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Abstract
1. Proportional data, in which response variables are expressed as percentages or 

fractions of a whole, are analysed in many subfields of ecology and evolution. The 
scale‐independence of proportions makes them appropriate to analyse many bio-
logical phenomena, but statistical analyses are not straightforward, since propor-
tions can only take values from zero to one and their variance is usually not constant 
across the range of the predictor. Transformations to overcome these problems are 
often applied, but can lead to biased estimates and difficulties in interpretation.

2. In this paper, we provide an overview of the different types of proportional data 
and discuss the different analysis strategies available. In particular, we review and 
discuss the use of promising, but little used, techniques for analysing continu-
ous (also called non‐count‐based or non‐binomial) proportions (e.g. percent cover, 
fraction time spent on an activity): beta and Dirichlet regression, and some of their 
most important extensions.

3. A major distinction can be made between proportions arising from counts and those 
arising from continuous measurements. For proportions consisting of two categories, 
count‐based data are best analysed using well‐developed techniques such as logistic 
regression, while continuous proportions can be analysed with beta regression mod-
els. In the case of >2 categories, multinomial logistic regression or Dirichlet regression 
can be applied. Both beta and Dirichlet regression techniques model proportions at 
their original scale, which makes statistical inference more straightforward and pro-
duce less biased estimates relative to transformation‐based solutions. Extensions to 
beta regression, such as models for variable dispersion, zero‐one augmented data 
and mixed effects designs have been developed and are reviewed and applied to case 
studies. Finally, we briefly discuss some issues regarding model fitting, inference, and 
reporting that are particularly relevant to beta and Dirichlet regression.

4. Beta regression and Dirichlet regression overcome some problems inherent in ap-
plying classic statistical approaches to proportional data. To facilitate the adop-
tion of these techniques by practitioners in ecology and evolution, we present 
detailed, annotated demonstration scripts covering all variations of beta and 
Dirichlet regression discussed in the article, implemented in the freely available 
language for statistical computing, r.
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1  | INTRODUC TION

Many types of observations in ecology and evolution can be most 
conveniently expressed and compared as fractions (a part of a 
whole). It has been estimated that over a third of publications in ecol-
ogy analyse some kind of proportional data (Warton & Hui, 2011). 
Examples can be found in a variety of sub‐fields, for example the 
analysis of proportional cover of a given plant functional type in veg-
etation survey quadrats (Defries, Hansen, Townshend, Janetos, & 
Loveland, 2000); the proportion of time spent by animals in a certain 
activity (Cotgreave & Clayton, 1994); percentages of biomass allo-
cated to different plant organs (Poorter et al., 2012); or numbers of 
eggs hatching from a cohort under varying environmental conditions 
(De Majo, Montini, & Fischer, 2017).

Statistical analysis of proportions can present numerous difficul-
ties. By definition, the observations are limited to numerical values 
between, and including, 0 and 1, and the variability in the observed 
proportions usually varies systematically with the mean of the re-
sponse. These properties likely violate two important assumptions 
of standard statistical techniques that assume that the error term is 
normal and has constant variance. Moreover, when a whole is par-
titioned into more than two parts (e.g. the relative proportions of 
particle size classes in a soil; sand, silt, clay), analysis and interpreta-
tion become even more complex, since the response variable is now 
expressed as a vector of several interdependent fractional values. 
These properties of proportional data mean that the standard tech-
niques of statistical analysis familiar to biologists (i.e. linear regres-
sion and ANOVA and their extensions) are usually not appropriate.

The issues related to analysing proportional data have long been 
recognized (Bartlett, 1936; Sokahl & Rohlf, 1995) and several analy-
sis strategies are available to deal with them. For proportions that are 
derived from discrete counts, logistic or binomial regression are appro-
priate techniques which are well treated in most introductory biosta-
tistics textbooks (Quinn & Keough, 2002; Zuur, Ieno, Walker, Saveliev, 
& Smith, 2009). For proportions not derived from counts, agreement 
on the most appropriate techniques is less established. A common 
recommendation is to apply a data transformation and proceed with 
ordinary linear models (Crawley, 2012; Quinn & Keough, 2002; Sokahl 
& Rohlf, 1995) – a solution that has important drawbacks with respect 
to interpretability and the validity of the resulting inference.

More recently, methods to model continuous proportions that 
are easier to interpret and more flexible than transformation‐based 
solutions have become widely available, namely beta (Cribari‐Neto & 
Zeileis, 2010; Ferrari & Cribari‐Neto, 2004) and Dirichlet regression 
(Hijazi & Jernigan, 2009; Maier, 2014).

With the ongoing wide adoption of the open‐source statisti-
cal programming language r by ecologists (R Core Team, 2013), 
these techniques are increasingly within reach of non‐specialists. 
Despite the availability of these methods, their adoption in ecol-
ogy and evolution is relatively low. To illustrate in relation to beta 
regression: if we combine Warton and Hui’s (2011) estimate of 14% 
of ecology papers involving data based on non‐count proportions, 
with the 156 Web of Science articles within the domain Ecology 
(from 2004 to 2018) that cite the key beta regression references 
(Cribari‐Neto & Zeileis, 2010; Ferrari & Cribari‐Neto, 2004; Grün, 
Kosmidis, & Zeileis, 2012; Smithson & Verkuilen, 2006), we arrive 
at a rough estimate of only 0.5% of studies using these techniques 
when they are potentially suitable. This suggests the timeliness 
and utility of a user guide that describes in non‐technical terms the 
various possible applications and extensions of these methods for 
analysing proportional data derived from continuous observations.

In this article, we: (a) review the types of proportional data 
and identify the cases for which beta and Dirichlet regression are 
appropriate; (b) give brief, non‐technical overviews of the princi-
ples underlying the techniques; (c) discuss some of the issues that 
a practitioner will encounter when applying beta and Dirichlet 
regression; and (d) describe the extensions to these techniques 
which are most relevant to researchers in ecology and evolution. 
In addition, we present three case studies and include annotated 
accompanying r code and detailed discussions in Supplementary 
material.

2  | T YPES OF PROPORTIONAL DATA

Proportional representations of data are commonly used when 
the relative amounts of two or more categories of observation are 
more biologically meaningful than their absolute quantities. What 
is usually referred to as ‘proportional’ or ‘fractional’ data in ecol-
ogy is often referred to as ‘compositional’ data in the statistical 
literature (Aitchison, 1986). Proportional data can be formally un-
derstood as a division of a total W (e.g. counts, area, time, mass) 
into C parts or categories. If we then designate the measurements 
of each of the categories on a given observational unit as wi, it 
follows that W = (w1 + ⋯ + wC−1 + wC), and that the proportions p 
of each category relative to the total is calculated as 
pi=

wi

w1+⋯+wC−1+wC

=
wi

W
; and ∑pi = 1. The proportions p are therefore 

scale independent, and are used as the response variable in sub-
sequent modelling (see third distinction in the following 
paragraphs).

K E Y W O R D S

beta regression, Dirichlet regression, fractions, non‐count proportions, one augmented, 
proportions, transformations, zero augmented
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Proportional data can be obtained from a variety of different 
underlying data types, a fact that has implications for the choice of 
procedure used in their analysis. Therefore, before providing guid-
ance on the statistical methods, we provide a brief classification of 
proportions (Figure 1). We discuss three major categorizations that 
can be used to subdivide all proportional data.

