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Correlation function estimator 
The 2-pt correlation function of a continuous density contrast field δ(x) - with positive 
and negative values around a zero mean - may be measured in a δ(x) map by: 
 
 - computing the covariances of δ(x) 
 
 - computing the covariances of the smoothed δR(x) 
 
 
However, we usually do not have a continuous field: 
 
We may have measurements of δ(x) on some points of the field (or on some points 
of some other related field, not directly δ(x) ) 
 
We may observe the positions of galaxies, and assume their concentration traces 
the δ(x) field à i.e., there are more galaxies where δ(x) is larger. 
With this assumption we can define a δg (x), which is basically N_gal (x). 
 

 the number of galaxy pairs as function of separation  can be written 
schematically as 1x1 + 1x0 + 1x0 + 1x1 + …. à it is “a kind of” <δg(x) δg(x)> 

Discrete distribution of galaxies 



Note however that the number of galaxies at a location is 0 or 1; it cannot be 
negative à the N_gal (x) is not entirely equivalent to a δ(x) field 
 
In other words, the correlation found from this method is not normalized, its absolute 
value is not correct. What we can do, to be able to use this information, is to 
compare the N_pairs (x) with the N_pairs (x) from a uncorrelated field. 
 
The ratio of the two has the correct information. 
 
This method requires that we build a sample of mock galaxies (the “randoms”), in 
the same survey volume and geometry, with the same spatial sampling as the data 
sample, but with uncorrelated positions, (i.e. with P(1) independent of P(2)). 
 



Using this we can measure: 
 

 DD (r) - number of galaxy-galaxy pairs as function of separation 
 RR (r) - number of  mock-mock pairs as function of separation 
 DR (r) - number of  galaxy-mock pairs as function of separation 

 
 
Several estimators of the correlation function can be defined, based on different 
ways of making the data-random comparison: 
 

The 4 estimators have 
different noise properties.  
 
Number 4 has the best 
signal-to-noise ratio. 



The typical result obtained for the correlation function (of galaxies positions) is a 
power-law, with slope γ= 1.7 (where r0 is a critical separation that depends on the 
type of galaxies, a typical value is r0 ~ 5 Mpc/h) 

Note that the correlation function obtained from galaxy surveys is different from the 
one measured directly on the δ(x) field (from simulated dark matter fields using N-
body simulations), which is not a power-law slope. 



This shows that there is an important bias between the spatial distributions of 
galaxies and dark matter, i.e.,  
 

 δg(x) = b(r,z) δ(x)   (in a linear approximation) 
 
The bias “b” is not a constant. It can be modeled as function of redshift and scale, 
introducing additional nuisance parameters. 
 
(It is known to be larger for brighter galaxies  - like the galaxies in clusters -  à there is also an 
environment dependence) 
 
 

 So, light only follows matter in an approximate way 



Power spectrum estimator: shot noise 

Measurements of discrete galaxies positions can also be used to estimate the  
power spectrum of the underlying continuous δ field.  

Consider N galaxies (particles) of mass m=1 in a volume V, corresponding to a 
mean density 
 
 
 
Assume there is no galaxy bias, i.e.,  
galaxy positions trace perfectly  
the mass distribution 
 
 
The density ρ at a location takes values  
0 (at a point x with no particle)  
or 1 (at a point x with a particle). 
 



With this set up, the density contrast may be written using the Dirac delta function 
(which will be convenient later on).  
Note this is just a sophisticated way of writing 0 or 1. 
 
Note that the integral of the Dirac delta is 1 (over the full infinity range), or zero (if 
the sum range does not contain the peak).  

Now, in order to compute the power spectrum, we need first to Fourier transform 
δ(x): 

where the integral 
over the  
Dirac delta 
sets x=xi in the  
plane wave 



and compute the correlation function in Fourier space 

To evaluate the 1st term - we may separate the terms i=j from i≠j : 



  

Note: What is the sum of a ‘bracketed’ quantity? 
 
The ensemble average of a random variable ‘x’ is the sum over all its 
realizations (all elements in a sample).  
 
If we do not have a sample but know the probability function of ‘x’ we could 
generate a sample and average.  
 
Or, more precisely (and without recurring to numerical methods), we need to 
sum over ‘x’ multiplied by its probability à it is a weighted sum. 
 

