FT MATT ,
PHYSICS Surtaces &

Masao Dol S u r:a Cta ntS




Surfaces & Interfaces

Surfaces, or more generally, interfaces are important in soft matter by two
reasons.

First, the weak forces associated with surfaces, such as surface tension and
inter-surface forces, play an important role in the flow and deformation of soft

matter. For example, surface tension is the force governing the behaviour of
liquid droplets.

Second, many soft matter systems, especially colloidal dispersions, are
composed of several different phases and have large interfacial area within the
material. In such materials, the interfacial properties are crucially important for
the bulk properties. For example, whether colloidal dispersions are stable or
not is determined by the inter-surface force.
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Surface

tension

A small liquid droplet placed on a plate usually takes
the shape of spherical cap or pancake. The shape
changes if the plate is tilted, but it recovers the original
shape when the plate is set back. This phenomenon
indicates that the fluid droplet on a plate has an
equilibrium shape.

The force which gives the equilibrium shape to a fluid is
the force associated with the fluid surface. A surface is
a special place forthe fluid molecules.

Molecules in a fluid usually attract each other. If such a
molecule sits in the bulk region (the region far from the
surface), it has a negative potential energy -z¢, where z
is the coordination number and - € is the van der Waals
energy between neighbouring molecules. On the other
hand, if the molecule is at the surface, approximately
half of the neighbours are lost and the potential energy
is about —(z/2)e.




Surface

tension

Therefore the molecules at the surface have a potential
energy about (z/2)e higher than the molecules in the
bulk.

The excess energy associated with the surface is called
the surface energy. (More precisely, it should be called
the surface free energy, and its definition will be given
later.) The surface energy is proportional to the surface
area of the fluid, and the energy per unit area of the
surface is called the surface energy density (or surface
tension), denoted by y.

Since the surface area of a fluid depends on the fluid
shape, the equilibrium shape of a fluid is uniquely
determined by the condition that the free energy of the
system is a minimum. If there are no other forces acting
on the fluid, the fluid takes a spherical shape, the one
which minimizes the surface area for a given volume.




A liquid droplet on a substrate takes the
shape of a spherical cap.

Surface tension

Molecular origin of surface tension.




Methods to measure the
surface tension.

A liquid is set in the region bounded
by the U-shaped supporting wire and
a straight bounding wire. The force
acting on the bounding wire is given
by 2ya.

The liquid in the dashed box is pulled
to the right by the force f exerted on
the bounding wire and is pulled to
the left by the surface tension 2ya.

Laplace pressure

To make a liquid droplet by injection
of the liquid through a syringe, an
excess pressure AP must be applied.

The excess pressure at equilibrium is

the Laplace pressure. For a droplet of

Ea?ius r, the Laplace pressure is AP =
v/r.

The excess pressure AP needed to
Elaw a soap bubble is given by AP =
v/r.
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Laplace

pressure

If we push the piston slightly and change the volume V' of the droplet
by 0V, we do work APJV to the fluid. At equilibrium, this is equal to
the change of the surface energy

APSV = ~5A (4.4)

where A is the surface area of the droplet. Since dV and d A are written
as 0V = 4wr26r and § A = 8nrér, eq. (4.4) gives eq. (4.3).

The excess pressure AP created by the surface tension is called the
Laplace pressure. It is the pressure we need to apply to create a soap
bubble. In the case of a soap bubble, the excess pressure to make a
bubble of radius r is given by 4 /r. The factor of 4 now comes from the
fact that the soap bubble has two surfaces, the outer surface and the
inner surface (see Fig. 4.2(d)).



Soap bubbles



https://upload.wikimedia.org/wikipedia/commons/4/4c/Laplace_pressure_experimental_demonstration.ogv

Grand canonical

free energy

We now define the surface free energy in a more rigorous way. For this
purpose, it is convenient to use the grand canonical free energy.

The grand canonical free energy is defined for a material which occu-
pies a volume V', and exchanges energy and molecules with surrounding
materials. Let T be the temperature of the environment and p; be the
chemical potential of the molecules of the i-th component. The grand
canonical free energy is defined by

P
G(V,T,pu:) =F =Y Nip (4.5)
i=1
where F' is the Helmholtz free energy, and N; is the number of molecules
of the i-th component. (Notice that in this chapter, G stands for the
grand canonical free energy, not the Gibbs free energy.)
For given values of T" and p;, the free energy G is proportional to the
system volume V. Therefore G can be written as

GV, T, ) = V(T ) (4.6)

G\V,T,pu;) =-VP(T,u;)
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Gibbs-Duhem equation

VdP = SdT + Y  Nidp,
]

Now it can be proven that g(T', y;) is equal to minus the pressure P, i.e.,
GV, T,p;) =—-VP(T,p) (4.7)

Equation (4.7) can be shown as follows. The total differential for the
Helmbholtz free energy is given by
dF = —SdTl — PdV + Y _ t;dN; (4.8)

where S is the entropy of the system. From egs. (4.5) and (4.8), it follows
that

dG = —SdT — PdV — ) N;dy; (4.9)