First, a distinction can be made between proportions arising 
from counts or proportions arising from continuous measurements 
(Warton & Hui, 2011; van den Boogaart & Tolosana‐Delgado, 
2013). Count‐based proportions arise when the observed variables 
wi that are used to calculate the proportions pi are themselves 
each discrete, countable quantities that can take only non‐neg-
ative integer values. For example, in plant biology, the number of 
pollinated inflorescences out of the total set of inflorescences ob-
served; or in population genetics, the numbers of individuals in 
a sample belonging to each of various genotypes. In such cases, 
the calculated proportions pi can take only a limited set of values 

determined by the total number of observations across all cate-
gories within a given observational unit. In contrast, continuous 
proportions arise when the measurements of each category that 
are used to compute the proportions take continuous non‐negative 
values. For example, the proportion of plant biomass allocated to 
fruits relative to the total plant biomass. Both biomass measure-
ments can theoretically take any real positive values, and are thus 
treated as continuous quantities, and in contrast to count‐based 
proportions, pi can take any value on the unit interval (allowing 
for the sum to 1 constraint with respect to other categories.) For 
the remainder of this article, we will focus on proportions derived 
from continuous (continuous) observations, i.e. the lower branch 
of Figure 1. Methods for analysing count‐based proportions data 
are extensively treated in many ecological and biostatistics text-
books (Quinn & Keough, 2002; Zuur et al., 2009).

The second way in which proportional data sets can be subdi-
vided is by the number of categories. Historically, the development 

F I G U R E  1   Decision tree to determine the type of analysis for proportional observations based on properties of the data. The two most 
important branches are concerned with whether i) the proportions originate from discrete (counts) or continuous measurements, ii) 2 or >2 
categories are modelled. At the end nodes, the type of analysis is given. Depending on the structure of the data (i.e. grouping, overdispersion 
etc.) extensions are available. Analyses in the grey box are the focus of this article. Grey coloured text are extensions that are currently not 
implemented in the software r. W refers to the total of the measurements from which proportions were derived, ϕ refers to a model for the 
variance. ZOIB and ZOID refer to ‘zero/one augmented’ beta and Dirichlet regression respectively. See main text for further explanations. 
Table 1 provides information on the possible analyses and their associated r packages

Proportional 
data

Dirichlet regression (+ ɸ model)

+ Many zeroes and 
ones?

Transformation OR ZOID

+ Grouped data? Pooling OR mixed-effects

+ Variable W? (ɸ model ~ W)

2 categories Beta regression (+ɸ model)

+ Many zeroes and 
ones?

Transformation OR ZOIB

+ Grouped data? Pooling OR mixed-effects

+ Variable W? (ɸ model ~ W)

>2 categories

>2 categories

2 categories Binomial regression/logistic regression

+ Grouped data? Pooling OR mixed-effects

+ Variable W? Logistic regression on 
counts

+ Overdispersion? Beta-Binomial

Multinomial (logistic) regression

+ Grouped data? Pooling OR mixed-effects

+ Variable W? Logistic regression on 
counts

+ Overdispersion? Dirichlet-Multinomial

Proportions derived 
from counts

Proportions derived 
from continuous 

numbers
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of methods for analysing proportional data has focused on two‐cate-
gory datasets, leading to binary proportions (e.g. percent cover in Case 
Study 1 below). In most cases, the proportion is presented in terms 
of a single category, with the complementary category merely implied 
(e.g. non‐cover). In contrast, many ecological datasets are concerned 
with aggregated observations of C > 2 categories, e.g. leaf, stem and 
root mass fractions in plant biology (see Case Study 2 below). Although 
models for two‐category data are a special case of those for more 
general C‐category datasets, historically the development of methods 
have focused on either one or the other, a convention we will follow 
in this article.

The third distinction relates to the nature of the total measure-
ment W of which each category wi is a part. In some cases the value 
of W is fixed, for example, when plant cover is estimated from a 
quadrat of fixed size. In other cases, because of the nature of the 
system or the experimental design, the total W is variable between 
observational units. For example, when conducting animal be-
havioural studies, in which the time spent by a subject on vari-
ous activities is recorded, the observed subject may move out of 
sight after an uncontrolled period of time, such that data pi on time 
spent on different activities are computed from different total ob-
servation times (W) for different subjects. Variation in W can also 
arise when combining data from different studies, for example, if 
each study used different ‘fixed’ quadrat sizes, subject counts, or 
observation intervals.

Importantly, the spatial‐temporal scale at which the variable 
of interest is measured is likely to affect the variability in the ob-
served outcomes. In the extreme case when the observation in-
terval is chosen infinitesimally small, the observed variation will 
be very large: vegetation is measured as present or absent, or an 
animal either exhibits a particular behaviour or not. Thus, by re-
ducing the scale of observation the data can go from continuous 
proportions to observations resembling count‐based proportions. 
The converse can also apply: for count‐based proportions if the 
number of counts is extremely large, one practically moves from 
count‐based proportion to continuous proportions since the sam-
pling error will be low (van den Boogaart & Tolosana‐Delgado, 
2013). Even between these two extremes, variation in W can af-
fect the precision with which the proportions are estimated, it 
can therefore sometimes usefully be incorporated into the model 
specification (see Section 4.1).

3  | ANALYSING PROPORTIONS 
ORIGINATING FROM CONTINUOUS 
ME A SUREMENTS

Methods for analysing continuous, proportional data are less widely 
adopted by ecologists than those for data arising from counts and 
the remainder of this article will therefore focus on them. In the 
following sections, we present methods for analysing continuous 
proportions, starting with simple (two category) proportions and 
extending to multi‐category proportions. In both cases, we briefly 

review traditionally used strategies for dealing with these data types, 
before presenting more recently developed modelling techniques.

3.1 | Analysing proportions with two 
continuous categories

3.1.1 | Traditional approaches – transformations

The most widely used and recommended approaches to model con-
tinuous proportions with two categories are as follows: to apply or-
dinary least squares techniques without transformations (Kieschnick 
& McCullough, 2003); or apply the arcsine transformation (Sokahl 
& Rohlf, 1995) or logit transformation followed by nonlinear least 
squares regression on the transformed variables (Warton & Hui, 
2011). Modelling proportions with models that assume a normal dis-
tribution may give problems in estimation and predictions because 
the normal distribution allows values over the full range −∞ to ∞ and 
assumes constant variance. Therefore, transformations are applied 
to the data to meet the requirements of the statistical model. The 
arcsine transformation is defined as the arcsine of the square root 
of p: arcsin(

√

p) (Quinn & Keough, 2002; Sokahl & Rohlf, 1995); while 
the logit transformation is defined as the natural logarithm of the 
odds: log ( p

1−p
).

Warton and Hui (2011) showed that the logit transformation is 
to be preferred over the arcsine transformation because the coef-
ficients of the logit transformation are more readily interpretable, 
and the arcsine leads to problems in case of extrapolation beyond 
the fitted range (Warton & Hui, 2011). All transformations have 
in common that a model for the mean proportion is estimated on 
the transformed scale, which is subsequently back‐transformed to 
proportions for reporting and interpretation. As the relationship be-
tween the original and transformed proportions is usually non‐linear, 
issues arise due to Jensen‘s inequality: for a nonlinear function f(.) 
and a random variable x, with an average of x̄ the average of f(x) is 
not equal to f(x̄) (Ruel & Ayres, 1999). This implies that parameter 
estimates on the transformed data will be biased when interpreted 
on the original untransformed scale (Cribari‐Neto & Zeileis, 2010; 
Schmid et al., 2013, see case study 3). Furthermore, it follows from 
Jensen's inequality that transformations will lead to the least bias 
in the regions of x where the function is close to linear. In the case 
of a logit‐transformation, this implies that bias in estimates will in-
crease as the observations approach the asymptotic values of zero 
and one. In addition, the degree of bias is affected by the variation 
around the mean proportion. With increasing variance, the bias gets 
larger because the observations are spread over a larger part of the 
non‐linear curve (see Appendix S1). It is therefore advisable to model 
proportional data on the original (untransformed) scale of the obser-
vations whenever possible.

