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The book emphasizes study of macroscopic
phenomena, sometimes called emergence,
over the ever-downward dive into
theoretically fundamental ideas such

as string theory, which at some point
become empirically irrelevant by having no
observable consequences in our world.

The arguments come full circle with
modern dark energy ideas suggesting

that spacetime or the vacuum may not be
empty, but rather (for all we can observe) a
medium, a possibility ironically glimpsed
even by Einstein whose career began with
demolishing the similar but too-simplistic
notion of ether with his special

relativity work.
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Many particle systems

Many-particle systems often admit
an (analytical) statistical description
when their number becomes large.

In that sense they are simpler than
few-particle systems. This feature
has several diferent names — the law
of large numbers, ergodicity, etc. —
and it is one of the reasons for the
spectacular successes of statistical

physics.

Objectives - |

Introduzir e aplicar os métodos da Fisica Estatistica a uma
ampla gama de problemas, com énfase em Astrofisica.

O curso baseia-se nos capitulos 3 - 6 do livro Modern Classical
Physics de Kip Thorne e Roger Blandford.

Evita-se repetir matéria dada anteriormente, como
Termodinamica e o formalismo de Fisica Estatistica.

O capitulo 6 é coberto em parte nas aulas tedricas e oferecido
como further or independent study, no ambito da avaliagdo.
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Modern Classical Physics, by K
Thorne and R Blandford,

Princeton University Press, 2018
(Chapters 3, 4 and 6)

Bibliography (secondary)

Newtonian kinetic theory is treated in many textbooks on statistical physics. At an elementary level, Kittel
and Kroemer (1980, Chap. 14) is rather good. Texts at a more advanced level include Kardar (2007, Chap.
3), Reif (2008, Secs. 7.9-7.13 and Chaps. 12—14), and Reichl (2009, Chap. 11).

For a very advanced treatment with extensive applications to electrons and ions in plasmas, and electrons,
phonons, and quasi-particles in liquids and solids, see Lifshitz and Pitaevskii (1981).
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Peer-to-peer learning

You learn more when you take the role of a trainer. Mentors reinforce their
knowledge and gain insights while preparing or while trying to clarify the
doubts of learners who aren’t as familiar with the topic.

Hence, it’s not just the learners who are at an advantage; mentors get a lot
out of it too.

Kinetic Theory

The gaseous condition is exemplified in the soirée, where the members rush about
confusedly, and the only communication is during a collision, which in some
instances may be prolonged by button-holing.

JAMES CLERK MAXWELL (1873)
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Kinetic Theory

Kinetic theory deals W|th the stat|st|ca|
d|str|but|on of a “gas” made from a huge
number of “ part|c%es that travel freely,
without collisions, for distances (mean free
® paths) long compared to their sizes.

L In kinetic theory, the key concept is the
distribution function, or number density of
. particles in phase space, N, that is, the

® number of particles of some species (e.g.,
electrons) per unit of physical space and of
momentum space.

This N and the frame-independent laws it obeys provide us with a means for computing, from
microphysics, the macroscopic quantities of continuum physics: mass density, thermal energy density,
pressure, equations of state, thermal and electrical conductivities, viscosities, diffusion coefficients, . . ..

15
Examples:
* Whether neutrons in a nuclear reactor can survive long enough to maintain a
nuclear chain reaction and keep the reactor hot.
* How galaxies, formed in the early universe, congregate into clusters as the
universe expands.
* How spiral structure develops in the distribution of a galaxy’s stars.
* How, deep inside a white-dwarf star, relativistic degeneracy influences the
equation of state of the star’s electrons and protons.
* How a supernova explosion affects the evolution of the density and temperature
of interstellar molecules.
* How anisotropies in the expansion of the universe affect the temperature
distribution of the cosmic microwave photons—the remnants of the big bang.
* How changes of a metal’s temperature affect its thermal and electrical
conductivity (with the heat and current carried by electrons).
16
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KT in different limits

Speed -

Classical
Mechanics

Relativistic
Mechanics

Quantum Quantum
@ Mechanics Field Theory

17

Real (physical) and momentum spaces

(a)

FIGURE 31 (a) Euclidean physical space, in which a particle moves along a curve x(f) that is
parameterized by universal time 7. In this space, the particles momentum p(t) is a vector tangent to
the curve. (b) Momentum space, in which the particles momentum vector p is placed, unchanged,
with its tail at the origin. As time passes, the momentum’s tip sweeps out the indicated curve p(t).

18
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Phase space

The 3-dimensional physical space and 3-dimensional momentum space together constitute
a 6-dimensional phase space, with coordinates {x, y, z, px, p, , P}-

Consider the 6-dimensional volume d?V = dV,dV,,

In any Cartesian coordinate system, we can think of dV, as a cube located at (x, y, z) with
edge lengths dx, dy, dz, and similarly for dV,. Then, as computed in this coordinate system,
these volumes are

dV,=dx dy dz, dV,=dp,dp, dp,,
and

d2V = dx dy dz dp, dp, dp,.

19

Phase space

Direct product of direct space and reciprocal space

Phase Path of Duffing Oscillator

20

20
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Newtonian distribution function

The number density of particles at location (x, p) in phase space at time t

p dN dN
NEp)=—==———"1H
a*yv dv.dv,

is called the particle distribution function.

21

21

Newtonian and relativistic distribution function N

In Newtonian theory, the volumes dV, and dVp occupied by our collection of dN
particles are independent of the reference frame that we use to view them.

Not so in relativity theory: dV, undergoes a Lorentz contraction when one views it
from a moving frame, and dV, also changes; but (as we shall see) their product d?V =
dV,dV, is the same in all frames.

T refore2 in both Newtonian theory and relativity theory, the distribution function
= dN/d?V is independent of reference frame, and also, of course, independent of
any choice of coordinates.

N'is a coordinate independent scalar in phase space.

22

22
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Relativistic distribution function

Spacetime

FIGURE3.2 (a) Theworldline ¥(¢) ofa particle in spacetime (with patial di 4

parameterized by a parameter ¢ that is related to the particle’s 4-momentum by p = d¥/d¢. (b) The
trajectory of the particle in momentum space. The particle’s 4-momentum is confined to the mass
hyperboloid, 52 = —m? (also known as the mass shell).

23

23

Momentum space and mass hyperboloid

The momentum-space diagram drawn in Fig. 3.2b has as its coordinate axes the
components (p’, p' = p; = p,, p* = p, = py» p’ = p3 = p,) of the 4-momentum
as measured in some arbitrary inertial frame. Because the squared length of the 4-

momentum is always —m?,

p-p=—"+ () + (p) + (p) =—m?, (3.40)

the particle’s 4-momentum (the tip of the 4-vector p) is confined to a hyperboloid in
momentum space. This mass hyperboloid requires no coordinates for its existence; it

is the frame-independent set of points in momentum space for which p - p = —m?.

24

24
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E=p° (3.4d)
(with the £ in script font to distinguish it from the energy E = £ — m with rest mass
removed and its nonrelativistic limit £ = %m v?), and we embody the particle’s spatial
momentum in the 3-vector p = p,e, + p,e, + p.e,. Therefore, we rewrite the mass-
hyperboloid relation (3.4c) as

E=m*+ |p|~ (3.4¢)

If no forces act on the particle, then its momentum is conserved, and its location
in momentum space remains fixed. A force (e.g., due to an electromagnetic field)
pushes the particle’s 4-momentum along some curve in momentum space that lies
on the mass hyperboloid. If we parameterize that curve by the same parameter ¢ as
we use in spacetime, then the particle’s trajectory in momentum space can be written
abstractly as p(¢). Such a trajectory is shown in Fig. 3.2b.

25

25

Phase space

FIGURE3.3 Definition of the distribution function from the viewpoint of a specific observer in a specific
inertial reference frame, whose coordinate axes are used in these drawings. (a) At the event P, the
observer selects a 3-volume @V, and focuses on the set S of particles that lie in @V, (b) These particles
have momenta lying in a region of the mass hyperboloid that is centered on p and has 3-momentum
volume dV,.. Ifd N is the number of particles in that set S, then N'(P, p) =dN/dV,dV),.

This 7- or 8-dimensional phase
space, by contrast with the
nonrelativistic

6-dimensional phase space, is
frame independent. No
coordinates or reference

frame are actually needed to
define spacetime and explore its
properties, and

none are needed to define and
explore 4-momentum space or
the mass hyperboloid—
though inertial (Lorentz)
coordinates are often helpful in
practical situations.

26

26
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Volumes in phase space and distribution function

Now turn attention from an individual particle to a collection of a huge number of
identical particles, each with the same rest mass m, and allow m to be finite or zero
(it does not matter which). Examine those particles that pass close to a specific event
P (also denoted x) in spacetime; and examine them from the viewpoint of a specific
observer, who lives in a specific inertial reference frame. Figure 3.3a is a spacetime
diagram drawn in that observer’s frame. As seen in that frame, the event P occurs
at time ¢ and spatial location (x, y, z).