1

On the other hand, eq. (4.6) gives

dg 0g
dG = gdV +V 5=dl +V Z a—mdﬂ,- (4.10)

Comparing eq. (4.9) with eq. (4.10), we have
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The first equation in (4.11) gives eq. (4.7). The equations in (4.11) also
give the following Gibbs-Duhem equation

VdP = SdT + Y Nidy; (4.12)
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Interfacial free
energy

Now, we define the interfacial free energy. Consider the situation shown
in Fig. 4.3. Two phases I and II coexist and are in equilibrium. The
temperature 7" and chemical potentials p; are common in both phases.
The total grand canonical free energy of this system can be written as
follows

G=G;+Gyp+Gy (4.13)

where G and Gy represent the grand canonical free energy of the bulk
phases I and II, and G4 represents the grand canonical free energy of
the interface. Gy and Gy; are proportional to the bulk volume of each
phase V; and Vj;, and Gy is proportional to the interfacial area A, i.e.,

Gr=Vi 91T, i),  Gu="Virgu(T,p;) (4.14)

and

Ga = AY(T, ps) (4.15)

Equations (4.13)—(4.15) define the interfacial free energy. The basis of
this definition is the assumption that the free energy of a system is
written as a sum of bulk parts (the part proportional to the volume),
and the interfacial part (the part proportional to the interfacial area).




Gibbs-Duhem equation
for the surface

Ady = —SadT —» _ Na;dy;

As we have seen, the grand canonical free energy per unit volume gy is
equal to minus the pressure Py, the force acting on a unit area considered
in the bulk. Likewise, the grand canonical free energy per unit area of
the interface 7 is equal to the force f; acting on a unit length considered
in the interface. The proof can be done precisely in the same way as for
gr. If the interfacial area is changed by dA, the work done to the system
is fedA. Therefore the total differential of G4 is written as

dGp = —SadT + frdA =" Naidp; (4.16)

where S, is the entropy of the surface, and N4; is the number of mo-
lecules of component i on the surface. On the other hand, eq. (4.15)
gives
Oy Oy
dGy =vdA+A—dT' + A —dp; 4.17
A = YAA + ar® T Z o, H (4.17)

Equations (4.16) and (4.17) give f; = 7, and the following Gibbs—Duhem
equation for the surface

Ady = —SadT = Nasdp; (4.18)
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Surface excess

Adsorption Absorption

The number of molecules per unit area on the surface is given by

_ Na;

T; 1

(4.19)
T'; is called the surface excess. It is called ‘excess’ since it can be pos-
itive or negative. The meaning of I'; is explained in Fig. 4.4. Here
the profile of the number density n;(z) of molecules of species i is
plotted against the coordinate taken along the axis normal to the
interface. On the left side, n;(z) approaches ny;, the bulk number dens-
ity in phase I, and on the right side, n;(z) approaches ny;. Near
the interface, n;(z) will be different from these. Figure 4.4 shows the
case that the component i is attracted to the interface. Then T'; is
defined by?

0 o0
;= / dz(ni(z) —ng) + /0 dz(ni(2) — nm) (4.20)

—00

If the component i likes the surface, I'; is positive. Surfactant mo-
lecules like the surface very much, and I'; can be regarded as the number
of surfactant molecules adsorbed per unit area on the surface. On the
other hand, ions prefer to stay in the bulk rather than at the surface,
and therefore their surface excess I'; is negative.




Wetting

When a liquid droplet is placed on a substrate, it spreads on the surface
of the substrate. This phenomenon is called wetting. The wetting also
takes place in porous materials (sponges, textiles, sands, etc.), where the
liquid spreads over the internal surfaces of bulk materials.

The driving force for the wetting is the interfacial energy between the
solid and the liquid. If a liquid spreads over a surface of a solid, the area
which has been the interface between the solid and air is now replaced
by two interfaces, the solid-liquid interface, and the liquid-air interface.
In the following, we shall call the air phase the vapour phase since in
a one-component system, the gas phase is filled by the vapour of the
liquid.

Let 7gr, and gy be the interfacial energy for the solid-liquid, and the
solid-vapor interfaces. Then when the liquid forms a film of area A, the

interfacial energy changes from Avysy to A(y + 7si). The difference in
the coefficient of A

vs =vsv — (v +7sL) (4.21)

is called the spreading coefficient. If g is positive, the interfacial energy
decreases as A increases. In this case, the wetting proceeds and the liquid
eventually wets the entire solid surface. This case is called complete
wetting. On the other hand, if vg is negative, the liquid drop wets the
solid surface partially, taking a certain equilibrium conformation on the
substrate as shown in Fig. 4.5. This case is called partial wetting.




Young’s
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The outer rim of the wetted region is called the contact line. It is
also called the triple line because at this line, the three phases (liquid,
vapour, and substrate) meet.