 In general an ensemble average of a function f is then 
 

  <f> = integral (dx f(x) p(x)) 
 

 or, in 2 dimensions: 
 



So in order to proceed with the derivation and compute the ensemble  
averages in this first term, we need first to write the probabilities. 
 
In the case i=j, we need to compute <exp(-ikxi) exp(ik’xj)> 
It is a 1-dimensional problem, the ensemble average is an integral over xi 
 

 What is the probability of having a particle in xi? 
 

 It is just  P(xi) = 1/V 
 
So now we can proceed and get: 
 
 
 
 
 

(where the integral gives a Dirac delta and the sum is over the N cases i=j) 



This is the probability of xi times the conditional probability of xj given xi. 
 
If they are independent this is just  P(xi,xj) = P(xi) P(xj) = (1/V)2 
 
But if there is a correlation, the probability of finding a particle in xj depends 
on having or not a particle in xi. 
 
If they are (positively) correlated the joint probability is larger than (1/V)2 : 
 

 P(xi,xj) = P(xi) P(xj|xi) = ( 1+ξ (|xi-xj|) ) / (V2)  
 
This is, of course, the definition of correlation function. 

In the case i≠j, we need to 
consider the joint probability  
of having two particles,  
one in xi and another in xj.  



So the ensemble average introduces in a natural way the correlation  
function of the continuous field in the derivation. 

The sum has N(N-1) cases and (1+ξ) separates in 2 terms:  
 
 - an integral over the plane waves à giving 2 delta functions  
 
- and the Fourier Transform of the correlation function (where z=|xi-xj|).  



Going back to the expression for  
 
 
The 2nd term has nothing to compute, 
 
 
 
and the 3rd and 4th terms  
 

  are similar to the i=j part of the 1st term: 



Putting all terms together: 
 
The first term of the i≠j term and the 2nd, 3rd and 4th terms are all double Dirac 
deltas, and all cancel each other. 
 
The result is then the i=j term, plus the second term of the i≠j term : 

We derived that the correlation function in the Fourier space is the power spectrum 
plus a constant term (V/N). 

(Instead of being just the power spectrum, as we had seen before) 



This is a general property of any power spectrum estimated from a 
discrete spatial distribution. 
 
 

 Why is now the result  P(k)+V/N  instead of P(k) ?  
 
 
The extra contribution comes from the i=j term of the derivation à it is a 
term of auto-correlation and not a term of covariance à it has no 
cosmological information related to a scale, because a scale needs a 
separation à it is a monopole term. 
 
 
In our derivation, starting from measurements in the real space, it would be very 
easy to avoid ending up with this term à we just needed to discard auto-
correlations in the estimator à consider only pairs of galaxies where the 2 
galaxies are different. 
 



But when we estimate directly the power spectrum from a discrete map, in a more 
indirect way, the result will always implicitly include this monopole à this term 
cannot be avoided: 

Notice that, since a scale k is a linear combination of all separations r 
within the window function, the i=j monopole affects the estimated amplitudes 
of P(k) for all scales à it is an overall constant shift in amplitude. 
 



 
However, the fact that the monopole amplitude is given by V/N tells us that its 
amplitude will decrease in future surveys à larger V and larger N 
(with V being limited while N can tend to ∞) 
 
So, the galaxy power spectrum estimator is not biased: 
 
 
 
 
 
The monopole adds uncertainty to the estimated power spectrum, but does 
not bias the measurement.  It does not to be subtracted, it is part of the noise and 
contributes to the error bars.  The monopole term is known as the shot noise (also 
called discreteness noise). 

If we want to limit the shot noise in a future survey, we should build a deeper 
survey rather than a wider one (i.e., increase the density of galaxies n = N/V). 



Projected two-point functions 

The 2-pt functions that we saw until now are defined in the cosmological volume, 
i.e., in a 3D density contrast field. 
 
 
We can also define angular two-point functions, which are function of two-
dimensional (angular) separations and are obtained by  projecting the 3D 2-pt 
functions on the sky. 
 
 
A projected 2-pt function is more directly measured in the sky than the original 3-
dimensional one à we can always measure an angular separation, but not a 
radial separation (which needs redshift information) à in general what we really 
observe is a map of the projected density. 
 
 
 
 
 
 



Angular correlation function 

An angular correlation function is a 2D correlation function, i.e., obtained by 
projecting the 3D correlation function on the sky. 
 
