Calculo Infinitesimal IT / Célculo IT - Apontamentos de Apoio

Capitulo 2 - Funcgoes Vectoriais de uma Variavel

1 Funcoes vectoriais de uma variavel: limites, continuidade,
derivadas e integrais

Uma fungao vectorial de varidvel real é uma funcao
r:DCR—R"

que a cada nimero real t € D faz corresponder um e um s6 vector de R™ dado por (r1(t),r2(t), ..., r(t)).
As fungoes reais de variavel real

ri:DCR — R
t — Tz'(t),

para i = 1,...,n, chamamos fun¢oes componentes de r.
O dominio da funcao r é a interseccao dos dominios de cada uma das suas fungdes componentes e é o
maior conjunto onde a expressdo que define r faz sentido, a nao ser que se explicite uma restricdo deste.
Neste capitulo vamos estender a este tipo de funcoes as nogoes de limite, continuidade, derivada e
integral que ja conhecemos para fungoes reais de variavel real.

Definicao 1.1 Seja r : D C R — R"™ uma fung¢do vectorial de varidvel real e suponhamos que r estd
definida numa vizinhancga do ponto ty, excepto possivelmente em ty, e seja L um vector de R™. Dizemos
que

lim r(t) = L € R"

t—to
se e sO se tlintl lr(t) — L|| = 0, ou seja, se e sd se
—to
V98>0 >0:0<|t—to| <e=|r(t)—L| <.
Assim, dizer que o limite, quando t — ¢¢, da fungao vectorial () é o vector L é equivalente a afirmar
que o limite, quando ¢ — to, da fungéo real ||r(¢t) — L|| é 0.
Proposicao 1.2 Se tlintl r(t) = L entdo tlintl lr I = 1 L||-
—to —to

Note-se que o reciproco do resultado anterior é falso, basta considerar r(t) =rg e L = —ro.

Teorema 1.3 Sejam r: D C R — R™ uma fungdo vectorial de varidvel real e L = (Lq,...,Ly,). Entdo

lim r(t) =L < tlir? ri(t)=L;,Vi=1,...,n.
—1l0

t—>t0

O teorema anterior diz-nos que os limites das fungoes vectoriais se calculam componente a componente,
reduzindo-se ao calculo de n limites de funcoes reais de varidvel real. Por este motivo, as propriedades
algébricas dos limites de funcoes de R em R continuam a ser validas para fungoes de R em R™. Temos
entao o seguinte:



Teorema 1.4 Sejam u,v: D CR — R” fung¢oes vectoriais de varidvel real e seja f : D — R uma fungdo
real de varidvel real. Suponhamos que tlir? u(t) =L, tlir? v(t) =M e que tlir? fit) =«, onde L, M € R"
—10 —1o —1o

e a € R. Entdo tem-se:
i) tlir%(u(t) +o(t)) =L+ M;
i) tllglo(cu(t)) =cL, Ve € R;
iii) tli)ntlo f@Wu(t) = aL;
i) thi% u(t) -v(t) = L- M, onde - representa o produto interno em R™.

Definigao 1.5 Seja r : D C R — R™ uma fung¢do vectorial de varidvel real e suponhamos que r estd
definida numa vizinhanca do ponto tg € D. A funcao r diz-se continua em tg se e so se

lim r(t) = r(to)-

t—to

Resulta imediatamente do Teorema 1.3 que

Teorema 1.6 Sejar: D C R — R™ uma fun¢do vectorial de varidvel real definida numa vizinhanga do
ponto tg € D. Entdo r é continua em ty se e s se as suas fungdes componentes r; forem continuas em
to, Vi = 17...,’[7,.

O proéximo resultado dé-nos algumas propriedades das fungoes continuas, andlogas as ja conhecidas
para fungoes reais de varidvel real.

Teorema 1.7 Sejam u,v : DCR —-R", f:DCR—Reg: ECR—R tal que g(E) C D. Entao:

u
i) seu, v e f sao continuas em a € D o mesmo sucede a ||ul|, u+v, fu, u-v, e ainda a — se f(a) # 0;

f

it) se g € continua em a € E e u é continua em g(a) € D entdo wo g € continua em a.

Defini¢ao 1.8 Dada uma func¢do vectorial de varidvel real continua r :)a,b|— R™ a derivada de r no
ponto t € dada por

(t) =7r'(t) = lim

dr r(t+h) —r(t)
dt h—0 h

se este limite existir.
Atendendo ao Teorema 1.3 é vélido o seguinte teorema:

Teorema 1.9 Seja r :]a, b — R™ uma fungdo vectorial de varidvel real continua, seja ty €la,b| e supon-
hamos que todas as fungdes componentes de r, r; :]a,b[— R, i = 1,...,n, sao diferencidveis em tg.
Entao r é diferencidvel em ty e tem-se

' (to) = (r1(to), m5(to), - - -, 7 (t0))-

Este teorema diz-nos que r'(t) é o vector cujas componentes sao as derivadas das funcdes r;, i =
1,...,n. Consequentemente todas as férmulas e métodos usados para calcular derivadas de funcoes reais
de variavel real podem ser usados para calcular derivadas de fungoes vectoriais de varidvel real, aplicados
componente a componente.



Teorema 1.10 Sejam u,v :]a,b[— R"™, f:]a,b|— R ec € R. Sewu, v e f forem diferencidveis em |a,b|
tem-se

) lt) + ol0) = (1) + 0 (0);

i) S Oun) = £/ (0l + S0 (0);

d
w) a(u(t) co(t)) = u'(t) - v(t) +u(t) -v'(t), onde - representa o produto interno em R™;

d

v ﬁ(u(f(t))) = f'(u'(f(t)) (derivacao da fungdo composta).