The angle that the liquid surface makes against the substrate is called
the contact angle. If the contact line can move freely on the substrate, the
contact angle € is constant and is independent of the size and the shape
of the droplet (see Fig. 4.5). This can be shown as follows. Consider
a wedge-like region of the fluid near the surface (see Fig. 4.6). Now
suppose that the contact line is displaced from B to B on the substrate.
Then the area dz of the solid—vapour interface is replaced by the solid—
liquid interface, and the surface area of the liquid increases by dz cos 6.
Therefore, the change of the interfacial energy due to the displacement

of the contact line is (yg, —ysv)dz+7dx cosf. At equilibrium, this must
be equal to zero. Hence

YsL —ysv +ycosf =0 (4.22)

Equation (4.22) is called the Young-Dupre equation. According to this
equation, the contact angle 6 is determined by the interfacial energies
only, and is independent of the droplet size and other bulk forces acting
on the droplet. The Young-Dupre equation can also be derived from the
force balance as explained in Fig. 4.6(b).




Capillary length

Capillary length

Let us now consider the equilibrium shape of a droplet placed on a
substrate (see Fig. 4.5).

The equilibrium shape of the droplet is determined by minimizing the
total free energy. The bulk free energy of the droplet is independent
of the droplet shape, but the interfacial free energy and the potential
energy due to gravity depend on the droplet shape.

Consider a liquid droplet of volume V. The characteristic length of
the droplet is 7 ~ V'1/3. Now the interfacial energy of the droplet is of
the order of yr2, while the potential energy of gravity is of the order of
pgVr =~ pgr*, where p is the density of the liquid. If r is small, the latter
effect is negligible, and the droplet shape is determined by the interfacial
energy only. On the other hand, if r is large, the gravity is dominant.
The characteristic length which distinguishes the two cases is

2
Te p (4.23)
which is called the capillary length. The capillary length of water is
1.4mm at room temperature.

If the size of the droplet is much less than r., the liquid takes the
form of a spherical cap as in Fig. 4.5(a). The radius of the sphere is
determined by the volume of the droplet and the contact angle #. On
the other hand, if the size of the droplet is much larger than r., the
liquid takes a flat pancake shape with rounded edges as in Fig. 4.5(b).

The capillary length will vary for different liquids
and different conditions. Here is a picture of a
water droplet on a lotus leaf.



Equilibrium film thickness
Let us consider the thickness of the liquid film shown in Fig. 4.5(b). If

F | | m t h I C k n e S S the volume of the liquid is V', and the thickness is h, the potential energy
of gravity is pgV h/2. On the other hand, the total interfacial energy G 4
is given by the contact area of the liquid A = V/h, and the spreading
coefficient y5 as G4 = —ysV /h. (Notice that v5 < 0 in the present
situation.) Therefore the total energy is

1 %4
Girot = =pgVh — 152 (4.24)
2 h
Minimizing this with respect to h, we have the equilibrium thickness
-2
. h=,|—25 (4.25)
> Py
0 Ib N\ Using eq. (4.22), s can be written as

vs = —(1 — cosb) (4.26)
Hence, the equilibrium thickness h is written as

h=\ /W =2r, sin(g) (4.27)

= 2y(1 ~ cos) = 2rcsin(g)
pg 2

According to eq. (4.27), h becomes zero in the case of complete wet-
ting. In practice, however, it has been observed that h does not go to zero
even in the case of complete wetting. This is due to the effect of van der
Waals forces acting between the vapour phase and the solid substrate.

This will be discussed later in Section 4.4.7.




Capillary rise h
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Another familiar phenomenon caused by surface tension is the rise of the
meniscus in a capillary (see Fig. 4.7). If the meniscus rises by a height h
in a capillary of radius a, the dry surface (i.e., the solid-vapor interface)
of the capillary wall of area 2mwah is replaced by the solid-liquid interface.
Therefore, the total energy change is given by

1
Giot = 2mah(ysr, — vsv) + §pg7rai"h2 (4.28)
Minimizing eq. (4.28) with respect to h, we have
) _
h= (vsv —yst) (4.29)
pga
This can be rewritten using eq. (4.22) as
2
p=2reost 2 (4.30)
rga a

If the contact angle 6 is less than m/2, the meniscus goes up (h > 0),
and if @ is larger than /2, the meniscus goes down (h < 0).




Effect of the capillary radius

Notice that the rewriting of eq. (4.29) into eq. (4.30) is valid only
for the case of partial wetting, i.e., the case of 75 < 0. In the case of
complete wetting, the capillary wall is already wetted by the fluid, and
has surface energy <ygz, + 7 per unit area. As the meniscus rises, this is
replaced by the bulk fluid which has surface energy 7sr. Therefore the
gain in the surface energy is 7 per unit area. Accordingly, the height
of the meniscus is given by eq. (4.30) with # = 0. Hence eq. (4.30) is
actually valid both for 75 < 0 and s > 0.

Equation (4.30) indicates that the height of the meniscus increases
with the decrease of the capillary radius a. This is because the surface
effect is enhanced for smaller capillaries. Instead of decreasing the ca-
pillary radius, the surface effect can be enhanced by filling the capillary
with small beads as in Fig. 4.7(b). If the bead radius is b, the surface area
of the beads contained in the height h is approximately ma?h/b. Hence
the capillary height is increased by a factor a/b. This is the reason why
dry sands or textiles are strongly wetted (or dewetted).