A projected quantity may be written in general as a weighted (filtered) integral over 
the third dimension: 
 
 
where, 
 
-   the 3D coordinates are        = (fK(χ) θx , fK(χ)θy, χ), with 
 

 χ is the radial coordinate (comoving) 
 

 θx is the angular separation (in the x direction) to a reference axis  
(the line-of-sight)  
 

 fK(χ) θx is the comoving physical separation corresponding to that angular 
separation, i.e, the angular separation times the comoving angular diameter 
distance. 



-   g(χ) is the weight function used in the projection: for example the redshift 
distribution of the density tracers (galaxies). In this case coordinates χ (redshift z) 
with more galaxies contribute more to the integral. 
 
(A filter (or window or weight function)  
is needed to account for the various  
contributions to a given  
position θ on the sky). 
 
 
 
Let us then use this general form to write the  
projected correlation function: 
 
 
 
 
 
which is function of separation 
 



In the projection, each angular separation has contributions from pairs with 
elements at any radial distance. 
 
 
We may aproximate it by considering that 
 
•   since the 3D correlation function is a decreasing function of separation, only 

physically close pairs contribute (i.e., close in the 3D space and not only in 
the projected sky) à we consider only pairs with χ ~χ’ 

 
•  the window function has a slow variation in redshift:  g(χ) ~ g(χ’) 
 
 
This is called the Limber approximation.  
 
In the Limber approximation,  the two window functions are function of χ and can be 
written inside the first integral.  
 
 



Notice that the product of the two window functions is g2 only in the case that they are 
not correlated. In general, they are correlated by the correlation function itself à the 
joint probability P(g1 ,g2) is a conditional probability à there is source clustering and 
so we should write: 
 

But this is a second-order effect (order ξ2). To first order, the angular correlation 
function is linear in the 3D correlation function: 
 
 
 
 
 
The 3d correlation function ξ = <δ(x)δ(x’)> is the Fourier transform of the power 
spectrum, and so we can write  



Note the power spectrum evolves in time, and so it also depends explicitly on the 
redshift z  (which is related to χ). 
 
The 3D vector scale can be decomposed in a 2D transversal and a 1D 
longitudinal component, 
 
 
 
and we can write, 
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In this expression, there remains no dependence on χ’ à the integral over dχ’  (or 
over d(χ-χ’) which is the same) is a Dirac delta function  2π δD (k3) à k3 =0, i.e: 

This is the result, also called the Limber equation - the relation between the 
angular 2-pt correlation function and the power spectrum. 

Note on notation - the standard notation is: 
 
ξ(r) - 2-pt correlation function 
w(ϑ) - 2-pt angular correlation function  
P(k) - power spectrum 
C(l) - angular power spectrum 

It shows that only scales in the plane contribute to the angular 2-pt function.  



The angular power spectrum is the transform of the angular correlation function in 
the harmonic space.  
 
For flat-sky (valid for small fields), plane-waves  
are an orthonormal basis of functions that can be used to make the  Fourier 
transform. 

Angular power spectrum: flat sky 

This introduces the 2D angular scale ‘l’, the reciprocal of the real-space angular 
separation θ. 
 
 
The relation between the Fourier angular scale and the real-space angular 
separation is: 

    
  θ = 2π/l 

 
à  the scale l=100 corresponds to a separation of 3.6 deg 
à  the scale l=1000 corresponds to a separation of 21.6 arcmin 



Now, the Fourier transform of the 2-pt angular correlation function is: 

Inserting in the Limber equation, we find the relation between the angular power 
spectrum and the power spectrum:   

The last integral is a Dirac delta: 

This means that ‘l’ only depends on the transversal components of k, and not on 
the full 3D k vector,  
 
and allows us to make the dk integration setting 

  
   k_transverse = l / fK(χ).   



This shows that the amplitude of C for a given angular scale l,  is a 
weighted sum of the amplitudes of P at scales l/fK(χ)  
 
i.e., at different redshifts, the scales k that contribute to the same 
angular scale l are different. 

The result is: 

Due to statistical isotropy, the correlation functions only depend on the separation 
modulus à C(l) is only function of the modulus of ‘l’, as P(k) was function of the 
modulus of ‘k’. 
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Decomposing a map in plane waves: the dark matter density contrast 

(Note that obviously we still need to study  
structure formation to find the power spectra, we 
are just looking at the relations between the 
various power spectra and correlation functions) 

k	
  =	
  l	
  /fK	
  



 
 
 
 

In the spherical full-sky, the flat-sky approximation is not valid for large scales à 
plane waves are no longer an orthonormal basis. 
 
