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First Principles 
 
 
The density field of the inhomogeneous Universe is not constant everywhere, but 
it varies with spatial location.  
 
 
(At first) the density values at different locations do not differ much from the mean 
density  
 

 à they are perturbations. 
 
 
It is usual to define the density contrast δ(x): 
 
 the deviation with respect to the mean density (averaged over space) 



 
 
 
During the evolution of the Universe (evolution of the mean density), 
 the density contrast at each point also evolves, either increasing or decreasing, 
driven by gravity.  
 
An increase of δ means clustering of matter à in practice a local region of the 
Universe expands slower than the global expansion. 
 
 
 
The process of evolution of the density contrast is called structure formation, 
turning density fluctuations in cosmological and astrophysical structures. 
 

 δ can become very large (not a density perturbation anymore) but the  
associated gravitational potential always remains a perturbation to the metric. 



overdensities  
and 

undersdensities 
 

on two different scales 



How do initial fluctuations around the mean arise? 
 

  from quantum fluctuations of density. 
 
 
In the quantum universe, there is a large number of random steps, i.e., in 
the very early Universe the value of density at a given location is changing 
all the time as the result of a stochastic (random) process. It is not 
possible to know the value of density at a given location at a given time, in 
a deterministic way.  
 
We just know that the value is a realization of a probability distribution. 
Due to the large number of random processes involved, the central limit 
theorem tell us that the resulting probability distribution is a Gaussian 
 

 à the quantum density field  is a Gaussian random field. 
 



Later, the inflationary mechanism makes the transition from quantum to 
macroscopic world  
 

 à it  produces a density field of macroscopic perturbations - called the 
primordial perturbations - this field is the initial condition for the subsequent 
time evolution of δ(x), but again its actual value is not known, it is a particular 
realization among all possible realizations. 
 
 
Note that the depending on the inflationary model, the Gaussianity of the density 
random fields may or may not be preserved during inflation à search for possible 
primordial non-Gaussianity is a test of inflation.   
 
(This is the goal of the measurements of the fNL parameter in CMB observations)   
 
	
  



Now, the value of density at a given location is then (most likely) a value taken from 
a Gaussian distribution.  
 
 
So the actual values of δ(x) at each point are not known.  
 
We just know that the density contrast at each point is a random variable, and its 
value is one among the various possible realizations of a Gaussian distribution,  
 
 
 
 
 
 
 
The density contrast random field is then described by the parameters of its 
Gaussian distribution.  
As we know, a Gaussian distribution has only two parameters (its moments): mean 
and variance. 
 
Note that there is one Gaussian distribution for each spatial location (hence the 
subscript in δ above). In principle each location may have its own mean and 
variance. 



Consider a discretization of the density contrast field.  
 
We need N distributions P(δi)   (one for each position x; of course the problem is 
continuous Nàinfinity). 
 
However, the N variables δ1 ... δN are not independent  
 

 à The value at a point depends on the values of neighboring points 
(due to the gravitational interactions between them). 
 
 
So we cannot describe the system by considering N independent Gausian 
distributions, but we need an N-dimensional Gaussian:  
 

(In our case the vector of k δ random fields on k locations is the random variable x with 
dimension k, and the k-dimension Gaussian distribution has a k-dim vector of means µ and a 
k x k covariance matrix Σ ) 



For example, if there were only 2 random variables (i.e., binning the density field 
such that it would have only two locations), we would need a 2-dimensional 
Gaussian: 

where ρ is the correlation coefficient ρ = σxy / (σx σy) 
 

Since the two random variables are not independent, the correlation coefficient is 
different from zero, and the covariance matrix is not diagonal. 
 
The joint probability of having a value δ1 at the location 1(called x in the notation 
above) and having at the same time a value δ2 at the location 2 (called y in the 
notation above) is  
 
 P(δ1 ,δ2) = P(δ1) P(δ2 |δ1)    (where P(δ2 |δ1) is the conditional probability) 
 

with 



It seems the complexity of the problem increases with the stochasticity! 
 
If the problem was deterministic:  

  system described by the field δ(x) à N values 
 
 
But the problem is stochastic:  

 system not described by the actual values of δ(x) but by the moments of 
the N-dim distribution (of which the values of δ are realizations). 
 
