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The Energy-momentum tensor 

The energy-momentum tensor, also called stress-energy tensor, represents the total 
energy present in the Universe in various forms. 
It contains the energy-momentum contributions from all sources of gravity. 
 
In the homogeneous universe, each source of gravity (e.g. matter, radiation, dark 
energy, curvature) is treated as a fluid, and together they form the cosmological 
fluid. The general form of the 4D energy-momentum tensor of the cosmological fluid 
is: 
 
 
 
This expression shows what are the physical quantities that contribute to the energy-
momentum. They are: 
 
-  ρ - energy density (T00) 

-  qa - momentum density and flux  (T0i) 
 
-  Π - anisotropic stress (Tij)  

-  p - pressure (Tii) 



and ua is the 4-vector velocity of the fluid reference frame à ua = (-1,0) for comoving 

Note that all these quantities have dimensions of energy/volume. 
 
The spatial part is the stress-tensor, containing isotropic and anisotropic pressure: 

isotropic force : 
produces expansion/contraction 

anisotropic force : 
produces shear (ellipticity) 



The stress tensor can be decomposed in three contributions:  

(simplified for  
2D spatial dimensions) 

expansion shear rotation 

However, in the homogeneous Universe, the metric is RW, and Tab is forced to have 
the same symmetries à off-diagonal terms are necessarily zero, and the energy-
momentum tensor is that of a perfect fluid:   



Density and pressure are thus the only relevant quantities. How can they 
be computed (for each constituent of the cosmological fluid)? 

 
The elements of the energy-momentum tensor may be obtained from the least 
action principle, by varying the action with respect to the metric. 
 
The action is 
 
 
 
It is defined in the 4D volume, and the integration measure must include the  
determinant g of the metric. 
 
In cartesian coordinates, t,x,y,z :   



In GR, the Lagrangian density of the homogeneous and empty Universe is 
given by the Ricci scalar: 

We need to compute, 



Inserting above, we write, 

This is Tab (from Einstein eq.) the derivation of 
the Ricci tensor 
is zero  

and so: 

Tab  = 0 

This is the result for the energy-momentum tensor of the empty Universe 
(which is zero, as expected) 



Now, if we consider a matter-energy component, described by a Lagrangian L, 
the action becomes 
 
 
 
and the variational principle leads to: 

This shows that if we consider a (energy/particle) field in the Universe (for example a 
dark matter particle or a dark energy field) described by a potential V and a field ϕ,  
we can compute its energy-momentum tensor elements as function of the field’s V 
and ϕ à the theoretical approach 
 
If a Lagrangian cannot be computed for the new field, we can alternatively give 
directly a prescription for the density and pressure à the phenomenological 
approach 
 



The Einstein equations 

Having the Einstein and the energy-momentum tensors, we can write the Einstein 
equations 

Note that for example for K > 0 

and so  (f’2-1)/f2 = -K   and  f’’/f = -K 



Inserting this in G00 we get  

and the 00 element of the Einstein equations is: 

Friedmann equation 

Adding the elements 00 and ii we get a second equation: 

Second Friedmann equation 

The second Friedmann equation turns out to be the Raychaudhuri equation for the 
case of a perfect fluid in the RW space-time.  



To see this, consider the general decomposition of a (3D timelike) vector field:  

symmetric and traceless: 
  shear σ 

anti-symmetic:  
     rotation ω 

      trace (diagonal): 
expansion θ (or convergence) 

hij is the metric projected in the  
3D space defined by the vector field  

An important application is the case of the vector field of a set of comoving galaxies 
in the cosmic flow. 
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We are interested in the time evolution of this vector field. 
 
In particular, working from the expression for the decomposition, the evolution of  
the expansion/convergence θ = div(u) is found to be given by: 

This equation for the evolution of  
the trace of the separation vector of 
a congruence of timelike geodesics 
is the Raychadhuri equation 

From the Einstein equation we get: 

and using comoving coordinates: 

note the factor 3, that comes from the divergence in 3D, like in the ij terms 
of the Einstein equations 



and so 

Inserting in the Raychaudhuri equation we get: 

We see that density and pressure are sources of attractive gravity à contributing 
to attraction, or decelerated expansion 
 
Shear is also a source of attractive gravity  
 
Rotation is a source of repulsive gravity à contributing to repulsion, or 
accelerated expansion (like a centrifugal force) 
 
So a rotating cosmological fluid could be an alternative to dark energy. But from where 
would it get its rotation à also from some mysterious extra energy? from  internal coherent 
rotation of all dark matter particles at a fundamental level? 

However, for a perfect fluid in a homogeneous and spherical symmetric universe,  
shear and rotation are zero, and we see that the Raychadhuri equation is indeed  
identical to the second Friedmann equation. 



