
Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio

Caṕıtulo 2 - Funções Vectoriais de uma Variável

1 Funções vectoriais de uma variável: limites, continuidade,
derivadas e integrais

Uma função vectorial de variável real é uma função

r : D ⊆ R→ Rn

que a cada número real t ∈ D faz corresponder um e um só vector de Rn dado por (r1(t), r2(t), . . . , rn(t)).
Às funções reais de variável real

ri : D ⊆ R → R
t → ri(t),

para i = 1, . . . , n, chamamos funções componentes de r.
O domı́nio da função r é a intersecção dos domı́nios de cada uma das suas funções componentes e é o

maior conjunto onde a expressão que define r faz sentido, a não ser que se explicite uma restrição deste.
Neste caṕıtulo vamos estender a este tipo de funções as noções de limite, continuidade, derivada e

integral que já conhecemos para funções reais de variável real.

Definição 1.1 Seja r : D ⊆ R → Rn uma função vectorial de variável real e suponhamos que r está
definida numa vizinhança do ponto t0, excepto possivelmente em t0, e seja L um vector de Rn. Dizemos
que

lim
t→t0

r(t) = L ∈ Rn

se e só se lim
t→t0
‖r(t)− L‖ = 0, ou seja, se e só se

∀δ > 0 ∃ε > 0 : 0 < |t− t0| < ε⇒ ‖r(t)− L‖ < δ.

Assim, dizer que o limite, quando t→ t0, da função vectorial r(t) é o vector L é equivalente a afirmar
que o limite, quando t→ t0, da função real ‖r(t)− L‖ é 0.

Proposição 1.2 Se lim
t→t0

r(t) = L então lim
t→t0
‖r(t)‖ = ‖L‖.

Note-se que o rećıproco do resultado anterior é falso, basta considerar r(t) = r0 e L = −r0.

Teorema 1.3 Sejam r : D ⊆ R→ Rn uma função vectorial de variável real e L = (L1, . . . , Ln). Então

lim
t→t0

r(t) = L⇔ lim
t→t0

ri(t) = Li,∀i = 1, . . . , n.

O teorema anterior diz-nos que os limites das funções vectoriais se calculam componente a componente,
reduzindo-se ao cálculo de n limites de funções reais de variável real. Por este motivo, as propriedades
algébricas dos limites de funções de R em R continuam a ser válidas para funções de R em Rn. Temos
então o seguinte:
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Teorema 1.4 Sejam u, v : D ⊆ R→ Rn funções vectoriais de variável real e seja f : D → R uma função
real de variável real. Suponhamos que lim

t→t0
u(t) = L, lim

t→t0
v(t) = M e que lim

t→t0
f(t) = α, onde L,M ∈ Rn

e α ∈ R. Então tem-se:

i) lim
t→t0

(u(t) + v(t)) = L+M ;

ii) lim
t→t0

(cu(t)) = cL, ∀c ∈ R;

iii) lim
t→to

f(t)u(t) = αL;

iv) lim
t→t0

u(t) · v(t) = L ·M , onde · representa o produto interno em Rn.

Definição 1.5 Seja r : D ⊆ R → Rn uma função vectorial de variável real e suponhamos que r está
definida numa vizinhança do ponto t0 ∈ D. A função r diz-se cont́ınua em t0 se e só se

lim
t→t0

r(t) = r(t0).

Resulta imediatamente do Teorema 1.3 que

Teorema 1.6 Seja r : D ⊆ R→ Rn uma função vectorial de variável real definida numa vizinhança do
ponto t0 ∈ D. Então r é cont́ınua em t0 se e só se as suas funções componentes ri forem cont́ınuas em
t0, ∀i = 1, . . . , n.

O próximo resultado dá-nos algumas propriedades das funções cont́ınuas, análogas às já conhecidas
para funções reais de variável real.

Teorema 1.7 Sejam u, v : D ⊆ R→ Rn, f : D ⊆ R→ R e g : E ⊆ R→ R tal que g(E) ⊆ D. Então:

i) se u, v e f são cont́ınuas em a ∈ D o mesmo sucede a ‖u‖, u+v, fu, u ·v, e ainda a
u

f
se f(a) 6= 0;

ii) se g é cont́ınua em a ∈ E e u é cont́ınua em g(a) ∈ D então u ◦ g é cont́ınua em a.