Liquid droplet on
liquid

(a) Oil droplet placed on the
surface of water.

(b) The contact angles around
the triple line of three
phases A, B, and C.

(c) The Neumann triangle
representing the force
balance at the triple line.

The Young—Dupre equation (4.22) has been derived for a rigid substrate,
i.e., a substrate which does not deform. If the substrate is a soft elastic
material or a fluid, the substrate deforms when a fluid droplet is placed

upon it. For example, an oil droplet placed on a water surface will take
a lens-like form as shown in Fig. 4.8(a), where A, B, and C represent air,
water, and oil, respectively. At equilibrium, the interfacial forces acting
at the contact line must balance as shown in Fig. 4.8(b) and (c), giving

YaB +7Bc +7ca =0 (4.31)

where Yxy (X and Y representing one of A, B, C) stand for the in-
terfacial force vector acting at the X-Y interface. Equation (4.31) is
equivalent to the condition that the vectors Y4p, Ypc, Jca form a tri-
angle. This condition is a generalization of the Young—Dupre condition
and is called the Neumann condition. Using the Neumann condition, one
can express the contact angles 64, 0p, 0¢c in terms of the interfacial en-
ergies YaB,YBC,Yca by constructing the triangle (called the Neumann
triangle) shown in Fig. 4.8(c).

The Neumann triangle cannot always be constructed. For example,
it cannot be constructed for the situation yap > yBc + Yca. In this
situation, complete wetting of the C phase takes place, i.e., the liquid C
forms a thin film between liquid A and liquid B.




Surfactants

The reduction of the surface tension by surfactants can be observed
experimentally using the setup shown in Fig. 4.9. A trough containing
water is separated into two chambers by a flexible membrane fixed at
the bottom and connected to a floating bar. If surfactant is added to
the left chamber, the surface tension in the left chamber decreases, and
therefore the bar moves to the right. The force acting on the bar per
unit length is called the surface pressure, and is given by

HA =% — 7% (432)

where g denotes the surface tension of the original liquid.

Another way of looking at the phenomenon is the following. Surfact-
ant molecules assemble at the surface, and tend to expand their area
bounded by the bar. This mechanism is analogous to that of osmotic
pressure: the solute molecules confined by a semi-permeable membrane
tend to expand and exert osmotic pressure. Likewise, the surfactant
molecules confined by the bar create surface pressure.

The above example indicates that if surface tension is not constant
along the surface, the gradient of the surface tension exerts a net force
for the fluid elements at the surface, and induces a macroscopic flow.
This effect is called the Marangoni effect.

- Polar hydrophilic
(water-loving) head

Non-polar hydrophobic
(water-hating) tail

membrane float




Marangoni effect

The Marangoni effect is seen in daily life. If a drop of liquid detergent
is placed on a water surface, any dust particles floating on the water are
pushed away from the point at which the detergent is placed. In this
example, the Marangoni effect is caused by the gradient of surfactant
concentration. The Marangoni effect can also be caused by a temperat-
ure gradient. The surface tension is a function of temperature (surface
tension usually decreases with an increase of temperature), so if there
i1s a temperature gradient at the surface, the fluid will flow from the
high-temperature region to the low-temperature region.


https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Marangoni_effect_experimental_demonstration.ogv/220px--Marangoni_effect_experimental_demonstration.ogv.jpg

, Fluid will flow from areas of lower surface
Marangoni tension to areas of higher surface tension.

effect And this causes the pepper flakes to spread
away and makes the string to expand.




Mara ngoni Fluid will flow from areas of lower surface
tension to areas of higher surface tension.

effect And this propels the small boat and makes
the dye to fan out.
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Surface adsorption
&
Langmuir equation

The surface tension of a fluid decreases if we add materials which prefer
the surface rather than the bulk. This effect can be proven using the
Gibbs-Duhem equation for the surface. From eq. (4.18) it follows that

O\ _ Nai _
( 8#,-)T =-—f-_r, (4.33)

For simplicity of notation, we consider the situation that the solution is
a two-component system made of solvent and surfactant and omit the
subscript i. We therefore write eq. (4.33) as

8’7 _ NA__
R

where I' = N4 /A is the number of surfactant molecules adsorbed at the
surface of unit area.

nl'.

Ng+n

The chemical potential p of the surfactant is a function of the surfact-
ant concentration. Let n be the number density of surfactant molecules
in the bulk. In a dilute solution of surfactant, i can be written as

w(T,n) = po(T) + kT Inn (4.35)

In this case, the change of surface tension caused by the change of
surfactant concentration (8v/0n)r can be calculated as

(8, (), (3), -l o

Since T is positive for surfactants, eq. (4.36) indicates that the sur-
face tension of the liquid decreases with the increase of surfactant
concentration.

Notice that eq. (4.36) is valid for any additives. Therefore if we add
materials which have negative surface excess (I' < 0), the surface tension
increases with the increase of the additives.