3.1.2 | Beta regression

Beta regression is a technique that has been proposed for model-
ling of data for which the observations are limited to the open 
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interval (0, 1) (Ferrari & Cribari‐Neto, 2004; Smithson & Verkuilen, 
2006). Some recent examples of beta regression in ecological 
contexts include analyses of: the contribution of food derived 
from different energy pathways (Child & Moore, 2015; Fukumori, 
Yoshizaki, Takamura, & Kadoya, 2016); forest simulation output 
in terms of proportions of tree basal area belonging to focal tree 
species (Ameztegui, Coll, & Messier, 2015); and the degree of leaf 
damage due to a leaf pathogen (Busby et al., 2013). Although we 
present beta regression in this review as a method for analysing 
continuous‐based proportions, there are also many examples for 
using this techniques to analyse data from derived indices that 
are bound between 0 and 1 (e.g. an evenness index in Nogueira, 
González‐Troncoso, and Tolimieri (2016); or a straightness index 
in Shimada et al. (2016)). In addition, it can be applied to variables 
that are constrained to the interval a and b as they can be rescaled 
to [0, 1] through (y − a)/(b − a).

Beta regression consists of the same three components as gen-
eralized linear models (GLMs) (Bolker et al., 2009; McCullagh & 
Nelder, 1989), and those familiar with GLM will recognize the most 
important aspects of beta regression (the distinction between the 
two arises from the non‐orthogonality of the model parameters, see 
below). Here, we briefly review these three elements: the random 
component (the beta distribution and its implied mean–variance 
relationship), the systematic component (the linear predictor) and 
the link function (specifying the link between the random and sys-
tematic component). We refer readers to Ferrari and Cribari‐Neto 
(2004) for a more comprehensive explanation.

Beta regression begins with the assumption that the data‐gener-
ating process can reasonably be modelled by a beta probability dis-
tribution (Balakrishnan & Nevzorov, 2003). The beta distribution is a 
member of the exponential family (Kieschnick & McCullough, 2003), 
and is defined by two parameters for values on the open interval 
(0, 1). Two parameterizations for the beta distribution are available, 
but the mean‐precision parameterization, with µ (for the expected 
value) and ϕ (as a measure of ‘precision’, or the inverse of dispersion), 
is most commonly used in the context of beta regression (see Box 1). 
The variance can be related to the mean (µ) by �(1−�)

1+�
 and is therefore 

proportional to the variance of the binomial distribution for one trial, 
µ(1 − µ), by a factor of 1

1+�
.

Depending on the choice of values for the two parameters a large 
range of shapes can be obtained including symmetrical, skewed, uni-
form, roughly bell‐shaped and bimodal. This flexibility, combined 
with the limitation to values between 0 and 1, make the beta dis-
tribution a particularly useful model for continuous proportional 
data. In addition, fitting a beta distribution gives increasingly less 
biased estimates of the mean compared to transformation‐based ap-
proaches when observations get closer to zero and one and/or their 
variance is large (see Appendix S1).

Once a beta distribution has been chosen, the next step is the 
specification of the systematic component of the model relating the 
expected value of the response variable to one or more (continuous 
or categorical) predictor variables. In the familiar case of ordinary 
linear regression this dependence is specified through the regression 

equation µ = E[Y|X] = β0 + β1X1 + ⋯ + βpXp where β are regression 
parameters to be estimated based on observed values of y and cor-
responding matrix X of p predictors. Given that such a linear pre-
dictor function can potentially range between −∞ and +∞ it cannot 
be used to specify the mean for distributions, such as the beta, that 
are restricted to a particular interval. For this reason, a link function 
must be specified to convert between the linear predictor model and 
the conditional mean on the scale of observations (Zuur et al., 2009). 
The model relating the values of the covariates, and the expected 
value of the response therefore becomes g(µ) = β0 + β1X1 +⋯ + βpXp, 
implying that µ = g−1(β0 + β1X1 + ⋯ + βpXp), where g(.) and g−1(.) are 
an appropriate link function and its inverse, respectively. In the case 
of beta regression, several link functions are potentially applicable, 
with the logit function (see Box 1) being the most common choice. 
The inverse of this function ensures that any value from the linear 
predictor will fall between 0 and 1. Appendix S2 presents a simple 
example of beta regression to make these concepts more concrete.

Estimates of β and ϕ that lead to a model that best fit the observed 
data are obtained by maximum likelihood estimation. The probability 
model (including covariates) and data are combined to define a likelihood 
function (see Bolker, 2008, for an accessible treatment), for which the 
maximum is obtain by numerical optimization, leading to maximum likeli-
hood estimates for the parameters of the mean model (the βs) as well as 
for the precision parameter ϕ. The estimation procedure also produces 
values for the standard error of each parameter, allowing the application 
of the usual inference tools such as significance testing and confidence 
intervals. Here, it should be noted that for beta regression, the parame-
ters β and ϕ are not orthogonal (Ferrari & Cribari‐Neto, 2004), complicat-
ing estimation for β when ϕ is not known, or incorrectly specified. This 
non‐orthogonality between the mean model parameters and the error 
parameter is also the reason why beta regression with unknown ϕ is not 
strictly a GLM (Huang & Rathouz, 2017). Moreover, two important prop-
erties of the beta distribution, not shared by common GLMs, are that the 
maximum likelihood estimate for µ can be different from the correspond-
ing sample mean, in particular for small sample sizes; and that changes 
in the way that ϕ is modelled (see Section 4.1 below) can have conse-
quences for the maximum likelihood estimates of µ. This can lead to bias 
in estimation and inference (see Section 5.1 and Case Study 1, below).

Although best suited for continuous proportions, beta regres-
sion has also been successfully employed to analyse count‐based 
proportions in cases where the numbers of observed units is large 
(e.g Bennett, Nimmo, & Radford, 2014; Briand, Schwilk, Gauthier, 
& Bergeron, 2015). However, a few cautionary remarks should be 
made. The standard error of a sample proportion decreases with the 
number of trials, n, according to 

√

p(1−p)

n
. Thus, with a small number 

of trials random selection error of the trials may be important. In 
addition, when employing beta regression to count‐based propor-
tions one loses information on the number of trials that was used to 
calculate the proportion. Effectively, each proportion is given equal 
weight, which can be problematic if the number of trials varies 
across samples. Two potential alternatives in this case would be to 
apply ‘beta‐binomial regression’ models (Skellam, 1948), or the use 
of an ‘observation‐level random intercept’ (Harrison, 2015). These 
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BOX 1 Mathematical details of beta and Dirichlet 
regression

Beta regression

Definitions of the beta distribution usually employ a param-
eterization using the symbols α and β such that the probability 
density function for a beta‐distributed response variable y is 
given by the following:

where

And Γ(.) is the gamma function.
The corresponding expectation and variance of the distribu-
tion are given by the following:

When using the beta distribution for modelling data, it is usu-
ally more convenient to use an alternative parameterization 
with μ and ϕ, such that the expectation of the distribution is 
simply E[y] = μ, and the variance is given by the following:

In beta regression, the conditional model for the mean μ of the 
response given covariates X is usually assumed to be linear on 
the logit transformed scale:

where η is known as the linear predictor, β is a vector of parame-
ters to be estimated and X is the design matrix of covariate values.
To obtain estimates from a beta regression fit that are inter-
pretable on the scale of observations (0, 1) the values from the 
linear predictor therefore need to be back‐transformed with 
the inverse logit function:

As discussed in the text, ϕ can either be estimated as a sin-
gle value for all observations, or modelled as a function of 
covariates with design matrix Z, corresponding regression pa-
rameters γ, and linear predictor ζ – in which case a log link is 
appropriate:

f(y|�,�)=
y�−1(1−y)�−1

B(�,�)

B(�,�)=
Γ(�)Γ(�)

Γ(�+�)

E[y]=
�

�+�

var[y]=
��

(�+�)2(�+�+1)

var[y]=
�(1−�)

1+�

y∼Beta(�,�)

logit(�)= log

(

�

1−�

)

=�=X�

logit−1(�)=
e�

1+e�

Dirichlet regression

The traditional parameterization results in the following prob-
ability density function for a vector valued p.

where x and α are both vectors (of observations and model pa-
rameters respectively) of length C, and B() is the multinomial 
Beta function.
In this parameterization, there is a parameter αc for each of 
the C components. If we define α0 as the sum of all elements 
of α then the expected value of any given component xc is 
given by E[xc]=

�c

�0

, with the associated variance:

The value of α0 is therefore interpretable as a precision 
parameter.
An alternative parameterization is realized by representing 
the expected values of each of the components as a vector 
μ where each μc is between 0 and 1, and the sum of all ele-
ments of μ is 1. Additionally, we define a precision parameter 
ϕ. Conversion between the two paramaterizations is therefore 
possible with αc = μcϕ and α0 = ϕ, leading to the follow expres-
sions for expected value and variance of each component:

The main contrast with the traditional parameterization is there-
fore that the group means and the precision parameter are ex-
plicitly modelled rather than indirectly in terms of the values of α.
In the case of the traditional paramaterization, a regression 
model should be fitted for each of the C values of αc. An ap-
propriate link function for the corresponding regression 
model is the log‐function.

Under the alternative paramaterization, both the expected 
values μ and the precision parameter ϕ are modelled as a 
function of covariates. One of the c components is defined as 
the base category b (all regression coefficients = 0). The sum 
constraint implies that the appropriate link function for the 
regression models for μ is the multinomial logit function. In 

log (�)= � =Z�

f(x1, … , xC|�1, … �C)=
1

B(�)

C
∏

c=1

x
(�c−1)
c

var[pc]=
�c(�0−�c)

�
2
0
(�0+1)

E[pc]=�c

var[pc]=
�c(1−�c)

�+1

log (�c)=�c=Xc�c

BOX 1 (Continued)
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methods are particularly suited to situations where count propor-
tions show more variance than can be modelled by binomial regres-
sion, i.e. when count proportions are overdispersed. Overdispersion 
is more likely to occur when observations are grouped in space or 
time or when W becomes very large. In a beta‐binomial regression 
model, the probability of success for a given level of the covariate is 
not fixed, but comes from a beta distribution. In the binomial model 
with observation‐level random intercept each observation gets a 
random intercept. These random intercepts come from a Gaussian 
distribution at logit scale. A simulation study showed that in gen-
eral a beta‐binomial is preferred and lead to least biased estimates 
(Harrison, 2015).

3.2 | Analysing compositions with >2 
continuous categories

3.2.1 | Historical approaches

Various approaches have historically being used to analyse contin-
uous proportions with C > 2 categories. The most straightforward 
approach is to ignore the sum constraint of the proportions and 
model the proportions of each category separately (e.g. Poorter, 
Vijver, Boot, & Lambers, 1995). The second, more sophisticated, 
approach is to recognize the sum to one constraint of the C cat-
egories and transform the category proportions relative to the 
proportion of a reference category. The additive log‐ratio, centred 
log‐ratio and the isometric log‐ratio transformations are com-
monly suggested (Aitchison, 1986; van den Boogaart & Tolosana‐
Delgado, 2013), although the latter two are, to the best of our 
knowledge, not often applied. The transformed values are sub-
sequently modelled by assuming that they follow a multivariate 
normal distribution (Aitchison, 1986; Billheimer, Guttorp, & Fagan, 
2001; van den Boogaart & Tolosana‐Delgado, 2013). As with the 
logit and the arcsine transformations described above, these 
transformation procedures lead to issues arising from Jensen's 
inequality.

3.2.2 | Dirichlet regression

An extension of beta regression to cases where proportional 
data are distributed over more than two categories is provided 
by Dirichlet regression (Camargo, Stern, & Lauretto, 2012; 
Gueorguieva, Rosenheck, & Zelterman, 2008; Hijazi & Jernigan, 
2009) – not to be confused with Dirichlet processes, or Dirichlet 
mixture models. Although less commonly used than beta regres-
sion, Dirichlet regression has also recently been applied to several 
data analysis problems in ecology. To give an idea of the breadth 
of data types amenable to this type of analysis: Regular et al. 
(2014) analysed time budgets of seabirds divided over four differ-
ent activities; Acevedo‐Trejos, Brandt, Merico, and Smith (2013) 
modelled the relative proportions of different phytoplankton size 
fractions to total biomass as environmental data; and Sánchez and 
Dos Santos (2015) examined spatial patterns in the dietary compo-
sitions of two species of bat.

The Dirichlet distribution (Box 1; Balakrishnan & Nevzorov, 
2003) is a generalization of the beta distribution to any number of 
categories i.e. it models a vector‐valued observation [p1, p2, …, pC] 
subject to the constraint 

∑C

c=1
pc=1, that the sum of all categories 

must equal unity.
As with beta regression, in practice two alternative parameteriza-

tions are used in Dirichlet regression. They differ mostly in whether 
the variance of the categories is modelled explicitly or not, and lead to 
quite different interpretations of model parameters after estimation. 
The so‐called ‘alternative’ parameterization (Maier, 2014, see Box 1) 
is probably most useful for ecologists and analogous to the µ and ϕ 
(mean and precision) parameterization for the beta distribution.

Under the alternative parameterization, the vector of expected 
values µ is modelled as a function of covariates, and a precision pa-
rameter ϕ is also estimated from the data. Since the values of µ are 
constrained to sum to 1, a separate model for each category is over-
determined so in practice only C − 1 models are fitted, and the C th 
category is treated as a baseline category and modelled implicitly as 
the ‘residual’ category remaining after the others are accounted for. 
Importantly, there is no requirement to use the same covariates for 
each category. Given the strict sum constraint the multinomial logit 
function is used as a link function to convert between the linear pre-
dictors and the vector µ (Box 1). For the precision parameter ϕ, which 
is strictly positive, an appropriate link is the log function.

Dirichlet regression uses maximum likelihood estimation to 
determine the values of the parameters β and ϕ that best fit the 
observed data p. The dependence of any given µc on the predicted 
values of the other µ’s makes direct interpretation of β difficult. In 
particular, and somewhat counterintuitively, individual categories 
can show negative relationships with covariates on the proportional 
scale even when the corresponding best‐fit regression parameter 
for that category is positive. The best method for interpreting the 
results of Dirichlet regression is therefore to produce plots of pre-
dicted values under a range of covariate values that are relevant to 
the question of interest (see Case Study 2, Figure 4).

this way, given a separate linear predictor for each component 
ηc = Xcβc, these can be converted into the corresponding values 
of μ with the expressions:

Note that the expected value of the baseline component 
is implictly modelled through the models for the other C − 1 
components. As for beta regression, a model for ϕ is typically 
specified with the log–link function.