27

27
Specifically, the observer, in her inertial frame, chooses a tiny 3-volume
dV,=dxdyd:z (3.5a)
centered on location P (little horizontal rectangle shown in Fig. 3.3a) and a tiny 3-
volume
dV,=dp, dp, dp, (3.5b)
centered on p in momentum space (little rectangle in the p,-p,, plane in Fig. 3.3b).
Ask the observer to focus on the set S of particles that lie in )/, and have spatial
momenta in dV,, (Fig. 3.3). If there are d N particles in this set S, then the observer
will identify
dN dN
N=s—=—— (3.6)
avdy, d*Vv
as the number density of particles in phase space or distribution function.
28
28

14



17/11/23

PROOF OF FRAME INDEPENDENCE OF N/ = dN/d?V

To prove the frame independence of \, we shall consider the frame dependence of
the spatial 3-volume dV,, then the frame dependence of the momentum 3-volume
dV,, and finally the frame dependence of their product d* = dV,dV, and thence
of the distribution function N = d N /d?V.

The thing that identifies the 3-volume dV, and 3-momentum dV,, is the set of
particles S. We select that set once and for all and hold it fixed, and correspondingly,
the number of particles d N in the set is fixed. Moreover, we assume that the particles’
rest mass m is nonzero and shall deal with the zero-rest-mass case at the end by taking
the limit m — 0. Then there is a preferred frame in which to observe the particles S:
their own rest frame, which we identify by a prime.

In their rest frame and at a chosen event P, the particles S occupy the interior of
some box with imaginary walls that has some 3-volume dV,.. As seen in some other
“laboratory” frame, their box has a Lorentz-contracted volume dV, = V1 — v2dV,.
Here v is their speed as seen in the laboratory frame. The Lorentz-contraction factor
is related to the particles’ energy, as measured in the laboratory frame, by /1 — v2 =
m/E, and therefore £dV, = mdV,.. The right-hand side is a frame-independent
constant m times a well-defined number that everyone can agree on: the particles’
rest-frame volume dV,, i.e.,

EdV, = (a frame-independent quantity). (3.7a)

29

29
Thus, the spatial volume dV, occupied by the particles is frame dependent, and their
energy & is frame dependent, but the product of the two is independent of reference
frame.
4-position
of event
(X, y,z,t)
z
clocks and rulers
y inx,y, z directions
X
observer O
at the origin
of coordinate
frame F 30
30
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Turn now to the frame dependence of the particles’ 3-volume dV,,. As one sees
from Fig. 3.3b, V), is the projection of the frame-independent mass-hyperboloid
region d 3 onto the laboratory’s xyz 3-space. Equivalently, it is the time component
d 22 of d%,. Now, the 4-vector d b p» like the 4-momentum p, is orthogonal to the
mass hyperboloid at the common point where they intersect it, and therefore d b pis
parallel to p. This means that, when one goes from one reference frame to another,
the time components of these two vectors will grow or shrink in the same manner;:
d )_fg =dV), is proportional to p® =&, so their ratio must be frame independent:

dv,
—— = (a frame-independent quantity). (3.7b)

(If this sophisticated argument seems too slippery to you, then you can develop an
alternative, more elementary proof using simpler 2-dimensional spacetime diagrams:
Ex.3.1.)

By taking the product of Egs. (3.7a) and (3.7b) we see that for our chosen set of
particles S,

dVdV, = d*V = (a frame-independent quantity); (3.7¢)

and since the number of particles in the set, d N, is obviously frame-independent, we
conclude that

dN

N —3
dV,dV,

= :2—]; = (a frame-independent quantity). (3.8)

31

31

Exercise 3.1 Derivation and Practice: Frame Dependences of dV, and dV,  r 72
Use the 2-dimensional spacetime diagrams of Fig. 3.4 to show that £4V, anddV,,/€
are frame independent [Egs. (3.7a) and (3.7b)].

t

mass
hyperboloid

FIGURE3.4 (a) Spacetime diagram drawn from the viewpoint of the (primed) rest frame of the particles
S for the special case where the laboratory frame moves in the —x’ direction with respect to them.
(b) Momentum-space diagram drawn from viewpoint of the unprimed observer.

32

32
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Distribution function for photons

When dealing with photons or other zero-rest-mass particles, one often expresses
N in terms of the specific intensity I,,. This quantity is defined as follows (see Fig. 3.5).
An observer places a CCD (or other measuring device) perpendicular to the photons’
propagation direction n—perpendicular as measured in her reference frame. The
region of the CCD that the photons hit has surface area d A as measured by her, and
because the photons move at the speed of light ¢, the product of that surface area with
¢ times the time dt that they take to all go through the CCD is equal to the volume
they occupy at a specific moment of time:

dV, =dA cdt. (3.11a)

Focus attention on a set S of photons in this volume that all have nearly the same
frequency v and propagation direction n as measured by the observer. Their energies
£ and momenta p are related to v and n by

E=hv, p=(hv/c)n, (3.11b)

where h is Planck’s constant. Their frequencies lie in a range dv centered on v, and
they come from a small solid angle d$2 centered on —n; the volume they occupy in
momentum space is related to these quantities by

dV, = |pl’dQd|p| = (hv/c)*dS2(hdv/c) = (h/c)*v?dQdv. (3.110)
33
33
The photons’ specific intensity, as measured by the observer, is defined to be the total
energy
d€ = hvdN (3.11d)
(where d N is the number of photons) that crosses the CCD per unit area d A, per unit
time dt, per unit frequency dv, and per unit solid angle d<2 (i.e., per unit everything):
o :';ifi‘:: ;'//// @ dE
I=————. (3.12)
! ) . dAdtdvdQ2
FIGURE 3.5 Geometric construction used in
defining the specific intensity . (This I, is sometimes denoted I, o.) From Egs. (3.8), (3.11), and (3.12) we readily
deduce the following relationship between this specific intensity and the distribution
function:
|
== v
=i (3.13)
This relation shows that, with an appropriate renormalization, 1,,/v3 is the photons’
distribution function.
34
34
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Mean occupation number n

As an aid in defining the mean occupation number, we introduce the concept of
the density of states: Consider a particle of mass m, described quantum mechanically.
Suppose that the particle is known to be located in a volume dV), (as observed in
a specific inertial reference frame) and to have a spatial momentum in the region
dV, centered on p. Suppose, further, that the particle does not interact with any other
particles or fields; for example, ignore Coulomb interactions. (In portions of Chaps. 4
and 5, we include interactions.) Then how many single-particle quantum mechanical
states® are available to the free particle? This question is answered most easily by
constructing (in some arbitrary inertial frame) a complete set of wave functions
for the particle’s spatial degrees of freedom, with the wave functions (i) confined
to be eigenfunctions of the momentum operator and (ii) confined to satisfy the
standard periodic boundary conditions on the walls of a box with volume dV,. For
simplicity, let the box have edge length L along each of the three spatial axes of the
Cartesian spatial coordinates, so dV, = L3. (This L is arbitrary and will drop out of
our analysis shortly.) Then a complete set of wave functions satisfying (i) and (ii) is
the set {yr;  ;} with

1 . . .
¢ (27(/L)(Jx+h+lz)e—uur

Viki(x,y,z) = TP (3.142) .
35
The basis states (3.14a) are eigenfunctions of the momentum operator (%/i)V with
momentum eigenvalues
2rh . 2rh 2h
Py = —L Jj> Py= _L k, p,= _L 1 (3.14b)
correspondingly, the wave function’s frequency w has the following values in Newto-
nian theory [l and relativity I8
2 2
1 (2nh
n h :E:P—:—(—) '2+k2+12; 3.14c
@ m ) Y ) (3.14c)
B io=E=,/m?+ p?* > m + E in the Newtonian limit. (3.14d)

Equations (3.14b) tell us that the allowed values of the momentum are confined
to lattice sites in 3-momentum space with one site in each cube of side 27 A /L.
Correspondingly, the total number of states in the region dV,dV,, of phase space is
the number of cubes of side 2772/ L in the region dV,, of momentum space:

dv, L*dV, dV.dV,
sttates = L = L P (3.15)
(2wh/L)>  (2mh)? h3
This is true no matter how relativistic or nonrelativistic the particle may be.

Thus far we have considered only the particle’s spatial degrees of freedom. Particles
can also have an internal degree of freedom called “spin.” For a particle with spin s,
the number of independent spin states is

2s +1 ifm # 0 (e.g., an electron, proton, or atomic nucleus)
g, =12 ifm =0and s > 0 [e.g., a photon (s = 1) or graviton (s = 2)]
1 ifm = 0and s = 0 (i.e,, a hypothetical massless scalar particle) %
(3.16)
36
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Quantum states
INn momentum
space 3 ;

k+dk

37

37

Density of states & occupation number

sttates — &
d?y h3

N states =—

The ratio of the number density of particles to the number density of quantum
states is obviously the number of particles in each state (the state’s occupation number)
averaged over many neighboring states—but few enough that the averaging region is
small by macroscopic standards. In other words, this ratio is the quantum states’ mean
occupation number n:

N o . g
— — f. [ = N = 25
n= N = N5 ie, | N = Ngaresh 3 7. (3.18)

The mean occupation number 7 plays an important role in quantum statistical
mechanics, and its quantum roots have a profound impact on classical statistical
physics. a5

38
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Fermions, bosons and the classical limit

0 < n < 1 for fermions, 0 < 5 < oo for bosons.