The relation between n (the number density of additives in the bulk),
and I' (the number density of the additive adsorbed at the surface)
is called an adsorption equation. A typical adsorption equation is the
Langmuir equation given by

p— " (4.37)

Nns+n

where I'y and n, are constants. Equation (4.37) describes the behaviour
shown in Fig. 4.10: " increases linearly with n for n < ng, and then
starts to saturate for n > ns, approaching I'y as n — oo.




Surface tension &
Langmuir equation
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Equations (4.36) and (4.37) give the following differential equation

Ty
kel (4.38)

The solution of this equation is

y=90-TkpTIn (1 + nl) (4.39)

The surface tension + is also shown in Fig. 4.10. As the surfactant con-
centration increases, v first decreases quickly, where «p— is proportional
to n, but soon 7 starts to decrease slowly, where 4o — <y is proportional
to Inn. This is because I" soon saturates.

According to eq. (4.39), the surface tension 7 keeps decreasing as a
function of surfactant concentration n. In reality, the decrease of the
surface tension stops at a certain concentration n.,,. called the critical
micelle concentration, as shown in Fig. 4.10. Beyond this concentration,
the surface tension does not decrease further even if we add more sur-
factant. This is because any added surfactant is used to form micelles
beyond the concentration 7.y,.. This subject is discussed in the following
section.




Micelles & cmc

At concentration higher than n.,,., surfactant molecules assemble to
form a structure called micelles. Various kinds of micelles are known, as
shown in Fig. 1.5. Once micelles are formed, any additional surfactant
molecules added to the system are taken into micelles, and therefore
the surface tension does not decrease any more. This can be shown
analytically as follows.

We consider the simple case of spherical micelles formed in water. In
this case, the outer shell of the micelle is made of hydrophilic groups, and
the inner core is made of hydrophobic groups. This structure requires an
optimum number of surfactant molecules contained in a micelle: if the
number is too small, some hydrophobic groups are exposed to water, and
if the number is too large, some hydrophilic groups cannot contact with
water. Therefore spherical micelles have an optimal size. Let us assume
that all micelles have the same optimal size and consist of m surfactant
molecules: i.e., we assume that a surfactant molecule can exist either
as a single molecule (called the unimer) or as a member in a micelle of
size m. Let n; and n,, be the number of unimers and micelles in unit
volume. Then

ny +mn,, =n (4.40)

where n is the total number of surfactant molecules in the solution (per
unit volume). The chemical potential of the unimer and that of the
micelle are respectively given by

p = +kgTlnng,  ppm = po, +kgTnn,, (4.41)
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Since m unimers can turn into a micelle or vice versa, the following
equation holds at equilibrium,

ML = fm (4.42)
From eqs. (4.41)—(4.42), we have

n m
o = expl(mpsd — %) /ksT] = (1) (4.43)

where n. is defined by
expl(mp — ) /kpT] = ng ™D (4.44)

Equation (4.40) is then written as

Mmoo (ﬂ)m _n (4.45)

Ne Ne

Since m is a large number (typically 30 ~ 100), the second term on the
left-hand side of eq. (4.45) is a very steep function of n; /n.: if ny/n. < 1
it is negligibly small compared with the first term, and if ny/n. > 1, it
becomes much larger than the first. Therefore the solution of eq. (4.45)
is obtained as

n n < Ng
ny = 1/m (4.46)
Ne ( L ) n>ng

mnc

Therefore if n < n.., all surfactants exist as a unimer. On the other hand,
if n > n., ny changes little with n since the exponent 1/m is very small.




Physically, the reason why n; changes little is that added surfactant
molecules are taken into the micelles, and do not remain as unimers. One
can see from egs. (4.43) and (4.46) that the number density of micelles
n,, is essentially zero for n < n. and is equal to n/m for n > n..
Therefore n. is identical to n.,,., the concentration at which micelles
start to appear. Since the chemical potential y; of the unimer changes
little with n for n > n.,., the surface tension vy ceases to decrease with
further addition of surfactants for n > n ..

Statistical mechanical theory has been developed for other types of mi-
celles (cylindrical, lamellar) shown in Fig. 4.10, and the size distribution
and n.,,. have been discussed for such micelles.



Gibbs & Langmuir

monolayers

In the above discussion, we have assumed that the surfactant molecules
at the surface can dissolve in the liquid, and, conversely, the surfactant
in the liquid can adsorb at the surface. In this case, the number density
I" of surfactant molecules on the surface is determined by the condition
that the chemical potential of surfactant on the surface is equal to that
in the bulk.

If the surfactant molecule has a big hydrophobic group (if the number
of alkyl groups is larger than, say, 15), they cannot dissolve in water any
more. In this case, I" is determined by the amount of surfactant added
to the system, i.e., ' = N /A, where N is the number of surfactant
molecules added to the system, and A is the surface area.

The insoluble surfactant layer formed at surfaces is called a Langmuir
monolayer. In contrast, the surfactant layer we have been discussing is
called a Gibbs monolayer. In the Gibbs monolayer, the surface pressure
IT4 (or the surface tension %) is studied as a function of the surfactant

surface tension
sensor

Langmuir Monolayer

concentration n in the bulk, while in the Langmuir monolayer I14 is
studied as a function of the surface area A.