�c=
e�c

C
∑

a=1

e�a

�b=
1

C
∑

a=1

e�a
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4  | E X TENSIONS TO DIRICHLET AND 
BETA REGRESSION

4.1 | Independent model for precision ϕ in beta and 
Dirichlet regression

In many situations, it is useful to allow for the possibility that precision 
varies across observations as a function of one or more covariates. 
Such a variable ϕ model may be appropriate when, for example, cer-
tain treatment levels display more variance at a given predicted mean 
(Case Study 1), or if there is systematic increase or decrease in variance 
as one of the covariates changes. It also allows for modelling situations 
where the variance of a response changes without any systematic 
change in the mean value. An additional use is for cases when differ-
ences in variability are a result of the sampling or experimental design, 
i.e. in cases where the observation interval cannot be fixed a priori. For 
example, in animal behavioural studies, the observation interval may 
be determined by how long the subject is within sight. In such cases, 
the precision of the observation can be expected to partly depend on 
the scale of the observation unit. Intuitively, an observation of 50% of 
time spent on a certain activity has a different evidential value when 
it is based on a 20 s total observation time, when compared to the 
same observed proportion derived from a 5 min observation interval. 
In such a situation, it may be appropriate to incorporate information 
about the length (or size) of the observation unit by including it in a 
model for the precision term ϕ.

Fitting beta and Dirichlet regression models with variable ϕ pa-
rameters is accomplished by extending the model and associated 
likelihood function to include dependence of ϕ on pre‐specified co-
variates (Simas, Barreto‐Souza, & Rocha, 2010; Smithson & Verkuilen, 
2006). Since ϕ is defined to be always positive, a link function (usu-
ally the log function) is used to relate the continuous linear predictor 
to the ϕ scale. The fitting procedure will return maximum likelihood 
estimates and associated standard errors for the parameters of the 
model for ϕ which can be interpreted in the same way as the parame-
ters for µ, after taking into account the different link functions.

4.2 | Hierarchical data structures

Many experimental designs in ecology and evolution lead to ob-
servations that are grouped in some way. Common examples are 
multiple observations within an experimental plot or repeated 
observations of the same experimental unit through time. Such 
experimental designs lead to non‐independence of observations, 
violating assumptions of most statistical techniques and potentially 
leading to incorrect inference. Mixed effect models can account 
for non‐independence of observations and can be implemented as 
extensions to Generalized Linear Models (Bolker, 2015; Zuur et al., 
2009) and have been developed for beta distributed variables as 
well (Brooks et al., 2017). Case study 1 includes a section on the fit-
ting and interpretation of such a mixed‐effects model in the context 
of beta regression. At the time of writing, mixed effect models for 
Dirichlet regression have not yet been implemented in standard-
ized software to the best of our knowledge, although see Regular 

et al. (2014) for an example of a customized analysis using Markov 
Chain Monte Carlo techniques to analyse seabird time budgets.

5  | ISSUES WITH BETA AND DIRICHLET 
REGRESSION

5.1 | Bias in estimation

Beta and Dirichlet regression use maximum likelihood methods for 
parameter estimation. However, in many cases, the methods are 
known to lead to bias – a systematic deviation of an estimated pa-
rameter value from the true value – particularly in cases with small 
sample size (Firth, 1993). Biased estimators can lead to erroneous in-
ference, and methods for bias–reduction and bias–correction are an 
active research area in statistics and in beta regression in particular 
(Grün et al., 2012; Kosmidis, 2014; Kosmidis & Firth, 2010; Ospina, 
Cribari‐Neto, & Vasconcellos, 2006; Simas et al., 2010). In particular, 
the precision parameter in beta regression models is prone to over-
estimation bias (Kosmidis & Firth, 2010) which leads directly to un-
derestimation of the width of confidence intervals for other model 
parameters. Two main types of solutions are available to reduce 
bias: bias correction and bias reduction (Firth, 1993). Bias correc-
tion methods correct for bias in a separate step following maximum 
likelihood estimation, while bias reduction methods modify the 
maximum likelihood estimation procedure such that the resulting 
estimator is less biased. See Appendix S3 accompanying Case study 
1 for a demonstration of bias correction and bias reduction and a 
bootstrap‐based technique for assessing the degree of bias for any 
given data‐model combination (Kosmidis, 2014).

5.2 | Dealing with 0 and 1 in observations

The proportions modelled by the beta and Dirichlet distributions 
are defined on the interval (0, 1). However, for some combinations 
of parameters, the probability density function is zero or infinity 
at the boundaries, which precludes a meaningful calculation of the 
likelihood. Zeros and ones may occur in the data because the true 
(non‐zero) value is below the detection limit of the measurement 
device or method. Conversely, true zeros may occur when a given 
category is absent from the sample e.g. no vegetation is present 
in a sampled quadrat. Regardless of their source, observations of 
zero or one will lead to a failure of the fitting algorithms in both 
beta and Dirichlet regression. Note that this problem is not unique 
to these two techniques – both logit or additive log‐ratio transfor-
mations cannot be applied to datasets containing zeros and ones.

Here, we focus on the case of observations of zero, but the same 
advice and techniques can be applied to datasets containing obser-
vations of 1, or both. Several solutions are available depending on 
the origin of the zero. When the zero arises because of the detection 
limit of the observation method, a simple workaround is to replace 
all observed zeros with a small term prior to computing p for each 
sample, taking care to include ε in the new demoninator. ε can be 
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chosen equal to the detection limit or to the smallest non‐zero ob-
servation. Warton and Hui (2011) recommend exploring the sensi-
tivity of results to the value of ε.

Alternatively, the data can be transformed according to the 
following equation:

with p being the proportion of a category, n the total number of obser-
vations in the dataset, and C the number of categories (Maier, 2014; 
Smithson & Verkuilen, 2006).

Note that for a fixed value of n this is a linear transformation, and 
does not lead to issues arising from Jensen's inequality.

In case of exact zeros, as an alternative to the transformations 
above, it is possible to apply the so‐called zero‐inflated beta regres-
sion (Fang & Kong, 2015; Ospina & Ferrari, 2012), perhaps more 
properly referred to as zero‐augmented beta regression (Wright, 
Irvine, Warren, & Barnett, 2017), given the independence of the two 
processes. This type of regression assumes that the data‐generating 
process involves two linked stochastic processes: first a Bernoulli 
process (with or without covariates) describes the probability of 
observing a non‐zero; and subsequently a beta regression model 
is specified for the value of the proportion itself for all non‐zero 
observations. It can therefore be thought of as a special case of 
two‐component finite mixture modeling. This approach is also avail-
able for one‐augmented beta regression (Ospina & Ferrari, 2012) 
or zero‐and‐one augmented beta regression (Fang & Kong, 2015). 
See Joseph, Preston, and Johnson (2016) for an application of zero‐
one‐augmented beta regression to vegetation cover, and Wright et 
al. (2017) for a further extension of zero‐augmented beta regres-
sion that leverages repeated observations to separately model true 
absences from apparent (observation‐error related) absences in 
vegetation survey data. A somewhat different method, involving 
modification of the likelihood function, has recently been proposed 
for zero‐augmented Dirichlet regression (Tsagris & Stewart, 2018).