Quantum theory also teaches us that, when 5 « 1, the particles, whether fermions
or bosons, behave like classical, discrete, distinguishable particles; and when n > 1
(possible only for bosons), the particles behave like a classical wave—if the particles
are photons (s = 1), like a classical electromagnetic wave; and if they are gravitons
(s = 2), like a classical gravitational wave. This role of n in revealing the particles’
physical behavior will motivate us frequently to use n as our distribution function

instead of \V.

39

39

Exercise 3.3 **Practice and Example: Regimes of Particulate and Wave-Like

Behavior 1 I

(a)

(b)

Cygnus X-1 is a source of X-rays that has been studied extensively by astronomers.
The observations (X-ray, optical, and radio) show that it is a distance r ~ 6,000
light-years from Earth. It consists of a very hot disk of X-ray-emitting gas that
surrounds a black hole with mass 15M, and the hole in turn is in a binary orbit
with a heavy companion star. Most of the X-ray photons have energies £ ~ 2
keV, their energy flux arriving at Earth is F ~ 10! W m~2, and the portion of
the disk that emits most of them has radius roughly 7 times that of the black
hole (i.e., R ~ 300 km).> Make a rough estimate of the mean occupation number
of the X-rays’ photon states. Your answer should be in the region n < 1, so
the photons behave like classical, distinguishable particles. Will the occupation
number change as the photons propagate from the source to Earth?

A highly nonspherical supernova in the Virgo cluster of galaxies (40 million light-
years from Earth) emits a burst of gravitational radiation with frequencies spread
over the band 0.5-2.0 kHz, as measured at Earth. The burst comes out in a time
of about 10 ms, so it lasts only a few cycles, and it carries a total energy of roughly
1073M %, where M, = 2 x 10%kg is the mass of the Sun. The emitting region
is about the size of the newly forming neutron-star core (10 km), which is small
compared to the wavelength of the waves; so if one were to try to resolve the source
spatially by imaging the gravitational waves with a gravitational lens, one would
see only a blur of spatial size one wavelength rather than seeing the neutron star.
What is the mean occupation number of the burst’s graviton states? Your answer
should be in the region 7 >> 1, so the gravitons behave like a classical gravitational
‘wave.

40

40
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Thermal equilibrium distribution functions

] — : T for fermions
e(E—m)/(kgT) 4 1 >
E— : T forb
! e(E—m)/(kgT) _ 1 r bosons.

Notice that the equilibrium mean occupation number (3.22a) for fermions lies in
the range 0-1 as required, while that (3.22b) for bosons lies in the range 0 to co.

41

41

42

Classical or Boltzmann distribution function

The regime u < —kpT, the mean occupation number is small compared to unity for
all particle energies E (since E is never negative; i.e., £ is never less than m). This is

the domain of distinguishable, classical particles, and in it both the Fermi-Dirac and
Bose-Einstein distributions become

n ~ e—(E-w)/(ksT) — g—(E—o)/kgT)

when p =p —m « —kpT (classical particles).

42
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Mean occupation number: n =< n;, >

18 — 1/ (e*+1)

laxwell — Boltzmann 1.6 — e
14 — 1/(e*-1)

1.2t

0.8
esisielieiesieosepeic

0.6

0.2

-4 -3 2 -1
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Exercise 3.7 **Example: Observations of Cosmic Microwave Radiation

from Earth B0 21

The universe is filled with cosmic microwave radiation left over from the big bang. At
each event in spacetime the microwave radiation has a mean rest frame. As seen in that
mean rest frame the radiation’s distribution function » is almost precisely isotropic
and thermal with zero chemical potential:

_ 1

= ikaTy) — 1

(c) Inactuality, Earth moves relative to the mean rest frame of the microwave back-
ground with a speed v of roughly 400 km s~ toward the Hydra-Centaurus region
of the sky. An observer on Earth points his microwave receiver in a direction that
makes an angle § with the direction of that motion, as measured in Earth’s frame.
Show that the specific intensity of the radiation received is precisely Planckian in
form [Egs. (3.23)], but with a direction-dependent Doppler-shifted temperature

n , with T,=2725K. (3.29) (

1—v?
— . (331)
1—vcosf

Note that this Doppler shift of T is precisely the same as the Doppler shift of the
frequency of any specific photon [Eq. (2.33)]. Note also that the & dependence
corresponds to an anisotropy of the microwave radiation as seen from Earth.
Show that because Earth’s velocity is small compared to the speed of light, the
(3.30) anisotropy is very nearly dipolar in form. Measurements by the WMAP satellite
give T, = 2.725 K and (averaged over a year) an amplitude of 3.346 x 10~3K for
the dipolar temperature variations (Bennett et al., 2003). What, precisely, is the
value of Earth’s year-averaged speed v?

. . T=T,
Here v is the frequency of a photon as measured in the mean rest frame. o

(a) Show that the specific intensity of the radiation as measured in its mean rest frame
has the Planck spectrum, Eq. (3.23). Plot this specific intensity as a function of
frequency, and from your plot determine the frequency of the intensity peak.

(b) Show that 5 can be rewritten in the frame-independent form

1

1= okl — 1"

where p is the photon 4-momentum, and i, is the 4-velocity of the mean rest
frame. [Hint: See Sec. 2.6 and especially Eq. (2.29).]
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Particle density and flux (N)

From the definition ' = d N /dV,dV),, of the distribution function, it is clear that
the number density of particles n(x, ¢) in physical space is given by the integral

dN dN
= = | —dV,= | NdV,. 3.32
"= av, / avav,”? / r @32

Similarly, the number of particles crossing a unit surface in the y-z plane per unit time
(i.e., the x component of the flux of particles) is

g __dN__ / dN  dx
*" dydzdt ) dxdydzdV, dt

P
v, = / Ny,

where dx /dt = p,/m is the x component of the particle velocity. This and the anal-
ogous equations for Sy and S, can be combined into a single geometric, coordinate-
independent integral for the vectorial particle flux:

dy
S= / Np 7”. (3.32b)

45

45

Stress tensor (N)

Notice that, if we multiply this S by the particles’ mass m, the integral becomes the
momentum density:

G:mS:/N’pdVV (3.320)

Finally, since the stress tensor T is the flux of momentum [Eq. (1.33)], its j-x compo-
nent (j component of momentum crossing a unit area in the y-z plane per unit time)
must be

dN dN  dx P
T.,= | ——— p;dV, :/7— dV ://\’ i=XdV,.
I / dydzdtdV, Pic¥p dxdydzdV, dt Pi%p Py tr
This and the corresponding equations for 7}, and T}, can be collected together into
a single geometric, coordinate-independent integral:

dV dV,
Tjk:/.v’vl’jpk#) ie., T:/,N'p@pr. (3.32d)

Notice that the number density n is the zeroth moment of the distribution function
in momentum space [Eq. (3.32a)], and aside from factors 1/ m, the particle flux vector is
the first moment [Eq. (3.32b)], and the stress tensor is the second moment [Eq. (3.32d)].
All three moments are geometric, coordinate-independent quantities, and they are
the simplest such quantities that one can construct by integrating the distribution
function over momentum space.

46
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Equations of state

If the Newtonian distribution function is isotropic in momentum space (i.e., is
a function only of the magnitude p = |p] = /p2 + p2 + p? of the momentum, as
is the case, e.g., when the particle distribution is thernialized), then the particle flux
S vanishes (equal numbers of particles travel in all directions), and the stress tensor
is isotropic: T= Pg, or T = P3 ;. Thus, it is the stress tensor of a perfect fluid.
[Here P is the isotropic pressure, and g is the metric tensor of Euclidian 3-space, with
Cartesian components equal to the Kronecker delta; Eq. (1.9f).] In this isotropic case,
the pressure can be computed most easily as 1/3 the trace of the stress tensor (3.32d):

— 1 — 1 2 2 2 de
P=iTy=; [NGi+ri+m"
1 [ 47 pid 4 o
_1 / N _ A / N ptdp. (3370
3 0 m 3m 0

47

47

Here in the third step we have written the momentum-volume element in spherical
polar coordinates as dV,, = p? sin 8d0d¢dp and have integrated over angles to get
47 p?dp. Similarly, we can reexpress the number density of particles (3.32a) and the
corresponding mass density as

o0 o0
n=4m f N pldp, p=mn=4rm / N p*dp. (3.37b)
0 0

Finally, because each particle carries an energy E = p?/(2m), the energy density in
this isotropic case (which we shall denote by U) is 3/2 the pressure:

2 00
)4 4 4 3

U= | —NdVy =—/ Np'dp==P (3.37

/Zm "oty TP K

[cf. Eq. (3.37a)].
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If we know the distribution function for an isotropic collection of particles,
Egs. (3.37) give us a straightforward way of computing the collection’s number density
of particles n, mass density p = nm, perfect-fluid energy density U, and perfect-fluid
pressure P as measured in the particles’ mean rest frame. For a thermalized gas, the
distribution functions (3.22a), (3.22b), and (3.22d) [with N" = (g,/ k*)n] depend on
two parameters: the temperature 7' and chemical potential y, so this calculation gives
n, U, and P in terms of 1 and 7. One can then invert n(u, T') to get u(n, T) and
insert the result into the expressions for U and P to obtain equations of state for
thermalized, nonrelativistic particles:

U=U(p,T), P=P(p,T). (338)