The relation between the surface pressure I14 and the surface area A
in the Langmuir monolayer is very much like the relation between the
pressure P and the volume V of a simple fluid. In this case, the [Ty—A
relation can be described by a two-dimensional model of the fluid. At
large A, the system is in a gas phase, and Il4 is inversely proportional
to A. As the surface area A decreases, the system becomes a condensed
phase (liquid phase or solid phase), and I14 starts to increase rapidly.

The Langmuir monolayer can be transferred to a solid substrate and
can be made into multi-layer materials with molecules standing nor-
mal to the layer. The Langmuir monolayer formed on solid surfaces has
various applications since it changes the surface properties (mechanical,
electrical, and optical, etc). To make the monolayer strongly attached
to solid surfaces, chemical reactions are often used. Such a monolayer is
called a self-assembling monolayer (SAM).



| ntera Ction For a large surface, W(h) is proportional to the area A of
the surface.

The potential per unit area w(h) = W(h)/A is called the
inter-surface potential density.

between surfaces

snenan

We now consider the interaction between surfaces. If two surfaces of
materials, I and II, come close enough to each other as shown in Fig. 4.11,
the interaction between the surfaces becomes non-negligible and the free
energy of the system becomes a function of the distance h between the
surfaces. The interaction between the surfaces can be characterized by
the inter-surface potential W (h) which is the work needed to bring two
parallel plates made of material I and II from infinity to a separation
distance h. Equivalently, W (h) may be defined as the difference of the
free energy for the two situations, one in which the plates are placed
parallel to each other with a gap distance h, and the other in which they
are placed indefinitely far apart.
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Derjaguin approximation




Consider two spherical particles of radius R placed with the gap distance h. The
distance h(p) represents the surface-to-surface distance along a parallel line
separated by a distance p from the line connecting the centres of the particles.
For p <<R, h(p) is approximated as

h(p) = h+2(R — /R2 — p?) ~h+—

R

Consider a ring-like region on the surface of the particle bounded by two cylinders
of radius p and p+dp. If p<< R, the area of the ring is 2npdp, and the interaction
energy is w(h)2npdp. Integrating this with respect to p, we have the interaction
potential between the particles:

R
U(h) = / w(h)2mpdp
JO
By using a new variable x = h+p?/R, the right-hand side is rewritten as
U(h)=7nR / w(x)dx
Jh

where the upper bound of the integral has been replaced by o<. If the spheres
have different radii, say R1 and R2, U(h) is given by

Ry Ry >
T(h) = 90— 712 ,
U(h) R 1R, / w(z)dx



Derjaguin approximation




van der Waals
forces

The most common interaction between surfaces is the van der Waals
interaction. This has the same origin as the van der Waals force act-
ing between atoms (or molecules), but a rigorous theoretical calculation
becomes rather sophisticated (see Intermolecular and Surface Forces by
J.N. Israelachrili listed in the Further reading). Here we use a simple
and approximate treatment.

The van der Waals potential acting between two atoms separated by
a distance r is given by

Uatom(T) = —C (a—o)ﬁ (4.51)

r

where ag is the atomic radius, and C is a constant, which is of the order
of kgT. If we assume that the materials I and II in Fig. 4.11 are made of
atoms which are interacting via the potential (4.51), the total interaction
energy between the materials is given by

W(h) = — / dry / dryn?——% _  (459)
meVr Jro€Vig |7'1 - T2|




van der Waals
forces

where n is the number density of atoms in the wall materials, and the
symbol 71 € V; means that the integral for r; is done for the region
occupied by the material I. If we do the integral over r3 first, the result
is independent of 2 and y;. Hence W (h) is proportional to the interfacial
area A and the energy per unit area is given by

n2Ca
w(h) = / dz / drg——0_ (4.53)
z1EVY ro€Vir |1"1 - 7'2'

By dimensional analysis, it is easy to show that the right-hand side
A H of eq. (4.53) is proportional to h=2. The integral can be calculated
analytically, and it is customary to write the result in the following

w(h) - 12ﬂ'h2 form:

_An_
127h?

where Ay is defined by 'n,2C'ag7r2 and is called the Hamaker constant.?

w(h) = — (4.54)




Strength of the van der
Waals force

The interaction potential acting between two spherical particles of
radius R is calculated from egs. (4.49) and (4.54) as

AuR
12 h

The Hamaker constant is of the order of kgT. Therefore for R = 0.5*m
and h = 0.5nm, the interaction potential is about 100kgT. With such
a large attractive energy, the colloidal particles will aggregate, and sub-
sequently precipitate (or form a gel). In order to have a stable colloidal
dispersion, the surfaces of the colloidal particles must be modified to
include repulsive forces.

Two strategies are taken to create such repulsive forces. One is to make
surfaces charged as in Fig. 4.13(a), and the other is to cover surfaces with
polymers as in Fig. 4.13(b). The interaction between such surfaces will
be discussed in the following sections.