Definição 1.8 Dada uma função vectorial de variável real cont́ınua r : ]a, b[→ Rn a derivada de r no
ponto t é dada por

dr

dt
(t) = r′(t) = lim

h→0

r(t+ h)− r(t)
h

se este limite existir.

Atendendo ao Teorema 1.3 é válido o seguinte teorema:

Teorema 1.9 Seja r : ]a, b[→ Rn uma função vectorial de variável real cont́ınua, seja t0 ∈]a, b[ e supon-
hamos que todas as funções componentes de r, ri : ]a, b[→ R, i = 1, . . . , n, são diferenciáveis em t0.
Então r é diferenciável em t0 e tem-se

r′(t0) = (r′1(t0), r′2(t0), . . . , r′n(t0)).

Este teorema diz-nos que r′(t) é o vector cujas componentes são as derivadas das funções ri, i =
1, . . . , n. Consequentemente todas as fórmulas e métodos usados para calcular derivadas de funções reais
de variável real podem ser usados para calcular derivadas de funções vectoriais de variável real, aplicados
componente a componente.

2



Teorema 1.10 Sejam u, v : ]a, b[→ Rn, f : ]a, b[→ R e c ∈ R. Se u, v e f forem diferenciáveis em ]a, b[
tem-se

i)
d

dt
(u(t) + v(t)) = u′(t) + v′(t);

ii)
d

dt
(cu(t)) = cu′(t);

iii)
d

dt
(f(t)u(t)) = f ′(t)u(t) + f(t)u′(t);

iv)
d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t), onde · representa o produto interno em Rn;

v)
d

dt
(u(f(t))) = f ′(t)u′(f(t)) (derivação da função composta).

Definição 1.11 Dada uma função vectorial de variável real cont́ınua

r : [a, b] ⊆ R → Rn

t → (r1(t), r2(t), . . . , rn(t))

definimos ∫ b

a

r(t) dt =

(∫ b

a

r1(t) dt,
∫ b

a

r2(t) dt, . . . ,
∫ b

a

rn(t) dt

)
.

O integral duma função vectorial de variável real r é assim o vector cujas componentes são os integrais
das funções componentes de r.

São válidas as seguintes propriedades do integral de funções vectoriais de variável real:

Teorema 1.12 Sejam u, v : [a, b] ⊆ R → Rn funções cont́ınuas, α ∈ R e c ∈ Rn um vector constante.
Então tem-se:

i)
∫ b

a

u(t) + v(t) dt =
∫ b

a

u(t) dt+
∫ b

a

v(t) dt;

ii)
∫ b

a

αu(t) dt = α

∫ b

a

u(t) dt;

iii)
∫ b

a

c · u(t) dt = c ·

(∫ b

a

u(t) dt

)
, onde · representa o produto interno em Rn;

iv)

∥∥∥∥∥
∫ b

a

u(t) dt

∥∥∥∥∥ ≤
∫ b

a

‖u(t)‖ dt.

2 Curvas no plano e no espaço, parametrização de curvas, vector
tangente

No que se segue vamos considerar funções vectoriais de variável real

r : I ⊆ R → Rn

t → r(t)

definidas e cont́ınuas num intervalo I de R. A uma função deste tipo chamamos caminho ou linha
parametrizada (ou apenas linha).
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Este tipo de funções surge em inúmeras aplicações, nomeadamente para descrevermos curvas no
plano e no espaço e o movimento de part́ıculas no plano e no espaço. Em muitas aplicações a variável
independente t representa tempo.

Suponhamos que n = 3 e consideremos uma função cont́ınua

r : [a, b] → R3

t → (f(t), g(t), h(t)).

Assim, a cada valor de t no intervalo [a, b] fazemos corresponder um vector r(t) ∈ R3 o qual, fixado um
sistema de coordenadas, pode ser considerado como o vector posição de um certo ponto P .