For a gas of nonrelativistic, classical particles, the distribution function is Boltz-
mann [Eq. (3.22d)], N = (g,/ h*)e™~EV/&sT), with E = p?/(2m), and this proce-
dure gives, quite easily (Ex. 3.8):

w/(kpT)
=8 = & Qumky T 2er/ kD), (3.3%)
}“TdB
3
U= EnkBT, P =nkpT. (3.39b)

Notice that the mean energy per particle is (cf. Ex. 3.4b)
3

E= EkBT . (3.390) o
49
Classical ideal gas PV = NkgT
;‘ T . < ® Q\
e _~ ® lu
@ 9 \n ®
" /" -
Propane Gas Tank Molecules inside the gas tank
: : : Vv
50
50
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Relativistic Number-Flux 4-Vector S and Stress-
Energy Tensor T

When we switch from Newtonian theory to special relativity’s 4-dimensional space-
time viewpoint, we require that all physical quantities be described by geometric,
frame-independent objects (scalars, vectors, tensors,...) in 4-dimensional
spacetime. We can construct such objects as momentum-space integrals over the
frame-independent, relativistic distribution function N'(P, p) = (gs/h3)n. The
frame-independent quantities that can appear in these integrals are (i) N itself,
(ii) the particle 4-momentum p, and (iii) the frame-independent integration ele-
ment dV,/€ [Eq. (3.7b)], which takes the form dp,dpdp./,/m* + p? in any inertial
reference frame. By analogy with the Newtonian regime, the most interesting such
integrals are the lowest three moments of the distribution function:

51

51
Oth, 1st and 2nd moments of N
dy
R = / N —p;
£
- dy dy
S = N——p, '..,S”E/N“—P;
f P ¢ P ¢
dV dy
T= f Np@p—L,| ie, "= /Np“pv td
£ £
Here and throughout this chapter, relativistic momentum-space integrals are taken
over the entire mass hyperboloid unless otherwise specified.
52
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Meaning of the moments of N

Zeroth

N 1
R= / d— — dV,, (3.34)
dV_,de E

(where of course dV, = dxdydz and dV, = dp,dpdp,). This is the sum, over all
particles in a unit 3-volume, of the inverse energy. Although it is intriguing that
this quantity is a frame-independent scalar, it is not a quantity that appears in any
important way in the laws of physics.

53
53
By contrast, the 4-vector field S of Eq. (3.33b) plays a very important role in
physics. Its time component in our chosen frame is
dN p° dN
s'= f dV, = f dY, 3.35
v.av, €= ] avav, (2359
(since p® and £ are just different notations for the same thing—the relativistic energy
/m? + p? of a particle). Obviously, this S° is the number of particles per unit spatial
volume as measured in our chosen inertial frame:
S% = n = (number density of particles). (3.35b)
The x component of Sis
x _ dN p* :/ dN dde :f dN av.
dvidV, € ") dxdydzdV,dt "] didydzdV, "
(3.350)
which is the number of particles crossing a unit area in the y-z plane per unit time
(i.e., the x component of the particle flux); similarly for other directions j:
ST —( J component of the particle flux vector S). (3.35d)
[In Eq. (3.35c¢), the second equality follows from
Jj J dxJ/d. dx’)

% = % = ;t//d; = % = (j component of velocity), (3.35¢)
where ¢ is the affine parameter such that p = dx/d¢.] Since S is the particle number
density and S/ is the particle flux, S [Eq. (3.33b)] must be the number-flux 4-vector

54
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Turn to the quantity T defined by the integral (3.33c). When we perform a 3+1
split of it in our chosen inertial frame, we find the following for its various parts:

a0 AN, o4V _ dN

= pp
dV.dV, »° dV,dV,

p“dv,, (3.36a)

is the u component of 4-momentum per unit volume (i.e., T% is the energy density,
and T/° is the momentum density). Also,

dN dv, dN  dx dN
T‘“:f “"—p=f7—“d17=f7“dv
avav,” ’ p dxdydzav, dt” ") drdyazav,” "

(3.36b)

is the amount of u component of 4-momentum that crosses a unit area in the y-z plane
per unit time (i.e., it is the x component of flux of & component of 4-momentum).
More specifically, T is the x component of energy flux (which is the same as the
momentum density 7*°), and T/* is the x component of spatial-momentum flux—
or, equivalently, the jx component of the stress tensor. These and the analogous
expressions and interpretations of 7% and T** can be summarized by

T% = (energy density), T7° = (momentum density) = T% = (energy flux),
Tk = (stress tensor). (3.36c)

Therefore [cf. Eq. (2.67f)], the T of Eq. (3.33c) must be the stress-energy tensor
introduced and studied in Sec. 2.13. Notice that in the Newtonian limit, where £ — m,
the coordinate-independent Eq. (3.33c) for the spatial part of the stress-energy tensor
(the stress) becomes [ N'p ® p dV,/m, which is the same as our coordinate-
independent Eq. (3.32d) for the stress tensor.

55
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Degenerate Hydrogen boundary (plasma)

The solid right boundary is the point at which the electrons cease to be-
have like classical particles, because their mean occupation number 7, ceases to be
«1. As one can see from the Fermi-Dirac distribution (3.22a), for typical electrons
(which have energies E ~ kgT), the regime of classical behavior (1, < 1; to the left
of the solid line) is ;t, <« —kpT and the regime of strong quantum behavior (1, > 1;
electron degeneracy; to the right of the solid line) is 1, 3> +kgT. The slanted solid
boundary in Fig. 3.7 is thus the location 1, = 0, which translates via Eq. (3.39a) to

P = Paeg = 2m p/Nyyy = (2m,/ ) 2rm kpT)¥? = 0.00808(T/10* K)*/* gem ™.
(3.41)

Although the hydrogen gas is degenerate to the right of this boundary, we can still
compute its equation of state using our kinetic-theory equations (3.37), so long as we
use the quantum mechanically correct distribution function for the electrons—the
Fermi-Dirac distribution (3.22a).” In this electron-degenerate region, 1z, > kT, the
electron mean occupation number 1, = 1/(eE~#<)/*8T) 1 1) has the form shown

AT /12,
00 . . . . 1
0.0 02 04 06 0.8 1.0 12
E/p.

FIGURE 3.8 The Fermi-Dirac distribution function for electrons in the
nonrelativistic, degenerate regime kpT < 1, < m,, with temperature such
that kpT/pz, = 0.03. Note that 1, drops from near 1 to near 0 over the range
1, —2kpT S E S pu, +2kpT. See Ex. 3.11b.

57

57

Zero T approximation

N, =1for p < pp=2m.p..

n,=0for p > pp. (3.42)

Here pp is called the Fermi momentum. (The word “degenerate” refers to the fact that
almost all the quantum states are fully occupied or are empty; i.e., 1, is everywhere
nearly 1 or 0.) By inserting this degenerate distribution function [or, more precisely,
N, = (2/ h®n,] into Egs. (3.37) and integrating, we obtain n, o p> and P, & pg°.
By then settingn, =n, = p/m, and solving for pp o n!/? o p'/3 and inserting into
the expression for P, and evaluating the constants, we obtain (Ex. 3.9) the following
equation of state for the electron pressure:

5/3
P 1 (3\** m,c? P /
=— (=2 === . (3.43)
20 \ 7 A mP/Ac

he=h/(m,c) =2.426 x 107" cm (3.44)

Here

is the electron Compton wavelength.

The rapid growth P, o« p°/3 of the electron pressure with increasing density is due
to the degenerate electrons’ being confined by the Pauli Exclusion Principle to regions
of ever-shrinking size, '
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i

4)\ LT 2 o] rr:frrll —nJ 1— aficl
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& neutron stars ﬂ

| P =P, =Eq. (3.43)

o
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Interior of white dwarfs

When the density of hydrogen in this degenerate regime is pushed on upward to

8mtm
312

Prel deg = P ~98x10° gcm_3 (3.46)
(dotted vertical line in Fig. 3.7), the electrons’ zero-point motions become relativis-
tically fast (the electron chemical potential ;1, becomes of order m c? and the Fermi
momentum p . of order m,c), so the nonrelativistic, Newtonian analysis fails, and the
matter enters a domain of relativistic degeneracy (Sec. 3.5.4). Both domains, nonrel-
ativistic degeneracy (1, < m,c*) and relativistic degeneracy (1, R m,c?), occur for
matter inside a massive white-dwarf star—the type of star that the Sun will become
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cloud of hydrogen helium core star finally
and dust condenses forms as hydrogen collapses,
shell expands forming a
white dwarf
. — " —
main-phase star burns
hydrogen in its core
(current state of star becomes a red giant consisting
Earth’s sun) of a carbon core surrounded
by hydrogen envelope
billions of years
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Relativistic Density, Pressure, Energy Density, and
Equation of State (isotropic systems)

E=—liy-p expressed in frame-independent form [Eq. (2.29)],

E=p’=/m?+ p? in mean rest frame.