The number of moments of an N-dimensional Gaussian is  

 à N(N+1) (N values of mean, NxN values in the covariance matrix) 
 
 
In case the correlations are symmetric, there are only N(N-1)/2 off-diagonal 
correlation coefficients à  a total of N(N+1)/2 elements in the covariance matrix  

 à  a total of  N(N+3)/2 moments. 
 
 
So the N Gaussian random variables are described by N(N+3)/2 variables (the 
moments of the distribution). 
 
 



Fortunately, the complexity is reduced by introducing the 
 
  Generalized cosmological principle:  
 
 
“The universe is statistically homogenous and isotropic” 
 
 
This means that there are perturbations to the homogeneity but 
they are described by a probability distribution with a homogeneous and 
isotropic set of moments.  
 
 

 à The moments of the distribution do not depend on location or 
orientation. 
 
(instead of the values of the density field themselves) 



Statistical Homogeneity  
 
implies that: 
 
i) The means do not depend on location à all N means are identical (one for 
each random variable δi).  
 
 

 Can we measure the means of the distributions? 
 
 
If we had a sample from the distribution, we could just measure its average in 
the usual way (summing the values and dividing by their number) - this is called 
the ensemble average. This statistic (the ensemble average) is known to give an 
unbiased estimate of the mean of a distribution (if the sample is large enough). 
 
 
Problem: However we only have one realization - which is the Universe itself - 
instead of a full sample (unless there are parallel universes), i.e., we can only 
measure one value of δ in a given location, and we cannot repeat the 
experiment to get more values. 
 
  



Solution: We assume that the whole Universe provides a representative set of 
all possibilities, i.e., the Universe includes in itself all possible realizations of the 
distribution. 
 
In other words, distant parts of the field in separate parts of the Universe are 
independent of each other.  The values of  δ there are not correlated with the 
values of δ here. Those values are independent realizations of the same 
distribution that provides the values here (the distributions are the same due to 
statistical homogeneity).  
 
In this way we can have access to different realizations of the same distribution, 
and get a sample  
 

 à we can then make spatial averages instead of ensemble averages in 
order to find the moments. This is called the ergodic hypothesis. 
 
 
Using the ergodic hypothesis, we can easily compute the mean of the distribution 
of δ.  

 From its definition, the values of δ  are:  
 
 



the mean value of the distribution can then be computed by the ensemble (now 
equivalent to spatial) average of the values of δ across the spatial field.  

  
  The result follows immediately: 
 

   <δ>=0             (Note: <> denotes ensemble or spatial averages) 
  

This means that the value of δ on any point of the Universe is a random value 
around the mean δ = 0. 
 
This also implies that the amplitude of cosmological perturbations will not 
be given by the mean value of their distribution but by the variance of the 
distribution (a larger variance allows for the possibility of producing 
realizations with larger values of δ). 
 
 
The N-dimensional distribution is then essentially described by the NxN covariance 
matrix. Its elements are: 
 
Variance: i.e. the N terms of the diagonal  (also called auto-correlation) 
 
Covariances: i.e., the N(N-1) off-diagonal terms  (also called the cross-correlations) 



Statistical homogeneity further implies that: 
 
ii) The variances do not depend on location à all N terms of the diagonal are 
identical.  
 

 Can we measure the variances of the distributions? 
 
Yes, by measuring a sample of values of δ at different locations and computing the 
variance with the usual statistic: 
 
 
 
 
 
 
iii) The correlation coefficients do not depend on location à this does not mean that 
all N(N-1) terms of the off-diagonal are identical. It means that the correlation 
coefficient between a pair of points separated by a given vector is the same 
for all pairs separated by identical vectors. 
 



Statistical Isotropy  
 
implies that: 
 
iv) The correlation coefficients do not depend on orientation à the correlation 
coefficient between a pair of points separated by a given vector modulus 
(i.e. a given distance, irrespective of the orientation) is the same for all pairs 
separated by the same distance. 
 
Eg: σ14 = σ37  (covariance between locations 1 and 4 and between locations 3 and 7) 
 
 
 

  



Can we measure the variances of the distributions? 
 