 A better basis are the spherical harmonics Ylm 

Since we are in 2D there are 2 indexes to these functions, just like for 
Fourier modes l=(lx,ly). For spherical harmonics the indexes are called 
(l,m) and are associated with spherical coordinates θ and φ. 

Angular power spectrum: spherical sky 

The spherical harmonics form an orthonormal set of functions on the spherical surface:	
  



which in turn are defined from the ordinary Legendre polynomials Pl 

which are the solutions of Legendre’s differential equation 

and can be written as, 

The spherical harmonics are defined from the associated Legendre polynomials 
Plm 



Contrary to cartesian coordinates (where the range of lx and ly are independent), 
in spherical coordinates the range of  l and m are not independent:  for each ‘l’, 
‘m’ runs from -l to l. à there are 2l+1 values of ‘m’ for each ‘l’ à summing over 
‘m’, for a fixed ‘l’ gives the closure relation: 

The first spherical harmonics are: 



The first spherical harmonics look like this:  

l=0 l=1 l=2 

m = - l 

l=3 

m 

The amplitude goes from highest positive 
(blue) to lowest negative (red) 



We see that the (2l+1) ‘m’ configurations of spherical harmonics for a given ‘l’ have  a 
similar pattern à they divide the surface of  a sphere in (2l) regions of equal area.  
 
l = 0 is constant à monopole 
l = 1 is a gradient between 2 poles (the maximum and a minimum) à dipole  
(the different basis configurations show the gradient along latitude or along longitude) 
l = 2 à quadrupole 
l = 3 à octopole  

Notice that the relation between the spherical harmonics angular scale and the real-
space angular separation is not unique.  
 
As an approximation, we may consider that the 2l regions of equal area that divide 
the surface of the sphere are placed along the meridians. In that case, the width of 
each region at the equator is  
 

  θ = 2π/(2l)  
 
   and so a good indicator is θ ~ π/l   (different from the flat sky case) 
 
à scale l=2 corresponds to a separation of 90 deg (the quadrupole) 
à scale l=100 corresponds to a separation of 1.8 deg 
à scale l=220 corresponds to a separation of 49 arcmin (CMB first peak) 
à scale l=2500 corresponds to a separation of 4.2 arcmin (Planck last data point) 



Now, the spherical harmonic transform of the delta field is: 

δ(θ,φ) =  

The multipole coefficients alm  are the equivalent to δk  in Fourier space  (to be 
precise, this notation alm is usually reserved for the transform of the CMB 
temperature contrast δT) 
 
 
The correlation function of the transform of the delta field is <alm	
  al’m’>. 
As we saw for the 3D case, the derivation can be made by inserting the inverse 
transform, which makes appear the correlation function in real space, and various 
spatial integrals that will result in Dirac deltas and the power spectrum.   
 
The result is:  
 
 
 
where, once again, the Dirac deltas show the independence of the power 
spectrum scales. 



The correlation function is isotropic à it depends only on the angular separation 
 (l ßà θ), and not on the direction (m ßàφ ).  We can thus integrate over m, and 
get:  

=  

This defines the isotropic angular 
power spectrum, as an average over 
all directions 

Finally, we can also write the correlation function in real space, as function of the 
isotropic angular power spectrum, 

<δi δj> =  

This has an impact on observations à the power spectrum on large scales (low 
multipoles l) corresponds to an average over a small number of independent 
functions à the large scales are measured with much less precision than small 
scales àthere is a fundamental limit of statistical uncertainty on large scales (called 
the cosmic variance). 



WMAP	
  

l	
  

θ	
  

Decomposing a map in spherical harmonics: the CMB temperature contrast 

The observed map is one realization 
(i.e., one specific m for each l)  
of the theoretical Cl  computed from the 
cosmological model, which is  
<alm alm> (any m, all are equivalent) 

2D	
  angular	
  temperature	
  dimensionless	
  power	
  spectrum	
  l(l+1) CTT(l) 

Cosmological perturbations are 
functions defined as perturbations 
around a mean value à its own 
mean value is zero à the monopole 
is zero for density contrast fields. 
 
So in cosmology, the monopole is not 
used and the  ‘l’ range is 1,2,…∞  



Planck	
  

l	
  

The Planck map was obtained 
to higher order of the spherical 
harmonics than the WMAP 
one. 
 