U(h) = (4.56)




Charged surfaces

If ionic groups of the same sign of charges are attached to the walls,
the walls repel each other due to the Coulombic repulsion. Though this
statement is true in vacuum, it is not always correct in solutions because
there are free ions floating around the walls in the solutions. In fact, eval-
uation of the forces in solutions requires careful consideration. Detailed
discussion on this force is given in Section 10.3.6. Here, we summarize
the main result.

If charged walls are inserted in an electrolyte solution, counter-ions

(ions which have charges opposite to the wall) accumulate around the
walls and screen the wall charge. As a result, the effect of the wall charge
decays exponentially with the distance z from the wall. For example, the
electric potential ¢)(z) decays as

P ox e (4.57)
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The length 1/k is called the Debye length. For an electrolyte solution
consisting of monovalent ions having charges ep and —ep, & is given by

2nseg 1/2
K= ( e ) (4.58)

where ns is the number density of ions in the solution, and € is the
dielectric constant of the solvent (usually water).

The repulsive force between the charged walls is strong if the ion
concentration ng is small, but decreases quickly with the increase of n;.
An example of the inter-particle potential between charged particles is
shown in Fig. 2.10(b). When the ion concentration is small, the repulsive
interaction due to the charged surface dominates, and the particles do
not aggregate. If salts are added, the van der Waals interaction becomes
dominant, and the particles start to aggregate.
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Polymer grafted surfaces

Stabilization of colloidal dispersions by surface charge does not work at
high salt concentration, or in organic solvents. Another way of stabiliz-
ing colloidal particles is to cover particles with polymers. If we attach
polymers which have good affinity to the solvent, the polymers form a
thick layer (see Fig. 4.13(b)) which prevents the particles from direct
contact, and hinders the aggregation. The attached polymer is called
grafted polymer.

Let I', be the number of polymer chains bound to a unit area of the
surface. The mean distance between the neighbouring binding sites is
given by ¢ =T /2 1f ¢ is much less than the mean size of a polymer
coil R, the polymers form a dense uniform layer on the surface. Within
the layer, the polymer chains are stretched normal to the surface. Such
a layer is called a polymer brush.

The thickness of the polymer brush is determined by the same physics
which determines the swelling of a gel, i.e., the competition between the
mixing energy and the elastic energy of the polymer chain. If the polymer
brush has thickness h,, a polymer chain occupies the volume Nv, in a
volume ¢2h,,, where v, is the volume of the polymer segment, and N is
the number of segments in the polymer chain. Hence the volume fraction
¢ of polymer within the brush is given by

Nv.  T,N

o= En, =%,

(4.59)




Grafted polymers

Physisorption (grafting to approach)
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The free energy per unit area of the polymer grafted surface is written as

kT
u(hy) = Tprery by + hp fnia(9) (4.60)

The first term stands for the elastic energy of polymer chains, and the

second term is the mixing energy of polymer and solvent. If we use the
lattice model, the mixing free energy density is given by

Fmield) = “EL (1~ 6) In(1 — 6) + x6(1 ~ 9]

kT [(X et (l _ X) ¢2] (4.61)

c 2

where we have expanded fiiz(¢) with respect to ¢.
Minimizing eq. (4.60) with respect to hp, we have the equilibrium
thickness of the polymer brush

1/3
. 173 [veb? (1
he? = NT?/ [T (5 - x)] (4.62)

The equilibrium thickness of the polymer brush is proportional to N.
Therefore the polymer chains in the brush are strongly stretched relative
to the natural state where the size is about v/Nb. The thickness of the
brush layer increases with the increase of the grafting density T'),.




Repulsion from grafted polymers

Equation (4.62) represents the thickness of one brush layer. Now if
two polymer grafted surfaces are separated by a distance less than 2h77,
the polymer brush is compressed, and the inter-surface energy increases.
Since the thickness of the polymer brush is now given by h/2, the inter-
surface potential is given by

w(h) = 2[u(h/2) —u(he?)]  for h<2h, (4.63)

The right-hand side can be expanded with respect to h — 2h;?, and the
result is written as

(

o))
L

)

),
<

w(h) = %kbmh(h — 2R5)? (4.64)

82w(h) _ 9kpT

kbrush = W = er (4.65)

h=2hg?
Again the repulsive force increases with the increase of the graft
density T'p.




Attraction from non grafted polymers

The grafted polymer provides a repulsive contribution to the inter-
surface potential, and stabilizes the colloidal dispersions. If the polymer
is not grafted, the situation is completely different. If a homopolymer
(a polymer made with the same monomers) is added to colloidal disper-

sions, it always provides an attractive contribution to the inter-surface
potential irrespective of whether the polymer is attracted to or repelled
by the surfaces. The reasons are explained below.




Attractive &
repulsive
polymers

If the polymer is attracted
to the surface, it creates
bridges between the
surfaces, and gives an
attractive force between
the surfaces.

If the polymer is repelled
by the surface, it is
excluded from the gap
region between the
surfaces. This effect also
gives an attractive
contribution to the inter-
surface force.