Yes, by measuring a sample of values of δ at different locations and computing 
the covariance using only pairs of points at the same separations: 
 
 
 
	
  

In summary, the density contrast random field (discretized in N positions of a 
regular grid) is described by N values: 
 
•  1 variance (auto-correlation) 
 
•  N-1 covariances (since the condition iv reduces the original N(N-1) correlation 

coefficients to N-1) 
 

(the Dirac delta indicates the sum only includes 
points at a separation d from each other) 



The N-1 covariances form a function known as the 2-point correlation function :  
  
     (r=|x -x’|) 

 
                (δ* accounts fot the possibility of having complex fields) 

These N quantities contain the full cosmological information of a Gaussian 
δ(x) map. 
 
The randomness aspect and the generalized cosmological principle, make that the 
most natural spatial quantities to use in the treatment of the inhomogeneous 
Universe are not locations but separations between locations. 

Two-point functions 

Correlation Function 



The correlation function of the density contrast field contains all the statistical 
information on the Gaussian density contrast field.  
 
In particular it tells us the conditional probability of having a value δ2 at a location 
“2” separated by “r” from a location “1” where there is a value δ1  à it describes the 
clustering properties of the field     

        P(δ1 ,δ2) = P(δ1) P(δ2 |δ1)  

large	
  scales	
  

The dark matter correlation function predicted by the ΛCDM model is positive and 
decreases with separation. Its amplitude naturally increases with structure 
formation (as the clustering of matter increases) à it decreases with redshift. 
 



dV1	
  

dV2	
  

Case	
  of	
  uncorrelated	
  distribu8on	
  

 
(i) Case of an uncorrelated distribution 
 
 The probability of having a galaxy in the 
shell volume dV1 is given by the number 
of galaxies within that volume divided by 
the total number of galaxies N: 
dP1 = n dV1 / N = dV1 / V 
 
The probability of having a galaxy in the shell 
volume dV2 is independent of dP1 : 
 dP2u = n dV2 / N = dV2 / V 

The δ field can be measured at N locations, for example, by measuring the 
positions x,y,z of N galaxies à assuming the galaxies trace the locations of 
the overdensities 
 
(In reality there is a bias between a galaxy location and a dark matter 
overdensity) 
 
Let us consider N galaxies on a volume V, with a number density of n=N/V 
	
  



dV1	
  

dV2	
  

Case	
  of	
  correlated	
  distribu8on	
  

(ii) Case of a correlated distribution 
 
The probability of having a galaxy in the 
shell volume dV2 depends on dP1 .  
 
In other words, the value of dP2 depends on 
the correlation between the locations 1 and 2,  
 
i.e., it depends on the correlation at the 
separation r12 : 
 
 dP2c = n dV2 ( 1+ξ(r12) ) / N = dV2 (1+ξ(r12) ) / V 
	
  

So, the number of galaxies found is no longer just a function of the size of dV2 
 
If there is a: 
  
     correlation,  ξ > 0 à dP2c > dP2u 
     (anti-)correlation, ξ < 0 à dP2c < dP2u 
 



The number of galaxies as function of r, on the full volume, is given by N times the 
integral of the probability dP(r).  
 
In the uncorrelated case, the conditional probability is 1 and N(r) is just 
 
 
      N(r) =     n dV   = n      dV/dr dr  ~ r3   
 
 
but in the correlated case,  N(r) =  n  (    ( 1+ ξ(r) ) dV/dr dr   
 
 
(Note that n dV(r) is a “distance function”, the number of objects per distance 
bin dN (r) - the use of shell volumes dV is very practical to obtain a function of r ) 
 
 
 
So in general the slope will be different from r3, depending on the correlation function 
slope ξ(r)  à the number is higher on a highly correlated area (usually on small 
separations). 
 