Definicao 1.11 Dada uma fung¢do vectorial de varidvel real continua

r:fla,)) CR — R"
t - (rl(t)vr2(t)v"~vrn(t))

/abr(t)dt (/abm(t)dt,/abrz(t)dt,...,/abrn(t)dt>.

O integral duma fungao vectorial de varidvel real r é assim o vector cujas componentes sao os integrais
das fungoes componentes de 7.
Sao validas as seguintes propriedades do integral de fungoes vectoriais de variavel real:

definimos

Teorema 1.12 Sejam u,v : [a,b] C R — R™ fungdes continuas, & € R e ¢ € R™ um vector constante.
Entao tem-se:

i) /abu(t)+v(t)dt:/abu(t)dtJr/abv(t)dt;
it) /abau(t) dt = a/abu(t) dt;

b b
iii) / c-ut)dt=c- (/ u(t) dt) , onde - representa o produto interno em R™;
a a

b b
iv) |/ u(t) dt g/a u(t)] d.

2 Curvas no plano e no espaco, parametrizacao de curvas, vector
tangente

No que se segue vamos considerar fungoes vectoriais de varidvel real

r:J]CR — R"
t — r(t)

definidas e continuas num intervalo I de R. A uma funcao deste tipo chamamos caminho ou linha
parametrizada (ou apenas linha).



Este tipo de fungoes surge em indmeras aplicagoes, nomeadamente para descrevermos curvas no
plano e no espaco e o movimento de particulas no plano e no espago. Em muitas aplicagoes a variavel
independente t representa tempo.

Suponhamos que n = 3 e consideremos uma fungao continua

rifa,b] — R?
t = (f(t),9(t), h(1).

Assim, a cada valor de ¢ no intervalo [a, b] fazemos corresponder um vector 7(t) € R® o qual, fixado um
sistema de coordenadas, pode ser considerado como o vector posi¢ao de um certo ponto P.
O conjunto dos pontos P obtidos desta forma denomina-se arco ou curva do espago. As equagoes

z = f(t)
y=yg(t)
z = h(t)

chamam-se equagées paramétricas da curva e a varidvel ¢ chama-se pardmetro. Os pontos A = r(a) e
B = r(b) sdo, respectivamente, os pontos inicial e final da curva; se r(a) = r(b) a curva diz-se fechada.
Analogamente, se n = 2, obtemos um arco ou curva do plano.

Dado um caminho r : I C R — R™, onde I é um intervalo com mais do que um ponto, ja vimos que
a derivada de r no ponto t € I é dada por
r(t+h) —r(t)
() = lim —————=
r'(t) = lim A ;
se este limite existir.
Se r(t) for o vector posicao do ponto P e se r'(t) # 0, resulta que o vector r'(t) é tangente & curva
descrita por r(t) no ponto P e aponta na direcgéo e sentido em que ¢ aumenta.

Definigdo 2.1 Se 7/(tg) # 0, a recta tangente & curva definida pela fungdo r(t) num ponto P = r(tg) €
a recta que passa pelo ponto P e tem a direc¢do do vector r'(tg).

r'(t e
Neste caso, o vector T(tg) = A é um vector unitdrio tangente & curva no ponto P.

[l (to)

Se a fungdo r(t) descrever a posi¢ao no instante ¢ de uma particula em movimento, 7’(t) representa a
taxa de variagdo da posicao da particula relativamente ao tempo. Por outras palavras, r/(t) é a velocidade
da particula que é tangente a trajectoria descrita por esta.

3 Comprimento de uma curva

Consideremos uma linha parametrizada,
r:] — R3
t = (f(t),9(t),h(1))

definida num intervalo I contendo [a,b] e seja C' a curva definida por r(¢). Vamos supor que as fungoes
f, g e h sdo diferencidveis em I, com derivadas continuas, diz-se entdao que a curva C é de classe C*.

Definicao 3.1 Uma curva C, dada pela fungdo vectorial v(t) com a < t <b, diz-se uma curva simples
se nao se intersectar, excepto possivelmente nos seus extremos.

Supondo que a curva C' é uma curva simples e de classe C!, vejamos como calcular o comprimento
da por¢ao da curva para a < t < b. Para esse efeito consideramos uma partigao do intervalo [a, b], isto é,
consideramos pontos t; tais que

a=tg<ti <ty <...<t,_1<t,=0



Para cada ponto t; da particdo calculamos r(¢;) e determinamos P;, o ponto correspondente na curva.
Seguidamente consideramos os segmentos de recta que unem os pontos P;_1 a P;, i = 1,...,n. Adicio-
nando os comprimentos de todos estes segmentos obtemos o comprimento de uma linha poligonal dado
por

Z [l () — r(ti-1)]l-

O comprimento da curva C' define-se como sendo o supremo dos comprimentos de todas as linhas polig-
onais assim obtidas. Analogamente para curvas do plano.

Teorema 3.2 Nas condigoes anteriores, o comprimento da curva C descrita por v(t) com a <t < b é
dado por

b
L) = [ i

Sendo C uma curva simples e de classe C! dada pela fungao r(t) para a < t < b define-se a funcio
comprimento de arco por

t
0= [ W@ldu, a<e<s

Esta fungdo dé-nos o comprimento do arco, ou curva, C' entre os pontos 7(a) e 7(t). De acordo com o
teorema fundamental do cédlculo tem-se

ds,_,
= =5 =1l

Se a curva C' representar a trajectéria de uma particula em movimento cujo vector posicao é dado por
r(t), entdo v(t) = r'(t) é a velocidade da particula e |[v(t)|] = ||r'(¢)|| é a sua velocidade escalar. A
equagao anterior diz-nos que a velocidade escalar da particula é igual a taxa de variagao da distancia
percorrida ao longo da curva C relativamente ao tempo.