The two Friedmann equations are constraint equations, connecting the field (i.e. 
the metric) quantities, a and K, to the source quantities ρ and p. 
 
(Note that a, ρ and p evolve in time, while K is constant) 
 
The evolution of the sources are determined by energy conservation equations, 
which in principle are independent from the Einstein equations. 
 
Energy conservation equations are equivalent to conservation of the energy-
momentum tensor: 
 

  Tab
;b = 0 

 
From here, in principle we can get 4 energy conservation equations.  
For the RW metric and perfect fluid, there is only one:  

Continuity equation 



In the RW case, the continuity equation is already contained in the Einstein 
equations and can be found by combining the time-derivative of Friedmann 
equation with the second Friedmann equation: 





The cosmological fluid 

We saw that the cosmological fluid is described by density and pressure. 
In addition, there are in general several different species in the cosmological fluid, 
and so we need to consider the densities and pressures of all of the species. 
 
In general, for each species, the properties are not independent. For a perfect fluid, 
density and pressure are related through an equation-of-state w(t)  (like in 
thermodynamics, when p,V,T, etc may be related under certain conditions). 

w (t) = p (t) / [ρ(t) c2 ] 

Note: in the inhomogeneous universe, perturbations in density may also be related to 
perturbations in pressure. That relation determines the speed of sound in the fluid. 

Note: there may also be constraints, relating the density and pressure of different species. 

We have one equation of energy conservation, involving density and pressure. 
For some species, the pressure is known, or may be determined independently. 
For those cases, the continuity equation may then be solved to find ρ(t). 



Matter 

Matter (of any type: baryonic or dark matter) is defined by   
 

     p=0   (also called “dust”) 

In this case, the continuity equation is easily solved: 

This means the density dilutes linearly with the expansion of the volume  a3.  

Note that the factor 3 comes from having 3 spatial dimensions. In the Einstein equations this 
appears from terms like 
 
 
In the Newtonian derivation, it appeared more directly from the volume in the first law of 
thermodynamics:   d/dt (a3) = 3a2å 

d ln ρ = -3 d ln a  



Note that we found the functional form of ρ(t) but not its amplitude. 
In reality the solution is 
 

  ln ρ + C1= -3 ln a + C2, where C1 and C2 are integration constants. 
 
We can choose the constants in any form we wish. A usual way is to choose the 
“initial” conditions  at t0 = today. The solution is then:  

With a0 = 1, we are left with 1 free parameter: the matter density today ρm,0   



Radiation 

Radiation is the flux of relativistic particles present in the Universe, mostly 
photons from the CMB, but also neutrinos from the cosmic neutrino 
background.  They have radiation pressure that will be a source of gravity, in 
addition to their energy density. 
 
Let us compute this pressure. 



So, is w = 1 ? 





The result is then   w = 1/3 
 
We know the pressure of the radiation species, now we can find the density evolution: 

The radiation energy density dilutes faster than the matter density, and this is 
because it is affected by both expansion and redshift. 
 
Again, at a0 = 1 we have found another cosmological parameter: the radiation 
density today ρr,0.  



Note that from the Stefan-Boltzmann law: ρr  ~ T4
   

 
(this is the temperature of the radiation fluid, which is the temperature of the 
Universe) 
 
 given the density evolution à  this implies that T ~ 1/a 
 
 
So  T is also a unique indicator of the instants in the Universe evolution, just like the 
redshift : they provide model-independent indicators of the events of the Universe. 



“Attractive” vs “Repulsive” 

From the comparison of the two cases (matter and radiation), we see that for a 
species with constant (non-evolving) equation-of-state, the solution for the 
density evolution is: 

On the other hand, from the second Friedmann equation we see that   

So, the larger is w of a species, the faster is the dilution of its energy density, and 
the stronger is its contribution to gravity à a faster deceleration of the Universe (or a 
contraction, if the Universe had not started from an expanding beginning) 

Conversely, the smaller is w, the slower is the dilution of its energy density (could 
even remain constant, or increase), and the weaker is its contribution to gravity (can 
even be repulsive if w < -1/3) à a slower deceleration of the Universe, or even an 
acceleration. 



“Model” vs “Cosmology” 

The choice of which species to include in the cosmological fluid (e.g., only matter, 
matter + radiation + dark energy) + their Tab properties (e.g., only density, anisotropic 
stress, type of w(t)) +  the functional form of fundamental quantities of the Universe 
(e.g. ρ(t) ) derived from the  equations of the theory à defines the model. 

However, the models have free parameters and are only completely defined once the 
values of the parameters are known. The parameters values are constrained with 
observations à the set of parameter values for a given model defines the so-called 
cosmology  (also sometimes confusingly called the model). 