Asin Newtonian theory, isotropy greatly simplifies the momentum-space integrals
(3.33) that we use to compute macroscopic properties of the particles: (i) The inte-
grands of the expressions S/ = [ N p/(dV,/€) and T/* =T% = [ N pJ p°(dV, /&)
for the particle flux, energy flux, and momentum density are all odd in the
momentum-space coordinate p/ and therefore give vanishing integrals: $/ = T/° =
T% = 0. (ii) The integral 77X = [ N p/ p*kdV »/€ produces an isotropic stress ten-
sor, T/* = Pgik = P§ik  whose pressure is most easily computed from its trace,

63

63
Using these results and the relations |p| = p for the magnitude of the mo-
mentum, dV,, = 47 p2dp for the momentum-space volume element, and £ = p° =
/m?+ p? for the particle energy, we can easily evaluate Egs. (3.33) for the particle
number density n = S, the total density of mass-energy T (which we denote p—
the same notation as we use for mass density in Newtonian theory), and the pressure
P. The results are
[o.¢]
IIESO=/¢/\/(1VP=4N‘/ ./'szdp)
0
o0
p=T"= / NEAV, =4n / NEptdp,
T A
3 5 JTp
64
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Equation of State for a Relativistic Degenerate
Hydrogen Gas (zero T)

We can do so with the aid of the following approximation for the relativistic Fermi-
Dirac mean occupation number 1, = 1/[e(€—#e/*k8T) 4 1]:

e~ 1for& < ji,=&p; ie,forp < pp=,/E% —m?, (3.50)

ne = 0for & > Ep; e, for p > pp. (3.51)

Here & is called the relativistic Fermi energy and p . the relativistic Fermi momentum.
By inserting this 1), along with NV, = (2/ h®)1), into the integrals (3.49) for the electron
number density n,, total density of mass-energy p,, and pressure P,, and performing
the integrals (Ex. 3.10), we obtain results that are expressed most simply in terms of
a parameter ¢ (not to be confused with time) defined by

EF =i, =m, cosh(t/4), PF= ‘/S% —m?=m,sinh(t/4).  (352)

65
The results are
! 87 [ pr 3 8x s'nh3(f/4) (3.52b)
n,—=— — =38 ] :
< 33 \m, 333
8tm, [PF/™me Tm
p, = ST / 21+ x2dx = 2 [sinh(r) — 1], (3.520)
22 Jo 423
8 PF/mg 3 4
| _ S, / Y dx = ""¢[sinh(r) — 8 sinh(1/2) + 3]. (352d)
)Lg 0 1+ x?2 1213
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White dwarfs

In a white-dwartf star, the protons, with their high rest mass, are nondegenerate,
the total density of mass-energy is dominated by the proton rest-mass density, and
since there is one proton for each electron in the hydrogen gas, that total is

8am, 4
p=mpn, = N sinh’(¢/4). (3.53a)
2

By contrast (as in the nonrelativistic regime), the pressure is dominated by the elec-
trons (because of their huge zero-point motions), not the protons; and so the total
pressure is

T

P=P,= 12’;5 [sinh(r) — 8 sinh(t/2) + 3t]. (3.53b)

67

67
White Dwarf
In the low-density limit, where t < 1s0 pr <« m, = m,c, we can solve the rela-
tivistic equation (3.52b) for f as a function of n, = /)//np and insert the result into the
relativistic expression (3.53b); the result is the nonrelativistic equation of state (3.43).
The dividing line p = pre| geg = 87m ,/(312) = 1.0 x 10° gcm =3 [Eq. (3.46)] be-
tween nonrelativistic and relativistic degeneracy is the point where the electron Fermi
momentum is equal to the electron rest mass [i.e., sinh(7 /4) = 1]. The equation of state
(3.53a) and (3.53b) implies
i P, o p°/ in the nonrelativistic regime, p < prel deg>
Sirius B
M= 1.0 My, P, x p*3  in the relativistic regime, p 3> Prel deg- (3.53¢)
R ~ 5800 km
These asymptotic equations of state turn out to play a crucial role in the structure and
stability of white dwarf stars (Secs. 13.3.2 and 26.3.5; Shapiro and Teukolsky, 1983;
68
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Two best examples of

(BBR) are the sun and
hot stove, both of which
emit red light due to
their temperature.

When heated, the
molecules comprising a
perfect blackbody
vibrate and emit light of
the same wavelength
as their vibration.

Even the fictitious
planet, , emits
BBR due to its immense
quantity of lava.

Hot Stove
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Equation of state for termal radiation

As was discussed at the end of Sec. 3.3, for a gas of thermalized photons in an en-
vironment where photons are readily created and absorbed, the distribution func-
tion has the blackbody (Planck) form n = 1/(e‘€/("87) — 1), which we can rewrite as
1/(eP/®*8T) — 1), since the energy € of a photon is the same as the magnitude p of its

momentum. In this case, the relativistic integrals (3.49) give (see Ex. 3.13) €
3 4 1 :
n=>bT>, p=aT®, P:;p, (3.54) 5
where 3
b
K -
b=16m¢(3)—L. =20.28cm™ K3, (3.54b) 8
h3c3 &
87° kg —15 34 167 -3 -4
= FI}—} =7.566 x 107 " ergcm™ " K™~ =7.566 x 10 JmK (3.54¢)
5 hic

are radiation constants. Here ¢ (3) = Z:’;l n~3=1.2020569 . . . is the Riemann zeta
function.

£000 K

N\
|

| Cassical heory (5000 K)

Wavelengh (um)
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Quantum gases: fermions and bosons (grand
canonical ensemble)

The equation of state for a quantum ideal gas is

pV = KTInE = ikTZ In[1 + ePHePe))
J
The summation over states can be replaced by an integration over energy levels with:
3

2m\z 1
w(e)de = 2w (h—T) Vezde 3D

From this, derive the quantum virial expansion (where A = ePH);
P o (FI)/V

kT T

1
A3 5
4 =1 j2
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Equation of state of
Bosons for any
dimension D

Vv m \D/2 Dj2-1 N D
- (. L V=IP.
© =D (2::;@) ¢

Fundamental thermodynamic relations for BE gas:

v e = sy _ V.
kaT =Y In(1-zef) = 74 de D(e)In (1 — ze7%) = pooan(a):
x
1 = D) %
N :Xk:iz"‘ﬂ" - :A de g7 = 3pooa(d): =<1,

« ~  D@e D,V
U=y :/ﬂ de sy = ko ypooan().

k

The range of fugacity is limited to the interval 0 < z < 1. At z = 1, the
expression for A must, in some cases, be amended by an additive term to
account for the possibility of a macroscopic population of the lowest energy
level (at e = 0).

Equation of state (with fugacity z in the role of parameter):

PV gppa(2)

= , z< 1.
NkgT — gppa(2)
1
£
08 3
2
5“: D=1
2 o8
£
z
2
04
02
o
0 01 02 03 04 05 06 07 o8 09 1
=

Note the classical limit when the dimensionality
D> oo
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Equations of state for

Bosons and Fermions in

2 dimensions

* The classical limit is the straight line

for positive p below the FD and above

the BE equations.

* The effective repulsions in FD increase
p while the effective attractions in BE

decrease it, w. r. to the classical EoS.

Equation of state for d = 2

——  Bosons

= = Fermions
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Exercise 3.10 Derivation and Practice: Equation of State for Relativistic,

Electron-Degenerate Hydrogen |3 EZJ

Derive the equations of state (3.52) for an electron-degenerate hydrogen gas. (Note:
It might be easiest to compute the integrals with the help of symbolic manipulation
software, such as Mathematica, Matlab, or Maple.)

75

75

Exercise 312 Example: Specific Heat for Phonons in an Isotropic Solid Kl
In Sec. 12.2 we will study classical sound waves propagating through an isotropic,
elastic solid. As we shall see, there are two types of sound waves: longitudinal with
frequency-independent speed C;, and transverse with a somewhat smaller frequency-
independent speed Cy. For each type of wave, s = L or T, the material of the solid
undergoes an elastic displacement § = Af, exp(ik - X — wr), where A is the wave
amplitude, f, is a unit vector (polarization vector) pointing in the direction of the
displacement, k is the wave vector, and  is the wave frequency. The wave speed is
C, =w/|k| (= C, or Cy). Associated with these waves are quanta called phonons. As
for any wave, each phonon has a momentum related to its wave vector by p = fik, and
an energy related to its frequency by E = iw. Combining these relations we learn
that the relationship between a phonons energy and the magnitude p = [p| of its
momentum is E = C,p. This is the same relationship as for photons, but with the
speed of light replaced by the speed of sound! For longitudinal waves f is in the
propagation direction k, so there is just on ization, g, = 1. For
f7- is orthogonal to k, so there are two orthogonal polarizations (e.g., f; = e, and
f7 = e, when k points in the e, direction), g7 = 2.
(@) Ph fboth types, longitudinal and transverse, are bosons. Why? [Hint: Each
normal mode of an elastic body can be described mathematically as a harmonic
oscillator.]

g

Phonons are fairly easily created, absorbed, scattered, and thermalized. A general
argument that we will give for chemical reactions in Sec. 5.5 can be applied to
‘phonon creation and absorption to deduce that, once they reach complete thermal
equilibrium with their environment, the phonons will have vanishing chemical
potential p = 0. What, then, will be their distribution functions 7 and V'?