The correlation can then be equivalently defined as the excess N(r) between 
the clustered and the random cases: 

If we compare the probabilities dP(r) we just found for the correlated and the 
uncorrelated cases, 
 
dP2u = n dV2 / N  
 
dP2c = n dV2 ( 1+ξ(r) ) / N  
 
we see that 1+ξ(r) is given by the ratio of the probabilities, i.e., by the ratio of 
the two “distance functions” (the number of galaxies as function of r): 
 

    1+ξ(r) = Nc (r) / Nu (r) 
 



The correlation coefficient of 2 points separated by r tells us about structure - the 
central property of the inhomogeneous universe that we want to describe. It 
quantifies the clustering of the density field (the “degree of collapse”) - the 
formation of structure.  
 
For example, if there is correlation on all separations up to a separation r and then 
the correlation drops, it shows that (on average) there are overdensity regions 
from x to (x+r), i.e. halos of size r  
 
 
However the relation between correlation as function of separation, and size of 
the overdensity is not  a one-to-one relation à from this example, we see that we 
need to know the correlation at various separations to find out if there is an 
overdensity of a given size. 
 
 
 
 

Correlation Function in Fourier space 

We would like to have a function that directly shows the clustering 
amplitude on a given size. Is this possible? 



Let us consider the Fourier transform of the density contrast field 

Convention: 
 
- we are writing the plane waves as ikx and not i2πkx à this makes a  
factor (2π/k)3 to appear 
 
-  the integrals are normalised by the volume V, which ensures that  δk is 
dimensionless if δ(x) is also dimensionless 

This defines a set of Fourier modes k (3d vectors), with associated sizes 2π/k 
(or wave numbers) 



Let us compute the 2-point correlation function in k-space :  

The ergodic hypothesis allows us to put the brackets inside the integrals 
 
Inserting the definition of the correlation function, we can write: 

where y is the separation vector between x and x’,  
 
for fixed x the integration over x’ is the same as an integration over y.  



The first integral is the (dimensionless) Dirac delta. 
 
Recall the Dirac delta is the (standard) Fourier transform of  f(x)=1: 
 
 
 
 
 

So we are left with an integral in x with no function with dependence on x (except 
the plane waves),  
 
and an integral in y that that is a (normalised) Fourier transform of the correlation 
function: 
 
 



The second integral is the (normalised) Fourier transform of the correlation 
function, which is called the dimensionless power spectrum:   
 

  Pδ (|k|) / V 
 
Note that due to isotropy it only depends on the modulus of the k-mode vector. 
 

The power spectrum of a random field is defined 
as the (standard) Fourier transform of the 
correlation function of the same field, 

(and reciprocally, the correlation function is the 
Fourier transform of the power spectrum ) 
 
 

(the ΛCDM power spectrum of the 
density contrast field looks like this) 

large	
  scales	
  



So the result is 

where δD here is the dimensionless Dirac delta  

=Δ2 (k) 

where we used the fact that the length associated to a Fourier mode k is 2π/k, and so the 
corresponding volume is V = (2π/k)3 
 
 
Notice that the power spectrum P(k) has dimensions of volume  [ (Mpc/h)3 ]  
 

 and   Δ2 (k) = k3 P(k) is the dimensionless power spectrum,  
 
also known as the power spectrum per interval of ln(k). 
 
 



 
The important result we obtained here is that 
 

  the correlation function of the density contrast field in Fourier space 
 is the (standard) Fourier transform of the correlation function multiplied by  
 the Fourier volume k3 and by a dimensionless Dirac delta function, i.e.,  

 
it is the dimensionless power spectrum multiplied by a Dirac delta function  
 
The presence of the Dirac delta makes the coefficients δk to be independent, 
and 
       the elements of the correlation function in Fourier space are independent,  
as are the elements of the power spectrum 
 



It is also useful to compute the auto-correlation function of the density 
contrast field, i.e. the variance: 

where	
  x=x’	
  

Inserting the result for                  



one of the integrals is just the Fourier transform of the Dirac delta, which is 1 
(and also cancels with one of the volumes); 
 
k3 cancels with the other volume 
 
and we are left with: 

So the variance of the delta field (in real space) is a 3d integral of the power 
spectrum.  Since the power spectrum is isotropic we can integrate the angular 
part of  
 
which is 4π   
 
resulting in:                        



Writing k2 as k3/k shows explicitly that: 
 

  to integrate k2 P(k) on the linear domain dk 
 is equivalent to integrate the dimensionless power spectrum in the 
 logarithmic domain dk/k 

 
This is the reason why the dimensionless power spectrum is known as the power 
spectrum per interval of ln(k). 
 