The added value of a zero‐inflated/augmented models will be 
larger when both zeros and relatively high proportions are observed 
within replicates of the same treatment – evidence that two data‐
generating processes are operating. Moreover, the separation of the 
data‐generating process into two independent components allows for 
additional inference about processes underlying presence/absence, 
as distinct from processes determining the observed proportions (see 
e.g. Keim, DeWitt, Fitzpatrick, & Jenni, 2017; Wright et al., 2017). 
Given these advantages, and the relative ease of working with zero‐
augmented models within existing software packages (see Table 1), 
we suggest that zero/one‐augmented models should in general be 
used whenever there is a reasonable a priori expectation of zero or 
one values in the dataset, e.g. for species cover data. On the other 
hand, for certain data types (e.g. biomass partitioning in Case Study 2, 
below), zero or one values in the dataset will be absent in most cases.

Since the application of regular beta regression to data with zeros 
(and/or ones) requires transformation of the data, formal model selec-
tion criteria such as AIC or Bayesian Information Criterion (BIC) cannot 

be applied to compare the fit of a beta regression model fitted to a 
transformed response to zero‐and/or‐one inflated beta regression fit 
to an untransformed response. Therefore, model selection needs to be 
based on other criteria such as visual inspection of residuals and com-
parison of model predictions with observations. In case study 1, we 
compare the conclusions drawn from beta regression on transformed 
variables, and zero‐augmented beta regression (see also Appendix S3).

6  | MODEL INFERENCE AND E X AMPLE 
ANALYSES

Below, we present three examples of analysing continuous pro-
portions as an illustration of the methods discussed above and to 
demonstrate the major steps in applying these techniques for in-
ference. We have chosen two existing datasets to represent two 
commonly arising forms of continuous proportions: fractional 
cover (case study 1) and biomass partitioning among plant organs 
(case study 2). In Appendices S4 and S5, we use these case stud-
ies to provide detailed step‐by‐step demonstrations of all varia-
tions of beta and Dirichlet regression discussed in this paper using 
the popular statistical software package r. A number of r pack-
ages with which continuous and count‐based proportions can be 
modelled are listed in Table 1. In addition, we use a simulation ap-
proach to compare transformation‐based analyses with beta re-
gression, and illustrate the effects of varying link functions (case 
study 3 and Appendix S5).

The steps to be taken to fit models to continuous proportions 
are similar as for any other type of regression analysis (Zuur & Ieno, 
2016; Zuur et al., 2009). Here, we highlight a few points that warrant 
particular attention for analyses of this type.

In the data exploration phase, it is advisable to explore how the 
variation in the proportions vary as function of the covariates. An 
appropriate model for ϕ can improve estimates of the other model 
parameters. Additionally, the choice of the link function may affect 
model fit when at least one of the predictors is continuous.

Alternative link functions to the logit are possible, and in theory, 
any function which is invertible and that maps the unbounded linear 
predictor to the appropriate domain of the corresponding param-
eter ((0, 1) for µ and >0 for ϕ) could be used. In case of a contin-
uous covariate, we recommend testing several link functions (see 
case study 3). Alternative link functions for µ besides the standard 
logit are the probit (inverse of the cumulative distribution function 
of the standard normal distribution), the complementary log–log 
(clog–log(θ) = log(−log(1 − p))), and the Cauchit function (inverse of 
the cumulative distribution function of the Cauchy distribution). Link 
functions that do not map the real line to (0, 1), such as the log or 
identity link, can also be used, albeit with care (Marschner & Gillett, 
2011). For example, the log link is commonly used in binomial GLM 
to assess relative risks, and can be used in a beta regression setting 
as well. However, a log link can lead to fitting problems when the log‐
likelihood function is maximized near the boundary of the parameter 
space, e.g log(µ) = βX ≈ 0, and may be practically impossible when 

(1)p∗ =
p(n−1)+

1

C

n
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using Bayesian MCMC methods. Similarly, even when stable solu-
tions are obtained, confidence and prediction intervals may include 
non‐sensical parameter values. In some contexts, these issues can 
be avoided by reparameterization of the model‐data combination, 
see Case Study 3 below for an example.

Standard model selection criteria such as the likelihood ratio test 
(LRT), AIC or BIC can be used to compare among models with differ-
ent link functions or variable ϕ, although these will be most reliable 
at larger sample sizes, so visual assessment of model fits should also 
be carried out for smaller datasets.

It is also recommended to determine whether the data contains 
a large number of zeros/ones, and if their presence in the dataset 
varies systematically with potential predictor variables. If this is the 
case, a zero‐and/or‐one augmented beta regression model may be 
more appropriate than transformations that remove zero or one ob-
servations from the dataset.

Once a model has been fitted, inspecting the standardized re-
siduals may help in assessing any remaining pattern in the data that 
were not captured by the covariates. It is important to avoid in-
specting raw residuals on the response scale, since the expected 
variance of observations is related to the fitted response. Plots of 
standardized residuals (e.g. Pearson) against fitted values, and/or 
available covariates should ideally not show any systematic pattern 
in either spread or location. In particular, a systematic pattern of 
variation in the spread of residuals along the range fitted values or 
covariates indicates the need for a separate model for the precision 
parameter ϕ (see e.g. Figure 2 in Case Study 1 below). For beta re-
gression, a method of computing residuals that account for obser-
vation leverage has been proposed, which can more clearly identify 
atypical observations compared to the common standardized resid-
uals (Espinheira, Ferrari, & Cribari‐Neto, 2008, and see Appendix 
S3). Calculation of these residuals is the default in the betareg r 

F I G U R E  2   Probability density plots 
of posterior predictions of proportion 
algae cover under each grazer removal 
treatment, and Pearson residual plots 
for three different modeling approaches. 
Top row: classical ANOVA model, middle 
row: beta regression with fixed precision 
across all levels of treatment; bottom: beta 
regression with variable precision. Vertical 
lines (|) in the uppermost panel represent 
the observed data, vertically staggered by 
treatment for legibility. Pearson residuals 
are presented to allow comparison between 
classical and beta regression models. The 
alternative weighted residuals advocated by 
Espinheira et al. (2008) are to be preferred 
when making comparisons among beta 
regression specifications. Note that data 
were pooled per patch and transformed 
according to Equation (1) prior to analyses, 
see Figure 3 for an analysis that accounts for 
nested structure and zero‐observations
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package, but is not universally implemented in more general model-
ing packages. See Espinheira et al. (2008) for a range of expressions 
for the calculation of standardized residuals, and a detailed discus-
sion of their relative merits. To our knowledge, a comparable analy-
sis of residuals has not yet been undertaken for Dirichlet regression.

Influential observations can be identified using measures such 
as generalized leverage or Cook's distance (for beta regression see 
Ferrari & Cribari‐Neto, 2004). These measures can be applied in the 
same manner as for the classical linear model; i.e. to identify specific 
observations that substantially change the model fit as candidates 
for further examination or exclusion from the dataset.

To further assess the fit of the model we recommend plotting 
the model predictions, either as posterior predictive densities, or 
simulations from the model, and comparing them with plots of the 
observed data. This can identify aspects of the original data that are 
inadequately captured by the model. This is particularly useful for 
Dirichlet regression where inspection of the parameter estimates 
themselves may not be very insightful because other categories are 
most likely also changing as a function of a given covariate.

6.1 | Case Study 1 Percent cover in quadrats

The first example involves experimental manipulation of the den-
sity of the sea urchin Centrosthepanus rodgersii to investigate its 
effect of grazing on the colonization of filamentous algae (Andrew 
& Underwood, 1993). Algae colonization was measured by per-
cent cover in five 0.25 m2 quadrats randomly located within larger 
patches subject to one of four levels of grazer removal treatment. 
Andrew and Underwood (1993) analysed this data (reanalysed by 
Quinn & Keough, 2002) using a nested ANOVA to account for the 
within‐patch replication. They concluded that treatments did not 
significantly affect the cover of filamentous algae.