Examples: Concordance model (ΛCDM with ρm,0 = 30%, ρΛCDM,0 = 70%, h = 0.70 )  
       Planck cosmology  (ΛCDM with ρm,0 = 32%, ρΛCDM,0 = 68%, h = 0.67 )  

Examples: CDM, ΛCDM, Milne, Einstein-de Sitter, etc. 
 



Another example: with different density parameter values, the “matter + radiation” 
model may have completely different properties: 

ρr,0 << ρm,0   

Epoch of radiation and epoch of matter, 
CMB is an important feature, baryonic 
matter clusters slowly, DM needed 

ρr,0 <<<< ρm,0   

No epoch of radiation, matter dominates 
at all times, CMB is not an important 
feature, baryonic matter may cluster fast, 
DM may not be needed 

The main purpose of the cosmological surveys is to constrain the 
parameters of the cosmological functions from astrophysical observations. 
 
Only with precise and accurate estimates of the cosmological parameters can the 
cosmological model be fully established.  



Curvature 

Inserting the density evolution of matter and radiation in Friedmann equarion, 
this becomes: 

We see that the curvature term has the same structure of the others. So, even 
though the curvature is a parameter of the metric, it also has a gravitational effect 
like an effective density. By analogy, a curvature density may be defined, and its 
evolution is then,  
 

 ρK (a) =  ρK,0 a-2,  
 
introducing the parameter curvature density today ρK,0 = -3K/8ΠG 
 
Note that to keep the structure of the equation, the curvature density is defined as the 
negative of the curvature, and so the negative curvature is the one that contributes to a 
positive density. 
 
Now we can reason the other way around, and find the curvature pressure (or 
equation-of-state) associated to a density a-2 evolution. It is -3 (1+w) = -2, i.e.,  
 

 w = - 1/3, in the limit between attractive and repulsive regimes 



Cosmological constant 

The Einstein equation has the freedom to contain an extra degree of freedom that we 
did not yet consider, known as the cosmological constant  Λ: 
 

 Gab  + Λ gab = 8ΠG Tab    
 
This way, the Friedmann equation has a new term:  

This allows us to define an effective energy density with evolution:  ρΛ (a) =  ρΛ,0 a0, 
 that keeps a constant amplitude during all the evolution of the Universe,  
 given by the cosmological constant density parameter   Λ /8ΠG     
 
The equation-of-state associated to a constant is -3 (1+w) = 0, i.e.,  
 

 w = - 1, well into the repulsive regime 
 
This represents an extreme case of  negative pressure (an outward tension), where 
p = - ρ. It is an unknown fluid, with exotic properties.   



Dark energy: phenomenological approach 

Any cosmological species with w < -1/3, capable of producing acceleration may be 
considered dark energy, and this includes the cosmological constant. 
 
Since the first observations that the Universe is accelerating, there has been great 
activity in building dark energy models. 
 
 
An interesting approach is the phenomenological approach, where the functional 
form of the evolution of the density, or the pressure or the equation-of-state is 
imposed and parameterized.  
 
This method produces models with more free parameters than the standard 
ΛCDM, which need then to be fitted by observations.  
 
There is no theory of the dark energy species to provide the functional forms.  
 

  



The density evolution for these models is computed as usual from the continuity 
equation, 

This species introduces three new cosmological parameters, the equation-of-state 
today w0,  the derivative of the equation-of-state today wa, 
and the dark energy density today ρDE,0  
 
If wa is set to zero and only w0 is used (with w0 ≠ -1,  
otherwise it would just be Λ) then this is called  
the wCDM model. 

(a) 

a 

CPL 
 
A popular method is to parameterize the equation-of-state based on a Taylor 
expansion around a pivotal redshift.  This is known as the Chevalier-Polarski-
Linder dark energy: 



Since current data favors the ΛCDM model, most dark energy parameterizations 
are built to have a ΛCDM limit, and the data best-fit to the DE parameters are 
usually values close to this limit. 
 
In the case of CPL, this means w0 slightly larger than -1 and wa close to zero.  
 
In this “cosmology”, the CPL dark energy density stays constant in the early 
universe (as a cosmological constant), and as the scale factor approaches 1, the 
exponential term starts to dominate and the DE density increases, being able to 
produce a faster acceleration than ΛCDM.  
 
Phenomenological models can thus be tuned to include the desired behaviors (in 
this case, a faster acceleration). 

For CPL, with w(a)=w0 + wa (1-a), the density evolution is, 



UDM 
 
Another example is the Unified Dark matter - dark energy model 
 
This dark energy species behaves both as matter and as dark energy, in different 
periods of the Universe.  
 

To produce this behavior, the parameterization is made on the density and not 
on the equation of state. This way, we can directly choose the desired feature. 
One example is: 

Before a transition scale factor a = at the species behaves as dark matter, with 
the density decreasing with a3.   
 
