090.43 1090.37 + 0.65 1090.01 1090.16 + 0.65 1090.48 1090.43 = 0.54
Fa i 144.58 144.75 = 0.66 145.02 144.96 + 0.66 144.58 144.71 + 0.60
1006, .. .oveiinn.n. 1.04139 1.04148 = 0.00066 1.04164 1.04156 = 0.00066 1.04136 1.04147 + 0.00062
Lrag e oo oo oanencnas 1059.32 1059.29 + 0.65 1059.59 1059.43 + 0.64 1059.25 1059.25 = 0.58
Fdtag e oo v meenenennnn 147.34 147.53 = 0.64 147.74 147.70 + 0.63 147.36 147.49 + 0.59
Kp oo 0.14026 0.14007 = 0.00064 0.13998 0.13996 = 0.00062 0.14022 0.14009 + 0.00063
1006 o vvvevinnnn. 0.161332  0.16137 =0.00037  0.161196  0.16129 =0.00036  0.161375  0.16140 x 0.00034
Zeqevvvnnrennnnnens 3402 3386 = 69 3352 3362 + 69 3403 3391 + 60
1006eg o vvvoveeieennn 0.8128 0.816 = 0.013 0.8224 0.821 £ 0.013 0.8125 0.815 £ 0.011
Farue/DV(0.57) ..ol 0.07130 0.0716 = 0.0011 0.07207 0.0719 = 0.0011 0.07126 0.07147 + 0.00091

after Planck

Multipole moment, /¢

—_ 2 10 50 500 1000 1500 2000 2500
N, 6000 | — ‘ ' X ]
§ A simple FLRW model with only
!
— 5000 | 6 parameters fits the TT data!
S observations
§ 4000 - theory ]
S 3000} :
o
o)
5 2000 1
S
L 1000t 1
5
= 0L ‘ e ‘
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0.2°
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SMC: Cosmological parameters after Planck

Z_Qi-f-QA-i-Qk:l

Dark Matter Dark Matter

Dark Energy Dark Energy

Before Planck After Planck

Fig. credits: ESA / PLANCK collaboration

SMC: Cosmological parameters after Planck

From: Planck collaboration. XVI. arXiv:1303.5076
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SMC: Limitations of a 6 parameter model...

(—..—;» Comparing primary CMB with other datasets
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SMC' Limitations of a 6 parameter model...

wD Comparing primary CMB with other datasets

IAS .' ) M. Douspis, 03/04/2013, Cosmology from Planck SZ cluster counts

® Getting higher Og from clusters

0.84

® Change scaling

&
0.76

® Change bias

® Account for missing clusters

® Getting lower Og from CMB oss
® Change initial power
spectrum © ot

® Change transfert function
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0.80
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Planck Legacy: ‘A new baseline cosmological model?

The (new) concordance model: ACDM + massive neutrinos
From: Planck collaboration. Xl [2015)

Parameter T TT+lensing  TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT, TE, EE+lensing+ext
Br cssevcimzons —0.0520532  —0.005*00%  —0.0001°0%0%  -0.040°00% —0.004*2915 0.0008* 2004

b2 N [ [, < 0.715 < 0.675 <0.234 < 0.589 <0.194

Nett v oo nnnnnns 3.13:084 3.13108 3.15:341 2.94+038 3.044033

Kprats @t B duis e B Dube 0.252 0.251 7,,,:51,’_ 0.251 j:}::;,\_ 37 ()4247””'5'.“. ()4249::;::3“.
dng/dink.......... -0.008*001  -0.003*0113 -0.003)013 -0.006*) 014 -0.002:013 -0.002:0013

FODO2 +evacnnavanns <0.103 <0.114 <0.114 < 0.0987 <0.112 <0.113
W -1.540¢2 -1.4170% ~1.006%)057 ~1.551038 ~1.42708 ~1.0194)4%

Z m, =0.16"0" eV (Planck TT+lowP+aggressive lensing + BAO; 68%)

Dark Matter
(27%)

Atomic Matter

(5%)
e Neutrinos
\ (0.01-1%)
Photons
N (0.005%)
Dark Energy \\_/
(68%) 5
30 de setembro de 2019 DF-FCUL, Lisboa 23

SMC: Particle and Event horizons

Consider light travelling along radial (d6 = d¢ = 0) geodesics in a FLRW
metric (c=1):

ds® = dt* - a*(t) [ + r2(d6? + sin? 0d¢>2)] ,

T
1 — kr?
= dt* - a®(t) [dx® + fir(x)(d6? + sin® d4?)]

written in a conformal way with the introduction of the conformal
time d7 = dt/a
ds® = a®*(7) [dr* — dx*]

(with dy = dr for flat geometries). Light rays travel along null (ds? = 0)
geodesics, so:
dx = %dr

From integrating this we can define the notions of:

bodt
« Particle horizon: Xph(T) =7 —7i = / Wt) with t; =0
ti
: b dt ,
« Event horizon:  Xen(7) =75 — 7 = / a() with tf = o 24
t



SMC: Particle and Event horizons

comoving particle outside

the particle 'horlzon at p Xen=Tf —T

Tf

I I

I I

I I

I I

I I

I I .

| ; event horizon at p

I I

I I

I I

I I

I I
. | 1

particle horizon at p
Ti
e
Xoh =T — T;

Figure 2.1: Spacetime diagram illustrating the concept of horizons. Dotted lines show the worldlines of
comoving objects. The event horizon is the maximal distance to which we can send signal. The particle
horizon is the maximal distance from which we can receive signals.