This is noticeable in the map 
(better resolution and better 
defined small-scale features) 
 
 and in the power spectrum 
(function measured to higher 
‘l’) 

2D	
  angular	
  temperature	
  dimensionless	
  power	
  spectrum	
  l(l+1) CTT(l) 



Decomposing a map in spherical harmonics: the Earth 

The	
  land	
  distribuKon	
  
is	
  not	
  an	
  isotropic	
  
field	
  à	
  the	
  
“theoreKcal”	
  power	
  
spectrum	
  is	
  a	
  specific	
  
realizaKon,	
  it	
  is	
  not	
  
averaged	
  over	
  all	
  the	
  
m	
  funcKons.	
  



- Primordial non-Gaussianities 
 
     Perhaps not: certain models of inflation can produce non-Gaussian features 
from the original Gaussian quantum fluctuations 

- Secondary non-Gaussianities 
 
      Definitely not: late-time evolution and other late-time effects produce mode 
coupling and the cosmological random fields are no longer Gaussian today 
 
 
The dark matter density field becomes non-Gaussian in the recent universe due to 
non-linear evolution à δ may only be Gaussian in the linear regime, i.e., while its 
value is small. 
 
Higher-order moments (eg: order 3 and 4) are in reality non-zero and contain 
additional cosmological information.  

Is the density contrast really a Gaussian random field? 
	
  

Higher-order statistics 



Same cosmological model (identical 
statistical moments, P(k), etc) 
Same distribution (Gaussian)  
Different realizations  
à 
The maps are statistically equivalent, 
although not identical  

Different cosmological models (different 
statistical moments, P(k), etc) 
Same distribution (Gaussian)  
Different realizations 
à 
Fundamentally non-equivalent 

Same cosmological model (identical 
statistical moments, P(k), etc) 
Gaussian distribution (left) and non-
Gaussian with identical Gaussian part 
(right)  
Different realizations 
à 
Non-equivalent from NG effects 

Comparing left and right panels 



z = 18 z = 0 

Structure formation: 
redshift evolution of 
 
- amplitude of the 
density contrast 
 
- statistical 
distribution of the 
density contrast field 

Scales: a useful 
description of 
clustering à work in 
modes (Fourier or 
harmonic space) 



If the distribution is not Gaussian, the covariance matrix (and consequently the 2-pt 
correlation function and power spectra) do not contain the whole cosmological 
information 
 
à we need to consider higher-order moments. 
 
For example:  
 
If the δ distribution is not symmetric à there is a non-zero skewness 
 
If the δ distribution is cuspy à there is a non-zero kurtosis  



Higher-order moments are computed from n-point correlation functions:  
 
    <δ1 δ2 δ2>                 <δ1 δ2 δ3 δ4>  
 

The joint probability (and so the clustering properties) of having galaxies in 
locations 1,2,3 depends on the full conditional probability between the triplet, and 
also on all combinations of conditional probabilities between pairs:  



An n-point correlation function can be written as a sum of terms involving 
lower-order correlations, 
 plus an  irreducible  (also called connected) term  
 

 à this is the Isserlis theorem of probability theory (1918). 

Wick’s theorem (1950)  -  Note there is a version of Isserlis’ theorem used in 
particle physics that allows to reduce the operators in creation/annihilation 
processes into sums of products of pairs, which is the basis of the description of 
the process in terms of Feynman diagrams.   

This also implies that  
 

 for variables of zero mean à the reducible part of an odd n-point correlation 
function is zero  



3-pt function 

Using “Wick’s” theorem, the 3-pt correlation function ζ123  - zeta -   may be 
decomposed as 

This shows that for variables with zero mean à the 3-pt function is just the 
connected term. 
 
In the case of a Gaussian distribution the connected term is zero, and the 3-pt 
function is zero à note that this does not imply that the joint probability becomes just 
the product of the 3 individual probabilities (with zero correlation) since the conditional 
probability also depends on the 2-pt correlations. 

We can also define the harmonic transformation of the 3-pt function, which is called 
the bispectrum: 



4-pt function 

In this case the joint probability is 

Using “Wick’s” theorem, the 4-pt correlation function, µ1234, may be written as 

note the number  
of terms in the sum is  (in this case, n=4 à n_terms=3) 

  

In the case of a Gaussian distribution the connected term is zero, but the 4-pt  
function is not zero à however the “4-point feature” is zero  (notice the definition 
of kurtosis). 