After the transition a constant term ρΛ arises that will eventually dominate and in 
the late universe the density will tend to that constant value.  



Note: one advantage of giving a prescription for the density instead of the equation-of-
state, is that the continuity equation is a differential equation for the density, but does not 
involve derivatives of p or w. This way, having ρ, we can differentiate it and directly get p 
(and w) without introducing an additional parameter for p (or w).  
 
The other way around, having p (or w), we need to integrate to get ρ, which introduces an 
additional parameter. 

This species introduces two new cosmological parameters, the dark energy 
density today ρUDM,0 , the dark energy density at transition ρUDM,t (or 
alternatively the transition scale factor).  
 
To ensure a fast but smooth transition between the two regimes, a Heaviside-type 
function can be used, which introduces a third parameter β.  
 
The behavior of the equation-of-state,  
computed from the continuity equation is the 
 expected one, starting at w=0 (matter) and 
 reaching a=1 with w < -1/3 (dark energy) 



Dark energy: theoretical approach 

Most dark energy models are not built phenomenologically, but are built as a 
physical model, defining its Lagrangian and deriving its energy-momentum 
tensor. 
 

 Quintessence 
 
Quintessence was one of the first physical DE models proposed, and it is based 
on a scalar field ϕ. 

Note:  



As we saw, the energy-momentum tensor is computed from 
 
 
 
 
The goal is to obtain ρ and p as function of ϕ and V. This approach does not 
introduce additional free parameters for the density and pressure, but density and 
pressure parameters will be related to the model’s underlying parameters: e.g., 
amplitude of the scalar field, amplitude of the potential, slope of the potential, 
etc.  So, in this case, the observations will constrain the parameters of the physical 
model. 
 
Now, computing Tab yields, 
 
 



Note: 

Like for an inflationary field, the case of slow-rolling , i.e.,  
 

 leads to ρ  ~V and p ~ - V à w ~ -1 à a dark energy behavior. 



We have thus found ρ and p as function of ϕ and V and checked that a scalar field 
may have dark energy properties. Inserting the ρ and p scalar field expressions in 
the continuity equation, we get an equation for the time evolution of the scalar field: 

(also known as the Klein-Gordon equation, which is the equation of motion of a quantum field). 
 
Note that we need to choose the potential V (ϕ) in order to fully describe the dark 
energy model. This choice defines a particular quintessence model and may introduce 
additional free (cosmological) parameters.  

Alternatively the energy conservation (Klein-Gordon) may be found  
from the Euler-Lagrange equation  
(instead of using the continuity equation): 

where 

The continuity equation for the evolution of the scalar field ϕ (a) is then   



Summary 

w 

1 

1/3 

0 

-1/3 

-1 

radiation 

matter 

curvature 

exotic fluid: tachyonic 

exotic fluid: dark energy 

relativistic matter 

gravitational attraction 



Dimensionless density parameters 

It is usual to normalize the density parameters ρ0 by the critical density. 
 
The critical density ρc is the ρ0 density today of a flat universe with a 
cosmological fluid containing only matter. So, from Friedmann equation: 

à  ρc = 3H0
2 / 8ΠG  

Since in this case there is only one density parameter (one species), its value is 
completely determined by the Hubble constant, and there is no need to determine 
it independently from observations à the Friedmann equation provides a 
constraint à if there are N species there are only N-1 free density parameters. 
 
 It follows that 
 

 ρc = 1.88 x 10-26 h2 Kg m-3    (where H0 was left undetermined) 



Note this is a very small value.  
 
For example, if the volume between the Earth and the Moon, 
V = 4/3 Π (384400 km)3, would be filled with matter with this mean density, this would 
correspond to a mass of 2.2 Kg (assuming h=0.7).  
 
 
 
Now, normalizing the density parameters by the critical density, we define the 
dimensionless Ω density parameters:  
 

 Ωm =  ρm,0 / ρc ,  Ωr =  ρr,0 / ρc ,  ΩK =  ρK,0 / ρc  = - K / H0
2 , ΩΛ =  ρΛ / ρc  = Λ / 3H0

2 
 
Note that with this definition, the Ω  parameters are only defined today. There is no 
analogous definition of a Ωm (a) function. 
 
Note that because of the dependence of the critical density on the Hubble 
parameter, the values of Ω implicitly depend on the value of h. It is also usual to 
define h-independent parameters, called the physical densities: 
 

  ωm = Ωm h2,    ωr = Ωr h2, etc 



We can now write the Friedmann equation for the case of a cosmological fluid with 
matter, radiation, curvature and cosmological constant: 

Inserting the critical density, we find: 

Usually this part, factoring out H0 is labeled E(z) 

Note that at z=0, the Friedmann equation reduces explicitly to the density constraint 
condition:   