Ignoring the fact that the sound waves’ wavelengths 3. = 27/ |k| cannot be smaller
than about twice the spacing between the atoms of the solid, show that the total
phonon energy (wave energy) in a volume V of the solid is identical to that for
blackbody photons in a volume V, but with the speed of light ¢ replaced by
the speed of sound C,, and with the photon number of spin states, 2, replaced
by g; =3 (2 for transverse waves plus 1 for longitudinal): Ei = a7V, with
a, = g,(475/15)(k}/ (H3C)) [cf. Egs. (3.54)].

Show that the specific heat of the phonon gas (the sound waves) is Cy = 4a,T>V.
This scales as T, whereas in a metal the specific heat of the degenerate electrons
scales as T (previous exercise), so at sufficiently low temperatures the electron
specific heat will dominate over that of the phonons.

=

(e) Show that in the phonon gas, only phonon modes with wavelengths longer than
~Ar = C;h/(kgT) are excited; that is, for A < A7 the mean occupation num-
ber is n < I; for A ~ Ay, n ~ 1; and for A > Ay, n>> 1. As T is increased, Ay
gets reduced. Ultimately it becomes of order the interatomic spacing, and our
computation fails, because most of the modes that our calculation assumes are
thermalized actually don’t exist. What is the critical temperature (Debye temper-
ature) at which our computation fails and the 7 law for Cy, changes? Show by a
roughly one-line argument that above the Debye temperature, Cy is independent
of temperature.
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Formalism: Liouville’s Theorem

The foundation for the collision-free evolution law will be Liouvilles theorem.
Consider a set S of particles that are initially all near some location in phase space
and initially occupyan i 1 (fr independent) ph: pace volume d?) =
dV,dV,. Pick a particle at the center of the set S and call it the “fiducial particle”
Since all the particles in S have nearly the same initial position and velocity, they
subsequently all move along nearly the same trajectory (world line): they all remain
congregated around the fiducial particle. Liouville’s theorem says that the phase-space
volume occupied by the set of particles S is conserved along the trajectory of the

fiducial particle:

d
JpAvdvy) =0. (363)

Here ¢ is an arbitrary parameter along the trajectory. For example, in Newtonian
theory £ could be universal time 7 or distance / traveled, and in relativity it could be
proper time r as measured by the fiducial particle (if its rest mass is nonzero) or the
affine parameter ¢ that is related to the fiducial particle’s 4-momentum by p = dx /d¢.

Px Px

— Ax—

(a) (b)

FIGURE 39 The phase-space region (x-p, part) occupied by a set S of
particles with finite rest mass, as seen in the inertial frame of the central,
fiducial particle. (a) The initial region. (b) The region after a short time.
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Collisionless Boltzmann equation

Since, in the absence of collisions or other nongravitational interactions, the
number dN of particles in the set S is conserved, Liouville’s theorem immediately
implies the conservation of the number density in phase space, ' = dN /(dV,dV,):

dN
dt

=0 along the trajectory of a fiducial particle. (3.64)

This conservation law is called the collisionless Boltzmann equation; in the context of
plasma physics (Part VI) it is sometimes called the Vlasov equation. Note that it says
that not only is the distribution function N frame independent; N also is constant along
the phase-space trajectory of any freely moving particle.

The collisionless Boltzmann equation is most nicely expressed in the frame-
independent form Eq. (3.64). For some purposes, however, it is helpful to express
the equation in a form that relies on a specific but arbitrary choice of inertial ref-
erence frame. Then ' can be regarded as a function of the reference frame’s seven
phase-space coordinates, \" = N(¢, x7, pr), and the collisionless Boltzmann equa-
tion (3.64) takes the coordinate-dependent form

AN _dtaN | 4N | dpioN _di (aN AN\ _ o
de " de dr ' de ax;  de dp; de\ ar  Tax; )T T

Here we have used the equation of straight-line motion dp;/dt = 0 for the particles
and have set dx; /dt equal to the particle velocity v;.

momentum p

position z

energy

position z
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Boltzmann transport equation

Since our derivation of the collisionless Boltzmann equation relies on the as-
sumption that no particles are created or destroyed as time passes, the collisionless
Boltzmann equation in turn should guarantee conservation of the number of parti-
cles, dn/dt + V - § = 0 in Newtonian theory (Sec. 1.8), and V-5=0 relativistically
(Sec. 2.12.3). Indeed, this is so; see Ex. 3.14. Similarly, since the collisionless Boltz-
mann equation is based on the law of momentum (or 4-momentum) conservation
for all the individual particles, it is ble to expect that the collisionless Boltz-
mann equation will guarantee the conservation of their total Newtonian momen-
tum [dG/dr + V - T =0, Eq. (1.36)] and their relativistic 4-momentum [6 -T=0,
Eq. (2.73a)]. And indeed, these conservation laws do follow from the collisionless

Boltzmann equation; see Ex. 3.14.

Thus far we have assumed that the particles move freely through phase space with
no collisions. If collisions occur, they will produce some nonconservation of A" along
the trajectory of a freely moving, noncolliding fiducial particle, and correspondingly,
the collisionless Boltzmann equation will be modified to read

(3.66)

where the right-hand side represents the effects of collisions. This equation, with
collision terms present, is called the Boltzmann transport equation. The actual form of
the collision terms depends, of course, on the details of the collisions. We meet some
specific examples in the next section [Egs. (3.79), (3.86a), (3.87), and Ex. 3.21] and in
our study of plasmas (Chaps. 22 and 23).

Scatter event

Free |
streaming
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Transport
coefficients

What are transport coefficients? An example is electrical conductivity «,. When
an electric field E is imposed on a sample of matter, Ohm’s law tells us that the matter
responds by developing a current density

(3.702)

The electrical conductivity is high if electrons can move through the material with
ease; it islow if electrons have difficulty moving. The impediment to electron motion is
scattering off other particles—off ions, other electrons, phonons (sound waves), plas-
mons (plasma waves), . . . . Ohm’s law is valid when (as almost always) the electrons
scatter many times, so they diffuse (random-walk their way) through the material. To
compute the electrical conductivity, one must analyze, statistically, the effects of the
many scatterings on the electrons’ motions. The foundation for an accurate analysis
is the Boltzmann transport equation (3.66).

81

Another example of a transport coefficient is thermal conductivity «, which ap-
pears in the law of heat conduction

Here F is the diffusive energy flux from regions of high temperature T to low. The im-
pediment to heat flow is scattering of the conducting particles; and, correspondingly,
the foundation for accurately computing « is the Boltzmann transport equation.

Other examples of transport coefficients are (i) the coefficient of shear viscosity
Nshear» Which determines the stress T;; (diffusive flux of momentum) that arises in a
shearing fluid [Eq. (13.68)]

Tij = —20gpear%ij> (3.70¢)
where o;; is the fluid’s rate of shear (Ex. 3.19), and (ii) the diffusion coefficient D,

which determines the diffusive flux of particles S from regions of high particle density
n to low (FicK’s law):
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Transport
coefficients
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Transport
coefficients

There is a diffusion equation associated with each of these transport coeffi-
cients. For example, the differential law of particle conservation dn/dt +V -S=0
[Eq. (1.30)], when applied to material in which the particles scatter many times so
S = —DVn, gives the following diffusion equation for the particle number density:

a
2 DV2n, (3.71)
at

where we have assumed that D is spatially constant. In Ex. 3.17, by exploring solutions
to this equation, we shall see that the root mean square (rms) distance  the particles
travel is proportional to the square root of their travel time, / = /4D, a behavior
characteristic of diffusive random walks.!? See Sec. 6.3 for deeper insights into this.
Similarly, the law of energy conservation, when applied to diffusive heat flow
F = —«VT, leads to a diffusion equation for the thermal energy density U and
thence for temperature [Ex. 3.18 and Eq. (18.4)]. Maxwell’s equations in a magnetized
fluid, when combined with Ohm’s law j = «,E, lead to diffusion equation (19.6) for
magnetic field lines. And the law of angular momentum conservation, when applied to
ashearing fluid with 7;; = —2n,,,0;;, leads to diffusion equation (14.6) for vorticity.
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Transport
coefficients

These diffusion equations, and all other physical laws involving transport coef-
ficients, are approximations to the real world—approximations that are valid if and
only if (i) many particles are involved in the transport of the quantity of interest (e.g.,
charge, heat, momentum, particles) and (ii) on average each particle undergoes many
scatterings in moving over the length scale of the macroscopic inhomogeneities that
drive the transport. This second requirement can be expressed quantitatively in terms
of the mean free path A between scatterings (i.e., the mean distance a particle trav-
els between scatterings, as measured in the mean rest frame of the matter) and the
macroscopic inhomogeneity scale L for the quantity that drives the transport (e.g., in
heat transport that scale is £ ~ T/|VT|; i.e., it is the scale on which the temperature
changes by an amount of order itself). In terms of these quantities, the second criterion
of validity is A < £. These two criteria (many particlesand A < £) together are called
diffusion criteria, since they guarantee that the quantity being transported (charge,
heat, momentum, particles) will diffuse through the matter. If either of the two dif-
fusion criteria fails, then the standard transport law (Ohm’s law, the law of heat con-
duction, the Navier-Stokes equation, or the particle diffusion equation) breaks down
and the corresponding transport coefficient becomes irrelevant and meaningless.
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Statistical
Mechanics

Statistical ensembles

_—insulation I

Microcanonical Canonical Grand Canonical
(const. NVE) (const. NVT) (const. uVT)

Gibbs or
Isobaric-isothermal
(const. NPT)

Enthalpy or
Isoenthalpic—isobaric
(const. NPH) H=E+PV

.—insulation
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The founding fathers
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Systems play the same role in statistical mechanics as is played by particles in kinetic
theory. A system is any physical entity. (Obviously, this is an exceedingly general
concept!) Examples are a galaxy, the Sun, a sapphire crystal, the fundamental mode
of vibration of that crystal, an aluminum atom in that crystal, an electron from that
aluminum atom, a quantum state in which that electron could reside, . . . .