In Appendix S3, we provide a detailed, step‐by‐step analysis 
of this dataset using different versions of beta regression, with ac-
companying code. We approach the analysis in two ways: first to 
illustrate the basic ideas we compare classical ANOVA to beta re-
gression with and without a model for varying precision. To focus on 
the comparison of these basic model types, and the role of residu-
als in diagnostics, we use data pooled per patch and transform the 
data according to Equation (1) to initially avoid issues with nested 
observations, and the presence of zeroes, respectively. Secondly, 
we perform the analysis on the original data, retaining the hierarchi-
cal structure and comparing the results of models with and without 
zero‐augmentation. This approach is what we would recommend in 
a ‘real‐world’ analysis, since it incorporates a priori information about 
the presence of zeros and the structure of the experimental design.

Figure 2 and Table 2 compare the results of classical ANOVA 
(assuming normal errors), beta regression with a fixed ϕ, and beta 
regression with ϕ dependent on removal treatment. Model selec-
tion based on AIC clearly favours the variable ϕ model (Table 2). The 
improved fit is also evident from comparison of the residual plots 
(Figure 2, second column) – the first two models show a strong rela-
tionship between values of the standardized residuals and the fitted 

values. This is due to overestimation of the amount of variance in 
the control treatment plots, a fact also visible when comparing the 
posterior predictive densities of the first two models with the ob-
served data (Figure 2, first column). Interestingly, there is not a large 
difference in the estimates for the mean of each group (Table 2), but 
the classical ANOVA model has much broader confidence intervals 
(leading to non‐significant pairwise comparisons, see Appendix S3) 
than the beta regression, and moreover predicts values outside the 
possible range of (0, 1). Pairwise comparisons of the groups based 
on the variable ϕ beta regression model indicated that the control 
treatment differed significantly from the other treatments, but the 
other treatments did not differ significantly from each other, both in 
terms of mean response and precision.

To illustrate the use of mixed‐effects and zero‐augmented 
beta regression, we analyse the original dataset in which replicate 
quadrats (observational units) are observed within each patch 
(experimental units). Given the non‐independence of quadrats 
within each patch a mixed‐effects model is fit with patch as the 
grouping variable and ϕ dependent on treatment. The predicted 
distributions for each treatment (Figure 3a) are broadly similar 
to those obtained from the variable ϕ model on the pooled data 
(Figure 2), however, the higher number of data points seems to 
have increased the precision of the estimates for the non‐control 
treatments. Incorporating a zero‐augmented component to the 
model, where the probability of observing a zero is modelled as 
a function of removal treatment, leads to only slightly adjusted 
posterior predictions for the mean of each group (Figure 3b,c). As 
expected, the main added value of the zero‐augmented model is a 
much more accurate prediction of zero observations in the dataset 
(Figure 3d). The inability of models without zero‐augmentation to 
reproduce this important feature of the dataset would limit their 
usefuless for making further predictions.

As for the analysis of the pooled data, the conclusions from both 
the mixed‐effects and zero‐augmented mixed effects models are 
that any form of any degree of sea urchin removal from this environ-
ment leads to an increase in algal cover. This finding contrasts with 
the conclusions in the original analyses of Andrew and Underwood 
(1993) and the reanalysis by Quinn and Keough (2002), both of which 
concluded that there was no significant difference in percentage 
cover of filamentous algae between treatments. We would argue 
that by choosing a more realistic model for the response variable, 
allowing the dispersion to vary between treatments, and explicitly 
modelling the occurence of zeroes, a beta regression model better 
captures the features of the dataset, and therefore provides a more 
reliable basis for inference.

6.2 | Case study 2 Biomass partitioning in plants

The second dataset comes from a study testing whether differ-
ences in growth parameters between fast‐ and slow‐growing 
plant species at optimal nitrogen supply persisted at low nitro-
gen supply (Poorter & Sack, 2012; Poorter et al., 1995). Two 
species, Deschampsia flexuosa (slow growing) and Holcus lanatus 
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(fast growing) were grown under low and high nitrate supply for 
a maximum of 49 days. Replicate individuals were harvested at 
regular intervals for determination of biomass in roots, stems and 
leaves. This case study is an illustration of proportions that arise 
in a situation where the size of the observational unit (total bio-
mass) is not fixed, and where there are more than two continuous 

categories (biomass of stems, leaves and roots). Dirichlet regres-
sion (Appendix S4) was used, as the generalization of beta re-
gression for situations where proportions are calculated for more 
than two categories.

The response variables were vectors of the proportions of 
total plant biomass in leaves (LMF), roots (RMF) and stems (SMF). 

F I G U R E  3   Summary of models 
fitted to nested data. Top row: posterior 
predictive distributions according per 
removal treament derived from (a) mixed 
effects beta regression model (ME), and 
(b) zero‐augmented hierarchical beta 
regression (ZAME). In both top panels 
vertical lines (|) represent the observed 
data, vertically staggered by treatment for 
visibility. Bottom row: (c) estimates and 
95% credible intervals for µ per removal 
treatment for ME and ZAME models, with 
observed means marked for reference and 
predictions from a normal mixed‐effects 
model (normal ME) added for comparison; 
(d) posterior predictive estimates of the 
proportion of observed zeroes (effectively 
<0.01 due to transformation in the mixed 
model case) for each model and observed 
proportions
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TA B L E  2   Parameter estimates (and their associated 95% confidence intervals) of the beta regression model explaining proportion algae 
cover averaged within patches by treatment (with bias reduction). Three different models were tested: 1) the mean cover not dependent on 
treatment and with fixed precision, 2) mean proportion cover dependent on treatment and fixed precision, and 3) mean proportion cover 
and precision dependent on treatment. The last model was the most parsimonious model based on AIC. Estimates and intervals are reported 
on the original scale of the observations

Model Control 33% removal 66% removal Removal AIC

Classical ANOVA 0.04 0.21 0.23 0.40 −4.7

(−0.15–0.24) (0.02–0.40) (0.04–0.43) (0.21–0.59)  

Beta regression, fixed ϕ 0.10 0.19 0.23 0.36 −13.2

(0.04–0.24) (0.09–0.36) (0.12–0.42) (0.21–0.55)  

Beta regression, variable ϕ 0.04 0.20 0.23 0.38 −21.6

(0.04–0.05) (0.09–0.41) (0.12–0.39) (0.19–0.61)  
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These proportions were modelled as function of species identity 
and nitrate levels. In contrast to Poorter et al. (1995), we included 
time as a covariate to investigate the temporal dynamics of bio-
mass partitioning. We refer to Poorter and Sack (2012) for other 
options regarding the analysis of biomass fractions. The most 
parsimonious model (based on AIC) explained the mean RMF and 
SMF as a function of time, a quadratic transformation of time, 
species, nitrate supply, total biomass, the interactions between 
species and nitrate supply, species and time, nitrate supply and 
time, and a three way interaction between species, nitrate supply 
and time. In addition, the precision was modelled as a function of 

species, nitrate supply, time and the interaction between species 
and time (Table 3).