Attraction from attractive polymers

Polymer attracted to the surface

If the interaction between the polymer and the surface is attractive, the
polymer is adsorbed on the surface forming an adsorbed layer. Unlike
the polymer brush, the adsorbed layer gives an attractive interaction

between the surfaces. The reason is that now individual polymers can
simultaneously adsorb both surfaces and can make bridges between the
surfaces® (see Fig. 4.14(a)). As the surfaces come close to each other,
more bridges are formed and the free energy of the system decreases.

Therefore the inter-surface potential becomes attractive.




Attraction from repulsive polymers

Polymer repelled by the surface

In the opposite situation that the polymers are repelled by the surfaces,
one might expect that the polymer provides a repulsive contribution
to the inter-surface forces. In fact, such a polymer gives an attractive M
contribution. This surprising effect is called }:hey]:sak%uafOosawa effect, po lymer d e p' etlo n zones
or the depletion effect.
To see the origin of the attractive force, let us assume that a polymer
molecule occupies a spherical region of radius Ry, and that the centre
of the molecule is not allowed to be within the distance R, from the
surface (see Fig. 4.14(b)).
Now suppose that the distance h between the surfaces becomes less
than 2R,. In this situation, the polymer molecule cannot enter the gap
region between the surfaces. This is equivalent to the situation that the
gap region between the surfaces is sealed by a semi-permeable membrane
which prevents polymer molecules from entering into the region. Since
polymer molecules cannot enter the gap region, the pressure in the gap
region is less than the pressure outside by the osmotic pressure. In a
dilute solution, the osmotic pressure of the solution is given by IT =

npkpT, where n, is the number density of polymer molecules in the
outer solution. Therefore, the surfaces are pushed inward with force IT
per unit area, i.e., there is an attractive force between the particles. Since
the attractive force arises from the fact that the polymer molecules are
depleted at the surface, the force is called the depletion force.

The inter-surface potential for the depletion force can be written as

0 h>2R,

Wepletion(h) = { npksT(h—2R,) h<2R, (4.66)

The depletion force can be derived by a slightly different argument. Due | h e

to the repulsive interaction between polymer and surface, there appears a r T ]

region depleted of polymers near the surface. The volume of the depleted po y er C 0 l ns
region decreases as h becomes less than 2R, and the resulting gain of

the entropy gives the depletion force. Equation (4.66) can be derived by

this consideration (see problem (4.6)).




Thin films

Total Wetting Partial Wetting

The inter-surface potential is also important in thin films. If the thickness
of the material 0 in Fig. 4.11 becomes very small, the surface free energy
should be written as

Ga = A(yr + v+ w(h)) (4.67)

where ~; and «;; are the interfacial energies for the I/0 interface and
the II/0 interface. G4 has an extra contribution from the inter-surface
potential w(h), which is negligible for large h, but can be important
for small h. In the limit of h — 0, Ga/A becomes equal to vy, the
interfacial energy between I and II. Hence

w(0) = yr,1 — 1 — Y1 (4.68)

which is equal to the spreading coefficient vs.

b)

Yo

Mostly wetting

P Y

Mostly non-wetting

The van der Waals force acting between the surfaces shown in Fig. 4.11
depends on three materials: material I, material II, and the material 0
which occupies the space between the two. If materials I and II are the
same, the van der Waals force is always attractive. On the other hand, if
materials I and II are different, the van der Waals force can be repulsive.

To a good approximation, the Hamaker constant Ay is proportional
to (ar — ag)(ar — ag), where a; (i = 1,11, 0) is the polarizability of the
material i. If oy = oy, Ay is always positive, and the van der Waals force
is attractive. On the other hand, if a; > ag > «aj7, the van der Waals
force is repulsive. In a thin liquid film on a solid substrate, the materials
I, 0, and II correspond to solid, liquid film, and air, respectively. In
this situation, the condition a; > ap > ays is fulfilled, and the van der
Waals force becomes repulsive, i.e., it acts to increase the thickness of
the liquid film. The repulsive van der Waals force acting in a thin liquid
film is called the disjoining pressure.

The disjoining pressure P; is given by the force derived from the van
der Waals potential, eq. (4.54)

Pd:—a—w: AH

Oh ~—  6mh? (4.69)

where Ay is negative.



Disjoining
pressure &
film thickness

The disjoining pressure becomes important in thin liquid films. Ac-
cording to the reasoning in Section 4.2.2, if the spreading coefficient yg
is positive, the liquid continues to spread on the surface, and the final
film thickness becomes zero. In reality, the spreading of the liquid (i.e.,
the thinning of the liquid film) stops at a certain thickness due to the
disjoining pressure.

Consider a liquid film of volume V' wetting the area A on the surface
of a substrate. The thickness of the film is h = V /A. The equilibrium
thickness is determined by minimizing the following free energy

F=—ysA+wh)A=V [—773 + @ (4.70)

This gives the following equation for the equilibrium thickness h.
Vs = w(he) — hew'(he) (4.71)

h. is usually few tens of nm. The disjoining pressure is negligible if the
film is much thicker than this value.