SEMICLOSED SYSTEMS

Statistical mechanics focuses special attention on systems that couple only weakly to
the rest of the universe. Stated more precisely, we are interested in systems whose
relevant internal evolution timescales, 7, are short compared with the external
timescales, 7., on which they exchange energy, entropy, particles, and so forth,
with their surroundings. Such systems are said to be semiclosed, and in the idealized
limit where one completely ignores their external interactions, they are said to be
closed. The statistical mechanics formalism for dealing with them relies on the as-
sumption /7., < 1; in this sense, it is a variant of a two-lengthscale expansion
(Box 3.3).

Systems: closed and semi-closed

Some examples will elucidate these concepts. For a galaxy of, say, 10! stars, 7,
is the time it takes a star to cross the galaxy, so 7, ~ 10% yr. The external timescale
is the time since the galaxy’s last collison with a neighboring galaxy or the time since
it was born by separating from the material that formed neighboring galaxies; both
these times are 7oy ~ 10'° YT, S0 Tjpy/Texy ~ 1/100, and the galaxy is semiclosed. For
a small volume of gas inside the Sun (say, 1 m on a side), 7y, is the timescale for the
constituent electrons, ions, and photons to interact through collisions, i, < 1070 s;
this is much smaller than the time for external heat or particles to diffuse from the
cube’s surface to its center, 7, X 10~°s, so the cube is semiclosed. An individual
atom in a crystal is so strongly coupled to its neighboring atoms by electrostatic
forces that 7, ~ 7.y, which means the atom is not semiclosed. By contrast, for a
vibrational mode of the crystal, z;,, is the mode’s vibration period, and 7. is the
time to exchange energy with other modes and thereby damp the chosen mode’s
vibrations; quite generally, the damping time is far longer than the period, so the
mode is semiclosed. (For a highly polished, cold sapphire crystal weighing several
kilograms, 7.y can be ~10° 7,..) Therefore, it is the crystal’s vibrational normal
modes and not its atoms that are amenable to the statistical mechanical tools we shall
develop.
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When a semiclosed classical system is idealized as closed, so its interactions with the
external universe are ignored, then its evolution can be described using Hamilto-
nian dynamics (see, e.g., Marion and Thornton, 1995; Landau and Lifshitz, 1976;
Goldstein, Poole, and Safko, 2002). The system’s classical state is described by gen-
eralized coordinates q = {q;} and generalized momenta p = {p;}, where the index j
runs from 1 to W = (the system’s number of degrees of freedom). The evolution of

q, p is governed by Hamiltons equations

Hamiltonian dynamics for closed systems

dq; oH

dt ~ ap;’

dH

—_— = (4.1)

qu,

where H(q, p) is the hamiltonian, and each equation is really W separate equations.

Note that, because the system is idealized as closed, there is no explicit time depen-

dence in the hamiltonian. Of course, not all physical systems (e.g., not those with

strong internal dissipation) are describable by Hamiltonian dynamics,

88

88

44



17/11/23

Ensembles

In kinetic theory, we study statistically a collection of a huge number of particles.
Similarly, in statistical mechanics, we study statistically a collection or ensemble of
a huge number of systems. This ensemble is actually only a conceptual device, a
foundation for statistical arguments that take the form of thought experiments. As we
shall see, there are many different ways that one can imagine forming an ensemble,
and this freedom can be used to solve many different types of problems.

In some applications, we require that all the systems in the ensemble be closed and
be identical in the sense that they all have the same number of degrees of freedom, W;
are governed by hamiltonians with the same functional forms H (q, p); and have the
same volume V and total internal energy E (or £, including rest masses). However, the
values of the generalized coordinates and momenta at a specific time ¢, {q(t), p(t)},
need not be the same (i.e., the systems need not be in the same state at time ). If sucha
conceptual ensemble of identical closed systems (first studied by Boltzmann) evolves
until it reaches statistical equilibrium (Sec. 4.5), it then is called microcanonical; see
Table 4.1.

89
89
_—insulation
" onet NV (const NT) eonst W tsobanc.semerml
(const. NPT)
TABLE 4.1: Statistical-equilibrium ensembles used in this chapter
Ensemble Quantities exchanged with surroundings
Microcanonical Nothing
Canonical Energy E
Gibbs Energy E and volume V
Grand canonical Energy E and number of particles N; of various species /
90
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Preliminaries

1. This generalized 7 is proportional to the number of systems N in our
ensemble. (If we double Ny then n will double.) Because our ensemble is
only a conceptual device, we don't really care how many systems it contains,
so we divide 7 by Ny to get a renormalized, Nyy-independent distribution

function, p = /Ny, whose physical interpretation is

from our ensemble, will be in a quantum state

probability that a system, drawn randomly
p(t;q,p) = (4.4)
at location (q, p) in phase space at time ¢

2. If the systems of our ensemble can exchange particles with the external
universe (as is the case, for example, in the grand canonical ensemble of
Table 4.1), then their number of degrees of freedom, W, can change, so p
may depend on W as well as on location in the 2W-dimensional phase space:
p(t; W, q, p).
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Distribution function
In the sector of the system’s phase space with W degrees of freedom, denote the
number density of quantum states by
_ d Ngates _ d Ngates
Noates(W> . p) = DdV = dTy (45)
Here we have used
d% =dqdq,---dqy, d“p=dpdp,---dpy, dTy=d"gdYp. (a6
Then the sum of the occupation probability p over all quantum states, which must
(by the meaning of probability) be unity, takes the form
Z Pn = Z / p-fvstalesdrw =1L (4.7)
n W
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GEOMETRICAL VIEWPOINT

Equations (4.4)-(4.7) require some discussion. Just as the events and 4-momenta
in relativistic kinetic theory are geometric, frame-independent objects, similarly lo-
cation in phase space in statistical mechanics is a geometric, coordinate-independent
concept (though our notation does not emphasize it). The quantities {q, p} =
{g1» 92> - - - » Gw> P1> Pas - - . » Py} are the coordinates of that phase-space location.
When one makes a canonical transformation from one set of generalized coordinates
and momenta to another (Ex. 4.1), the gs and ps change, but the geometric location
in phase space does not. Moreover, just as the individual spatial and momentum vol-
umes dV, and dV,, occupied by a set of relativistic particles in kinetic theory are frame
dependent, but their product dV,dV),, is frame-independent [cf. Egs. (3.7a)-(3.7¢)],
so also in statistical mechanics the volumes d%; and d%p occupied by some chosen
set of systems are dependent on the choice of canonical coordinates (they change un-
der a canonical transformation), but the product d¥gd"p = dT'y (the systems’ total
volume in phase space) is independent of the choice of canonical coordinates and is
unchanged by a canonical transformation. Correspondingly, the number density of
states in phase space Ngates = d Ngtates/d T w and the statistical mechanical distribution
function p(t; W, q, p), like their kinetic-theory counterparts, are geometric, coordinate-
independent quantities: they are unchanged by a canonical transformation. See Ex. 4.1
and references cited there.
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DENSITY OF STATES

Classical thermodynamics was one of the crowning achievements of nineteenth-
century science. However, thermodynamics was inevitably incomplete and had to
remain so until the development of quantum theory. A major difficulty, one that we
have already confronted in Chap. 3, was how to count the number of states available to
a system. As we saw in Chap. 3, the number density of quantum mechanical states in
the 6-dimensional, single-particle phase space of kinetic theory is (ignoring particle
spin) Ny es = 1/ k%, where h is Planck’s constant. Generalizing to the 2 W-dimensional
phase space of statistical mechanics, the number density of states turns out tobe 1/ A"
[one factor of 1/ h for each of the canonical pairs (g, py), (g3, P2), - - » (Gw> Pw)]-
Formally, this follows from the canonical quantization procedure of elementary quan-
tum mechanics.
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When the laws of
quantum mechanics were developed, it became clear that all identical particles are
indistinguishable, so having particle 1 at location A in phase space and an identical
particle 2 atlocation B must be counted as the same state as particle 1 at B and particle
2 at A. Correspondingly, if we attribute half the quantum state to the classical phase-
space location {1 at .4, 2 at B} and the other half to {1 at 13, 2 at A}, then the classical
number density of states per unit volume of phase space must be reduced by a factor
of 2—and more generally by some multiplicity factor M. In general, therefore, we can
write the actual number density of states in phase space as

dan, states 1
Nitates = Ty, = MW (4.82)

and correspondingly, we can rewrite the normalization condition (4.7) for our prob-
abilistic distribution function as

dTy
= dly = =1 4.8b
S o= [ eNansirtu =3 [ o555 s

This equation can be regarded, in the classical domain, as defining the meaning of the
sum over states n. We shall make extensive use of such sums over states.