How the different fixed effects determine LMF, SMF and RMF is 
difficult to infer from direct inspection of the parameter estimates 
of the best fitted model because the different fractions are interre-
lated. We therefore displayed the predicted values of this model in 
Figure 4. The predicted fractions show that in the high nitrate sup-
ply treatment, both species changed their allocation to shoots, roots 
and leafs in a similar fashion, while under low nitrate supply H. lana‐
tus and D. flexuosa allocate root and shoot biomass differently over 
time. This explains the significant three way interaction between 

F I G U R E  4   The observed (dots) and 
predicted (lines) proportion of biomass 
invested into leaves (LMF), roots 
(RMF) and stems (SMF) over time for 
Deschampsia flexuosa (red) and Holcus 
lanatus (blue) for two levels of nitrogen 
supply (rows; high and low). The predicted 
values come from a Dirichlet regression 
model and are computed for a smoothed 
average plant biomass at each sampling 
date (see main text for details)
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TA B L E  3   Maximum likelihood parameter estimates and their associated standard errors (in parentheses) of the Dirichlet regression 
model explaining leaf mass fraction (LMF), root mass fraction (LMF) and stem mass fraction (LMF). Significant parameters (p < 0.05) are 
shown in bold. The most parsimonious model based on AIC is presented. Log‐likelihood 1990, n = 500, 25 parameters estimated, AIC‐3930, 
logit link on mean models, log link on precision models. S, T and D refer to Species, Treatment and Day respectively

Component Intercept
Species (H. 
lanatus)

Treatment 
(low)

Day 
(scaled)

Day 
(scaled)2

Total 
biomass S × T S × D T × D S × T × D

LMF — — — — — — — — — —

RMF −0.914 0.210 0.05 0.03 −0.03 0.03 −0.160 −0.023 −0.004 0.143

(0.02) (0.05) (0.03) (0.03) (0.02) (0.02) (0.06) (0.06) (0.04) (0.07)

SMF −0.354 0.397 0.628 −0.057 −0.057 0.072 −0.062 −0.004 0.276 −0.267

(0.02) (0.04) (0.03) (0.03) (0.01) (0.01) (0.05) (0.05) (0.03) (0.05)

Precision 5.429 −0.277 −0.478 0.130    0.311   

(0.08) (0.09) (0.10) (0.06)    (0.31)   



1426  |    Methods in Ecology and Evoluon DOUMA AnD WEEDOn

time, species and nitrate supply. Excluding the species term led to an 
increase in AIC of 412, emphasizing the importance of species–spe-
cific effects on biomass partitioning. No obvious pattern remained 
in Pearson residuals when plotted against the fitted values or the 
covariates.

Another way to gain insight into the species effect is to compute 
the ratio of organ biomass of the two species. This ratio can be calcu-
lated from the predicted biomass fractions of the Dirichlet regression 
model, and can be thought of as a measure of effect size expressing the 
relative partitioning of biomass invested in leaves, stems and roots in 
H. lanatus compared to D. flexuosa (Figure 5). For example, early on in 
development, it is predicted that H. lanatus invest up to 1.5 times more 
in roots than D. flexuosa, while at harvest the investment in roots is sim-
ilar. Despite this pattern, the 95% prediction interval of the investment 
ratios, taking the variation of individual replicates into account, shows 
that the variation in investment ratio within species is substantial.

6.3 | Case study 3 Percent cover and 
comparison of beta regression and transformations‐
based approaches

In this case study, beta regression and transformation‐based 
approaches are compared to illustrate the mismatch between 
observations and predictions that can arise when using trans-
formation‐based approaches or when choosing an inappropriate 

link function within beta regression. A synthetic dataset was used 
to compare the performance of various approaches against true 
ground cover.

We created a dataset of tree cover using a stochastic, two di-
mensional spatial model where tree density is modeled as a func-
tion of mean annual precipitation (mm/year) following findings 
of (Hirota, Holmgren, Nes, & Scheffer, 2011; Staver, Archibald, & 
Levin, 2011). Importantly, the underlying data‐generating process 
is not directly related to any of the model specifications we are 
comparing. Projected ground‐cover of a range of 20 forests was 
simulated that varied in the mean annual rainfall received (ranging 
from 125 to 2,500 mm/year). Trees were positioned randomly in 
the area by drawing coordinates from a uniform distribution within 
the grid, and the size of the (circular) individuals was simulated 
by sampling values of crown diameter from a lognormal distribu-
tion. Percent cover on 1 ha plots was ‘estimated’ by simulating 
15 randomly positioned non‐overlapping quadrats of 10 × 10 m2 
(Figure 6a and Appendix S5 for details). We then used these simu-
lated samples to estimate the relationship between mean percent 
cover and mean annual precipitation using one of five methods: 
log transformation or logit transformation followed by an ordinary 
least squares linear regression model, or a beta regression with 
either a cloglog, logit, or log link. To avoid fitting problems in the 
beta model with log link, we fitted a regression model on the pro-
portion of non‐cover (i.e. 1 − cover) and set the intercept at 1. This 

F I G U R E  5   The predicted ratio of the 
proportion of biomass invested by Holcus 
lanatus in leaves (LMF), roots (RMF) and 
shoots (SMF) compared to Deschampsia 
flexuosa (solid line). The colors represent 
the two levels of nutrient application. The 
dotted lines represent the 95% prediction 
interval of the investment ratio of future 
observations
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constrains the model to return zero cover at values of zero annual 
precipitation, which is biologically plausible in this case.

The beta regression with log link best fitted the data (Figure 6). 
The root mean squared error (RMSE) of the model predictions ver-
sus true tree cover was on average 0.058, 0.073 and 0.099 for the 
log, logit and cloglog link respectively, and 0.069 and 0.663 for 
the logit and log transformation respectively (average of 50 simu-
lations). In all cases, the RMSE decreased with increasing quadrat 
size while keeping the area sampled constant to 16% of the total 
area. However, the RMSE for the logit transformation decreased 
much faster compared to the beta regression models, but always 
stayed above the RMSE of the beta regression model with log link. 
The stronger reduction in RMSE with increasing quadrat size com-
pared to the decrease in RMSE in beta regression models illus-
trates the point that larger variance in the observed proportions 

increases the mismatch between observations and the predic-
tions of transformation‐based approaches (see Appendix S5). 
Furthermore, the choice of the link function substantially affected 
model fit (Figure 6). Thus, the simulations show that beta regres-
sion is better able to predict tree cover compared to transforma-
tion‐based approaches, provided that the link function is chosen 
carefully.

7  | CONCLUSIONS

Given the high prevalence of proportional data in ecology and evo-
lution, appropriate techniques for their statistical modelling are an 
important component of the methodological toolbox of the mod-
ern biologist. When proportional data are derived from continuous 

F I G U R E  6   Two simulated types of forest with low and high tree project ground cover (green blobs) and 15 quadrats positioned in the 
area (squares 10 × 10 m2; panel a & b). The relationship between mean annual precipitation and the projected ground cover of trees as 
measured in quadrats (panel c; grey dots), and over the whole area (blue dots). Lines represent the fitted relationships between number 
of individuals and percent cover with beta regression using three different link functions (cloglog (orange), logit (purple), log (green)), and a 
normal regression model on logit transformed data (red) and log transformed data (red dotted). The beta regression model with log‐link fit 
the data best
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measurements, beta (2 categories) or Dirichlet (>2 categories) re-
gression can be used for modelling and inference, and avoid some 
issues related to bias and interpretation that arise when using tra-
ditional transformation‐based techniques. Extensions to basic beta 
regression in the last decade such as variable ϕ models, bias correc-
tion, hierarchical models and zero‐one augmented models, mean 
that most commonly encountered data structures can now be ef-
fectively analysed with these techniques. Further gains could be 
made if these techniques are implemented in the Dirichlet regres-
sion framework. We encourage scientists in the ecological research 
community to adopt these methods for their own analyses.
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