Ciências ULisboa

Percolation

Nuno Araújo
Centro de Física Teórica e Computacional, Universidade de Lisboa, Portugal

Books on percolation

\rightarrow D. Stauffer and A. Aharony, Introduction to percolation theory. CRC Press (2000).
$>$ M. Sahimi, Applications of percolation theory. Taylor \&
Francis (1994).
$>$ K. Christensen and N. R. Moloney, Complexity and criticality. Imperial College Press (2005).

Forest fire

Forest fire

Spreading of epidemics

Spreading of epidemics

Oil fields

at Barrancabermeja (Colombia), photo by Melissa Jiménez.

Percolation model

Percolation model

Percolation model
order parameter

$$
P_{\infty}=\frac{S_{\max }}{N}
$$

$$
P_{\infty} \sim\left(p-p_{c}\right)^{\beta}
$$

Percolation threshold

largest cluster: fractal dimension

Percolation threshold cluster-size distribution

$$
n_{s} \sim s^{-\tau}
$$

Algorithms

generate canonical configurations

For each site i :

1. random number ε;
2. if
$\boldsymbol{\varepsilon}<\mathbf{p}$: \boldsymbol{i} is occupied;
else: \boldsymbol{i} is empty.

Algorithms
 Burning method

1. set first row burning;
H. J. Herrmann, D. C. Hong, and H. E. Stanley. J. Phys. A 17, L261 (1984)

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;

Algorithms
 Burning method

burning
occupied
burned

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms
 Burning method

burning
occupied
burned

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms
 Burning method

\bigcirc
empty
burning
occupied
burned

1. set first row burning;
2. set neighbors of burning to burning and burning to burned;
3. repeat until everything is burned.

Algorithms
 Burning method

empty
burning
occupied
burned

One can determine if the set of occupied sites percolates or not.

Number of clusters and cluster size distribution?

Algorithms

$$
k=2
$$

Hoshen and Kopelman

$\mathrm{M}(\mathrm{k})=0$

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.
J. Hoshen and R. Kopelman. Phys. Rev. B 14, 3438 (1976)

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	0

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	2
3	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	1
4	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	3
4	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	3
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	4
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	7
4	-3
5	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and
 bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	2

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	8
4	-3
5	1
6	2
7	2
8	1

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	10
4	-3
5	1
6	2
7	2
8	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3

Algorithms

Hoshen and Kopelman

1. start from the site in the left-bottom corner;
2. sweep from left to right bottom to top;
3. only verify left and bottom neighbors.

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3

Algorithms

Hoshen and Kopelman

k	$M(k)$
2	3
3	11
4	-3
5	1
6	2
7	2
8	-3
9	1

J. Hoshen and R. Kopelman. Phys. Rev. B 14, 3438 (1976)

Algorithms

Hoshen and Kopelman

Two neighbor ko:
$M\left(\underline{k_{0}}\right)=M\left(\underline{k_{0}}\right)+1$

One neighbor ko:
$M\left(\underline{k_{0}}\right)=M\left(\underline{k_{0}}\right)+1$

J. Hoshen and R. Kopelman. Phys. Rev. B 14, 3438 (1976)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	0

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	2

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	1
3	2
4	1

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Newman and Ziff (microcanonical)

k	$M(k)$
2	3
3	2
4	-2

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

Algorithms

Microcanonical vs canonical

Fixed number of
occupied sites (n)

Fixed probability that a site is occupied (p)

$$
\boldsymbol{B}(\boldsymbol{N}, \boldsymbol{n}, \boldsymbol{p})=\binom{N}{n} p^{n}(1-p)^{N-n}
$$

$B(N, n, p)$: probability that exactly n sites are occupied in a canonical configuration

$$
Q(p)=\sum_{n=0}^{N} \boldsymbol{B}(\boldsymbol{N}, \boldsymbol{n}, \boldsymbol{p}) Q_{n}=\sum_{n=0}^{N}\binom{N}{n} p^{n}(1-p)^{N-n} Q_{n}
$$

M. E. J. Newman and R. M. Ziff. Phys. Rev. Lett. 85, 4104 (2000) M. E. J. Newman and R. M. Ziff. Phys. Rev. E 64, 016706 (2001)