The harmonic transformation of the 4-pt function is called the trispectrum: T(k,p,q,s) 



There are different ways of 
defining higher-order statistics.  
 
Some are based on n-point 
correlation functions (like the 
skewness and kurtosis), others are 
based on different properties of the 
field (e.g. number of peaks, area of 
connected regions - topological 
features - etc). 
 
 

Each one combines the underlying 
cosmological information in a 
different way à they depend on the 
cosmological parameters in different, 
sometimes complementary, ways. 



Uncertainty of angular power spectra estimators: cosmic variance 

Besides being important cosmological functions with valuable information needed to 
characterize cosmological maps and models, higher-order statistics are also 
needed to compute the uncertainty of 2-pt functions. 
 
 
The power spectrum measured from a map is one realization of the theoretical 
power spectrum predicted from the cosmological model. 
 
For example, for a given multipole l, the measured power spectrum amplitude may 
be: 
 

 Cl = <al4 al4> (or any other value of m) (and other values of m for other 
multipoles). 
 
 
Other parts of the map may correspond to other realizations (each sub-map is 
independent).  
 
The maximum number of independent measurements of Cl from a map is 2l+1 
 



On the other hand, the theoretical power spectrum, that we want to estimate from 
measurements in a map, is Cl with any value of m. 
 
The best way to estimate the theoretical power spectrum from a map is to take the 
average of all possible measurements: 

This is the same as when estimating the mean of a distribution by computing the 
average of N measurements (the larger is N, the more precise is the estimate). 

This estimator is unbiased, meaning that if many measurements were made 
 (N à ∞) its average would give exactly the theoretical power spectrum:  

±	
  σ	
  /	
  N	
  



However, the maximum independent measurements that can be made of each 
multipole is limited:   it is given by 2l+1,  
 
so the measured value will estimate the theoretical value with some minimum 
uncertainty. This is called the cosmic variance. 
 
(The total uncertainty is in general larger than this, since other measurement errors  need to 
be added to this minimal one). 
 
 
The uncertainty of the estimator (i.e. the cosmic variance) is defined as the 
covariance (dispersion) of the estimator. This can be computed theoretically, 
which is more rigorous than just measuring the dispersion between various 
measurements (which depends on the specific sample measured).  
 
The expression is:  

Note that in general this expression is written as a covariance, i.e., considering l 
and l’. However, since the multipoles are independent the covariance matrix is 
diagonal à only the variances are non-zero à l = l’ 



(where <Cl> = Cl is the 
theoretical value) 

To evaluate the cosmic variance we need then to compute  
as function of Cl . Naturally, this is: 

Notice the variances are 
power spectra squared, 
i.e., 4-pt functions 



Wick’s theorem allows us to write a four-point function in terms of lower order 
functions. In particular for Gaussian fields of zero mean, the 1-pt and 3-pt 
functions are zero, and we can write: 

Now, using the result 
 
 
it is just a question of counting all the terms contributing to the various sums, to find 
the result: 
 
(see homework) 

And so the cosmic variance is: 



This result shows that this ultimate limit  of cosmological observations depends on 
the amplitude of the angular power spectrum and on the scale l.  
 
Since each scale has (2l+1) independent ‘measures’ contributing to it à large scales 
have less independent measures in the full sky than smaller ones à cosmic 
variance dominates on large scales, we only have 1 universe to observe. 
 
 
 
Thinking of the ergodic hypothesis, independent regions of the sky are  
different realizations à could correspond to different universes (with different 
parameter values) à creating an intrinsic variance on the measurements à (this is 
the reason for this limit to be called the cosmic variance). 
 
Also note that since cosmic variance depends on the cosmological parameters, it is not taken 
into account in Fisher matrix analyses. 
 

i.e.,  



The calculation is valid for a full sky survey. If the survey covers a smaller area, by 
a factor f_sky = Area_survey / Area_fullsky, there are less independent measures 
contributing to each scale, and the cosmic variance scales accordingly: 

If we want to limit the cosmic variance in a future survey, we should build a wider 
survey rather than a deeper one (i.e., increase the survey area). 

Note that for the largest possible  
angular scale (l=1), the minimum  
uncertainty achievable (in the ideal  
case of a full sky survey and no 
experimental noise) is a fractional  
uncertainty of  
σl / Cl = (2/3)0.5 = 81%   
 
This is the large uncertainty seen 
in CMB plots, and is a fundamental 
limitation of cosmological data.  