This result tells us that the variance of the density contrast field (which is 
its main property) has contributions from all scales of the power spectrum.  
Each logarithmic bin contributes with a certain value (the value of the 
dimensionless power spectrum of that scale) 
 

 and so the amplitude of the dimensionless power spectrum is a direct  
 indication of the amplitude of clustering 

 
 Δ < 1 - weak clustering, linear structure 

 
 Δ > 1 - strong clustering, non-linear structure : large over-densities, 

or large under-densities (voids) 
 



The fact that the dimensionless power spectrum contains variances instead of 
covariances, means that it gives directly the information of a mode - or scale -  
(instead of relying on separation between points). 

Note that  A small value of k is called a large scale 
  A large value of k is called a small scale 

 
because the inverse of the scale  - 2π/k -  corresponds to a physical size  
 
So the value of the dimensionless power spectrum on a given Fourier mode, 
is the variance on that scale, i.e., the degree of clustering (the clustering 
amplitude) that exists on that scale of the Universe on average. 
 
(Remember it is a moment of a distribution, so it does not mean that all regions of the 
Universe of that size will have that density contrast, it only means that their values will be 
realizations of that distribution with that variance). 
 
(Recall that the dispersion of a random variable of mean zero is a direct indication of its 
amplitude - and not the mean! - ) 

Power spectrum vs. Correlation function 

Both descriptions - in real and Fourier space - have the same information.  
Both are valid to describe the cosmological field. 



Let us consider now the power spectrum as the basic quantity and compute the 
correlation function from it:  
 
We need to compute the inverse Fourier transform of  the power spectrum: 

The correlation function is real so we just need to consider: 
 
 
 
 
and the power spectrum is isotropic (it depends only on the radius |k| à we  
can integrate over the angular part:  
  

(in spherical coordinates the integral element is 



The result is: 

This means that the correlation function is a filtered linear combination 
 of the power spectrum à one separation r is a combination of various  
scales k à k are the independent and fundamental cosmological scales, the 
separations r are not independent. 
 
 
There is not a one-to-one correspondence between separation and scale 
(unless the filter in the integral, also called window function, is very narrow). 
 
The filter (the function that multiplies k2 P(k) in the integral) is the spherical Bessel 
function of the first kind for n=0  :  j0 (kr) 
 



The shape of j0 (the solid line) shows that most of the contribution for the correlation 
at a separation r  -ξ (r)-  comes from larger scales: k < 2.6/r  (the range where the 
contribution is large, with filter amplitude > ~0.2) 

In summary: power spectrum and correlation function have the same 
information, but the N components of the power spectrum are 
independent and give directly the amplitude of clustering as function of 
scale, while the N components of the correlation function do not. 



So, while the original correlation function describes the density contrast field 
using a set of N-1 non-independent covariance (cross-correlations) variables 
(plus one variance) that depend on separation on the real space,   
 
the power spectrum describes the same field using a set of N independent 
variance (auto-correlations) variables in the harmonic space: the set of  

Even though the 2-pt correlation function is highly correlated and does not give 
direct information on an individual scale, it is a useful quantity to consider because 
 

 it is defined in real space à it can be measured directly from data 
measured in the sky. 
  
(The power spectrum needs to be estimated from data in an indirect procedure). 
 



The fundamental modes in the harmonic space (i.e., the wavenumber or scale k) 
are thus the natural choice to define the cosmological scales. 
 
 
Note: an analogy, is that the notes (A,B,C,D,...) produced by a musical instrument 
are not independent (they are like the separations), each one contain various 
fundamental notes defined by a tuning fork (which are the fundamental ones, like 
the cosmological scales).  
 