O conjunto dos pontos P obtidos desta forma denomina-se arco ou curva do espaço. As equações x = f(t)
y = g(t)
z = h(t)

chamam-se equações paramétricas da curva e a variável t chama-se parâmetro. Os pontos A = r(a) e
B = r(b) são, respectivamente, os pontos inicial e final da curva; se r(a) = r(b) a curva diz-se fechada.

Analogamente, se n = 2, obtemos um arco ou curva do plano.

Dado um caminho r : I ⊆ R→ Rm, onde I é um intervalo com mais do que um ponto, já vimos que
a derivada de r no ponto t ∈ I é dada por

r′(t) = lim
h→0

r(t+ h)− r(t)
h

,

se este limite existir.
Se r(t) for o vector posição do ponto P e se r′(t) 6= 0, resulta que o vector r′(t) é tangente à curva

descrita por r(t) no ponto P e aponta na direcção e sentido em que t aumenta.

Definição 2.1 Se r′(t0) 6= 0, a recta tangente à curva definida pela função r(t) num ponto P = r(t0) é
a recta que passa pelo ponto P e tem a direcção do vector r′(t0).

Neste caso, o vector T (t0) =
r′(t0)
‖r′(t0)‖

é um vector unitário tangente à curva no ponto P .

Se a função r(t) descrever a posição no instante t de uma part́ıcula em movimento, r′(t) representa a
taxa de variação da posição da part́ıcula relativamente ao tempo. Por outras palavras, r′(t) é a velocidade
da part́ıcula que é tangente à trajectória descrita por esta.

3 Comprimento de uma curva

Consideremos uma linha parametrizada,

r : I → R3

t → (f(t), g(t), h(t))

definida num intervalo I contendo [a, b] e seja C a curva definida por r(t). Vamos supor que as funções
f , g e h são diferenciáveis em I, com derivadas cont́ınuas, diz-se então que a curva C é de classe C1.

Definição 3.1 Uma curva C, dada pela função vectorial r(t) com a ≤ t ≤ b, diz-se uma curva simples
se não se intersectar, excepto possivelmente nos seus extremos.

Supondo que a curva C é uma curva simples e de classe C1, vejamos como calcular o comprimento
da porção da curva para a ≤ t ≤ b. Para esse efeito consideramos uma partição do intervalo [a, b], isto é,
consideramos pontos ti tais que

a = t0 < t1 < t2 < . . . < tn−1 < tn = b.
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Para cada ponto ti da partição calculamos r(ti) e determinamos Pi, o ponto correspondente na curva.
Seguidamente consideramos os segmentos de recta que unem os pontos Pi−1 a Pi, i = 1, . . . , n. Adicio-
nando os comprimentos de todos estes segmentos obtemos o comprimento de uma linha poligonal dado
por

n∑
i=1

‖r(ti)− r(ti−1)‖.

O comprimento da curva C define-se como sendo o supremo dos comprimentos de todas as linhas polig-
onais assim obtidas. Analogamente para curvas do plano.

Teorema 3.2 Nas condições anteriores, o comprimento da curva C descrita por r(t) com a ≤ t ≤ b é
dado por

L(C) =
∫ b

a

‖r′(t)‖ dt.

Sendo C uma curva simples e de classe C1 dada pela função r(t) para a ≤ t ≤ b define-se a função
comprimento de arco por

s(t) =
∫ t

a

‖r′(u)‖ du, a ≤ t ≤ b.

Esta função dá-nos o comprimento do arco, ou curva, C entre os pontos r(a) e r(t). De acordo com o
teorema fundamental do cálculo tem-se

ds

dt
= s′(t) = ‖r′(t)‖.

Se a curva C representar a trajectória de uma part́ıcula em movimento cujo vector posição é dado por
r(t), então v(t) = r′(t) é a velocidade da part́ıcula e ‖v(t)‖ = ‖r′(t)‖ é a sua velocidade escalar. A
equação anterior diz-nos que a velocidade escalar da part́ıcula é igual à taxa de variação da distância
percorrida ao longo da curva C relativamente ao tempo.
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