SMC: distances, angular sizes and volumes

* Comoving coordinate distance:

(also computed using photons that travel along null geodesics, ds?> = 0, with d§ = d¢p = 0)

dr? r dr tode
d32=c2dt2—at2 =0 —_— / r————— ] /—
( ) 1-— kr2 ro /1 _ k’l’2 ¢ t a(t’)

* Proper (physical) distance:

0=t [ = [ Vol =atoe [

for a Q) = 0 universe this gives:

0~ 2 ¢ pfa 3(1+w)/2 L, 14w
T 3w+ 1H, *° 1+ 3w

26



SMC: distances angular sizes and volumes

* Angular size of a region at a given time:
D

) = — observer

da(t)

where

a0 =at) [ E/m=(t)/%

\ &

source

t ‘/;

~

Angular size of the particle horizon at a given time for a critical
density universe (Q, = 0)

age of universe
We can see gas at

points A and B before
they knew about each

8 0% 1
GH':Ztan—H 0 Vitz

2 - gZUZ + (QO - 2) (\/1 + SZ()Z - 1)

B
N — % ---- 500,000 yr

. distance

Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.
Copyright © Addison Wesley.

SMC: distances, angular sizes and volumes

* Hubble length:

¢ 3w+1)

where the last equality holds for a critical density universe Q=1

* Physical volume element:

, adr
dV = drdf do = (ar)? —— dQ2
Vg (ar)? s
Vv ¢ (ar)® _ ¢ d%
dQdz  H(z) (1+2)3  HyH#(2)(1+2)

where:

#(2) = H(2)/H, 2
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Problems of the FLRW models
as a sole ingredient of the SMC

. /

The

At hig

there

Horizon Problem
h redshift (z > 1):

180 [Qq
H//: — \/ '“(l(‘g

"

are ~54000 causal disconnected angular areas in

the CMB sky. So, why the CMB has a thermal spectrum
with a so uniform temperature in all directions (2.725 °K)?

CosMmiC MICROWAVE BACKGROUND SPECTRUM FROM COBE

srsecem!
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age of universe

We can see gas at

L points A and B before
they knew about each

"@o other.

‘t«%

o"&
9,
26
B
500,000 yr
. distance

Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.

Copyright © Addison Wesley



The Flatness Problem

From the Friedmann Equation, written at early times:

|Q(I.) B 1| _ |11| _ /J.Ll\ is a decreasing

DNIT2( ) ~—— function of time:
a*(t)H=(t) a*(t) Soast-»0,0-1

decreases as time approaches the big bang instant.

This means that as we go back in time the energy density
of universe has to be extremely close to critical density.
For t=1e-43 s (Planck time) Q should deviate no more
than 1le-60 from the unity.

Why has the universe to start with (J(t) so close to 1?

31

The Monopoles & other relics Problem

Particle physics predicts that a variety of “exotic” stable
particles, such as the magnetic monopoles, should be
produced in the early phase of the Universe and remain
in measurable amounts until the present.

No such particles have yet been observed. Why?
This either implies that the predictions from particle
physics are wrong, or their densities are very small and

therefore there's something missing from this
evolutionary picture of the Big Bang.

32




The Origin of Perturbations Problem

Locally the universe is not homogeneous. It displays a

complex hierarchical pattern of galaxies, clusters and
super clusters.

What’s the origin of cosmological structure?
Does it grew from gravitational instability?
What is the origin of the initial perturbations?

Without a mechanism to explain their existence one has
to assume that they ~“were born" with the universe
already showing the correct amplitudes on e
all scales, so that gravity can correctly
reproduce the present-day structures?

The homogeneity and isotropy Problem

Why is the universe homogeneous on large scales? At
early times homogeneity had to be even more “perfect”.

The FLRW universes form a very special subset of
solutions of the GR equations. So why nature “prefers”
homogeneity and isotropy from the beginning as
opposed to having evolved into that stage?

CMB T=2.725 K



The Theory of Inflation...

Inflation can be defined as

o . d N
Inflation & a > 0 & T (('H '/(1.) < ).
Ll

This happens when

“--(p+3%) == p<-pc/3

... this continues in Chapter 9

35