Each instrument has a sound spectrum, which in fact is a Power spectrum: 
 

G tuning fork is 
independent from the 
other fundamental 
notes (the “scales”) 



G clarinet is a linear  
combination of the 
fundamental notes 
 
 
 
 
 
G saxophone is a different  
linear combination 
of the fundamental notes 
 
 
 
 
 
(The sound power spectrum  
defines the timbre of the 
instrument) 
 



Alternatively to using discrete quantities (i.e. separations r between discrete 
locations x, x’), the clustering properties in the real space can be determined 
using a smoother measure of density:  
 

 the variance of number counts in cells   

Smooth spatial distribution: counts in cells and sigma_8 

Placing cells of a fixed size R on a δ map (discrete or continuous) 
allows to smooth the map on a scale R, defining a δR as a convolution of 
δ(x) with a window function (a filter) of size R à δR is a weighted 
average of δ in a cell of size R. 
 
We can then compute the variance of this δR on cells R across the whole 
map. 
 
Doing this for N values of R, we can define a vector of variances of δR. 
 
 



A B 

Compute  δR in each map for the two different values of R, obtaining 4 quantities.  
 
Then compute the variance of each of those quantities, by moving the circles on the 
maps. The result is: 
 
i) The variances in B are larger than in A (for both scales R), because B has more 
density contrast than A. In B the circles can fall in high-density regions or in low-
density regions à large variance. While in A all regions are more similar à B has 
more structure than A. 
 
ii) Placing the larger circle (for both A and B) it is more likely to find similar regions 
along the maps than with the smaller circle à the variance decreases with R à the 
smallest cell R to approach zero variance defines the homogeneity scale à there is 
no structure above that scale. 

A B 

Example: Consider two density maps A and B and two different scales R (shown by 
the circles). 



Now, since the variance of δR is a second-order moment, it is certainly related to the 
power spectrum. 
 
Let us derive that relation.  
 
First, how can we write a theoretical expression for the smooth density δR ? 
 
Let us consider a top-hat window function WR, i.e., a filter of constant amplitude. 
 
 
δR can be written as the convolution of δ with the top-hat:  

The Fourier transform of the smooth field is simply  
the product of the Fourier transforms of δ and the top-hat: 



The variance of the smooth density is then, 

i.e., it is a filtered integral of the power spectrum, where the filter is the square of 
the Fourier transform of the top-hat WR(k): 

This filter is very diferent from the j0 Bessel function.  
It is relatively narrow and peaked at k ~ 2π/R.  
 
We conclude that a vector of  σ2

R  (for various cell sizes R) is a linear combination  
of the power spectrum amplitudes, just like the correlation function was. 



However, its components are less correlated than the correlation function ones à 
since the filter is very peaked, there is roughly a one-to-one correspondence 
between R and scale k.  
 
For this reason, the value of  σ2

R  gives a good indication of the clustering 
amplitude at the scale R (like the power spectrum also does).   

As we will see later, to compute structure formation (i.e., the time evolution of the 
density contrast field), we need an initial condition for the density contrast field δ(x,t).  
 
As we know, the field is fully represented by a 2-pt quantity. So the initial condition 
must be the value of a 2-pt function at a fixed time (redshift). In particular, the 
amplitude of an initial 2-pt function at a given scale is a comological parameter of 
the inhomogeneous Universe. 
 
There are two alternative parameters that set the primordial amplitude of the density 
contrast field:  
 
 - The amplitude of the primordial power spectrum at a large scale k = 0.02 h/Mpcà 
parameter As 
 
 - The amplitude of today’s power spectrum (z=0) at a smaller scale R = 8 Mpc/h à 
parameter σ8  (“sigma eight”) 



- Why is a large scale  [k=0.02 h/Mpc à R ~ 300 Mpc/h] used for early-times 
normalization? 
 
The scale factor is small à there is no resolution to access small scales 
 
 
- Why is R=8 Mpc/h used for late-time normalization? 
 
It is the scale where the observed dark matter power spectrum P(k,z=0) has 
amplitude ~1 à It is the threshold that separates linear scales (the larger ones) 
from non-linear scales (the smaller ones) today à so the value of σ8 in a given 
model shows immediately the level of clustering in the universe today, compared 
with a σ8 = 1 reference universe. 

From early times to late times, the power spectrum evolves in amplitude and 
shape à the two amplitude parameters are related; the relation between the 
values of As and σ8 depends on all cosmological parameters. 