For N identical and indistinguishable particles with zero spin, it is not hard to see
that M= N1 Ifwei ffects of quantum ical spin (and th
can be regarded as degenerate), then there are g [Eq. (3.16)] more states present in
the phase space of each particle than we thought, so an individual state’s multiplicity
M (the number of different phase-space locations to be attributed to the state) is
reduced to

N!
= forasystem of N identical particles with spins. | (450
&5

Thisistheq inth inator of th

states [Eq. (4.8b)].
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ENSEMBLE AVERAGE

Each system in an ensemble is endowed with a total energy that is equal to its hamilto-

nian, E = H(q, p) [or relativistically, £ = H(q, p)]. Because different systems reside

at different locations (q, p) in phase space, they typically will have different energies.
A quantity of much interest is the ensemble-averaged energy, which is the average value

of E over all systems in the ensemble:

dr
B =Y =3 [0 ENaedrw =3 [ BT @i
n w w

For any other function A(q, p) defined on the phase space of a system (e.g., the linear
momentum or the angular momentum), one can compute an ensemble average by

the obvious analog of Eq. (4.10a):

(A)=Y" paA,.

(4.10b)

Our probabilistic distribution function p, = p(t; W, q, p) has deeper connections
to quantum theory than the above discussion reveals. In the quantum domain, even
if we start with a system whose wave function v is in a pure state (ordinary, everyday
type of quantum state), the system may evolve into a mixed state as a result of (i) inter-
action with the rest of the universe and (ii) our choice not to keep track of correlations
between the universe and the system (Box 4.2 and Sec. 4.7.2). The system’s initial, pure
state can be described in geometric, basis-independent quantum language by a state
vector (“ket”) [y); but its final, mixed state requires a different kind of quantum de-
scription: a density operator p. In the classical limit, the quantum mechanical density
operator p becomes our classical probabilistic distribution function p(t, W, q, p); see

Box 4.2 for some details.
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Conservation law for systems & Liouville equation

) a ( dq; a ( dp;
», 2 (p—’) +— (p—’) =0. (“.13)
at g dt ap; dt

Equation (4.13) has an implicit sum, from 1 to W, over the repeated index j (recall
the Einstein summation convention, Sec. 1.5). Using Hamilton's equations, we can

rewrite this as
) a dH a dH
0="L4 " (po=) - = (p=
at  dq; ap; ap; dq;

) ap O0H  dp d0H 9,
=% _"___'o_=_p+[p,l-1](l P (4.14)
at  dq;dp; dp;dq; ot :

where [p, H],N, is the Poisson bracket (e.g., Landau and Lifshitz, 1976; Marion and
Thornton, 1995; Goldstein, Poole, and Safko, 2002). By using Hamilton’s equations
once again in the second expression, we discover that this is the time derivative of p
moving with a fiducial system through the 2W-dimensional phase space:

dj ap  daj ap  dp; g, L)
(_P) 2% T4i0p TR0 DRy, H)gp=0.
dt ) movingwitha — gy dt dq; dt ap; dt

fiducial system

Therefore, the probability p is constant along the system’s phase space trajectory, as
was to be proved.

‘We call Eq. (4.15), which embodies this Liouville theorem, the statistical mechan-
ical Liouville equation or collisionless Boltzmann equation.
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Liouville’s theorem

Pi Pi

q; qi
(a) (b)

FIGURE 41 Liouville’s theorem. (a) The region in the g;-p; part of phase space
(with i fixed) occupied by a set S of identical, closed systems at time ¢ = 0.
(b) The region occupied by the same set of systems a short time later, r > 0.
The hamiltonian-generated evolution of the individual systems has moved
them in such a manner as to skew the region they occupy, but the volume
[ dp;dg; is unchanged.
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Boltzmann transport equation

What happens if the systems being studied interact weakly with their surround-

ings? We must then include an interaction term on the rieht-hand side of Ea. (4.15).

thereby converting it into the statistical mechanical version of the Boltzmann trans-

port equation:

() s = (%)
dt moving with a B dt interactions'

fiducial system

(4.16)

The time derivative on the left is now taken moving through phase space with a fiducial

system that does not interact with the external universe.
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STATISTICAL EQUILIBRIUM AND JEANS' THEOREM
Consider an ensemble of identical systems, all of which have the same huge number of
degrees of freedom (dimensionality W >> 1). Put all the systems initially in the same
state, and then let them exchange heat (but not particles, volume, or anything else)
with an external thermal bath that has a huge heat capacity and is in thermodynamic
equilibrium at some temperature 7. (For example, the systems might be impermeable
cubes of gas 1 km on a side near the center of the Sun, and the thermal bath might
be all the surrounding gas near the Sun’s center; or the systems might be identical
sapphire crystals inside a huge cryostat, and the thermal bath might be the cryostat’s
huge store of liquid helium.) After a sufficiently long time, 7 >> ., the ensemble
will settle down into equilibrium with the bath (i.e., it will become the canonical
ensemble mentioned in Table 4.1 above). In this final, canonical equilibrium state,
the probability p(z, q, p) is independent of time 7, and it no longer is affected by
interactions with the external environment. In other words, the interaction terms in
the evolution equation (4.16) have ceased to have any net effect: on average, for each
interaction event that feeds energy into a system, there is an interaction event that
takes away an equal amount of energy. The distribution function, therefore, satisfies
the interaction-free, collisionless Boltzmann equation (4.15) with the time derivative
dp/dt removed:

[ps Hlg,p= ;—p?— ;—pyzo. (4.17)

qjopj  9P;94;

We use the phrase statistical equilibrium to refer to any ensemble whose distribution
function has attained such a state and thus satisfies Eq. (4.17).
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Canonical distribution

position x

position

To summarize, an ensemble of identical systems with many degrees of freedom
W >> 1, which have reached statistical equilibrium by exchanging energy but nothing
else with a huge thermal bath, has the following canonical distribution function:

Peanonical = C exp(—=&/kpT), | Peanonical = C’ exp(—E /kgT) nonrelativistically.

(4.20)

momentum p
momentum p

Here £(q, p) is the energy of a system at location {q, p} in phase space, kp is Boltz-
mann’s constant, 7" is the temperature of the heat bath, and C is whatever normaliza-
= = tion constant is required to guarantee that ), p,, = 1. The nonrelativistic expression
is obtained by removing all the particle rest masses from the total energy £ and then
taking the low-temperature, low-thermal-velocities limit.

energy
energy

"

position states

position r states
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GENERAL EQUILIBRIUM ENSEMBLE

We can easily generalize the canonical distribution to an ensemble of systems that
exchange other additive conserved quantities (extensive variables) Ky, K5, ..., in
addition to energy &, with a huge, thermalized bath. By an obvious generalization of
the argument in Sec. 4.4.1, the resulting statistical equilibrium distribution function
must have the form

p=Cexp (—ﬁE—ZﬁAKA) @21)
A

When the extensive variables K 4 that are exchanged with the bath (and thus appear
explicitly in the distribution function p) are energy £, momentum P, angular mo-
mentum J, the number N; of the species I of conserved particles, volume V, or any
combination of these quantities, it is conventional to rename the multiplicative factors
B and B, so that p takes on the form

—-£+U-P+Q- iy Ny — PV
+ +Q-J+ 3 N, ] )

p:Cexp[ T
B

Here T, U, €, 17, and P are constants (called intensive variables) that are the same
for all systems and subsystems (i.e., that characterize the full ensemble and all its
subensembles and therefore must have been acquired from the bath); any extensive
variable that is not exchanged with the bath must be omitted from the exponential and
be replaced by an implicit delta function.
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SPECIAL EQUILIBRIUM ENSEMBLES

Henceforth (except in Sec. 4.10.2, when discussing black-hole atmospheres), we re-
strict our baths always to be at rest in our chosen reference frame and to be nonrotating
with respect to inertial frames, so that U = 2 = 0. The distribution function p can
then either be a delta function in the system momentum P and angular momentum
J (if momentum and angular momentum are not exchanged with the bath), or it can
involve no explicit dependence on P and J (if momentum and angular momentum
are exchanged with the bath; cf. Eq. (4.22) with U = € = 0). In either case, if energy
is the only other quantity exchanged with the bath, then the distribution function is
the canonical one [Eq. (4.20)]:

£ —E
Pcanonical = C exp [kBT] =C' exp [—kBT] > (4.25a)

where (obviously) the constants C and C’ are related by
C'=C exp [— > N,m,/kBT] .
I
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M] —_ C' exp [M] (4.25b)

are = C ex
PGibbs p [ kg T kT

(with an implicit delta function in N; and possibly in J and P). The combination
&€ + PV is known as the enthalpy H. If the exchanged quantities are energy and
particles but not volume (e.g., if the systems are 1-m cubes inside the Sun with totally
imaginary walls through which particles and heat can flow), then the equilibrium is
the grand canonical ensemble, with

£+, ﬁlNl] —Cexp [—E+Z, #1N1:|
kpT kgT

Pgrand canonical = C exp [

(4.25¢)
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SINGLE-PARTICLE QUANTUM STATES (MODES)

As an important example, let each system be a single-particle quantum state of
some field. These quantum states can exchange particles (quanta) with one an-
other. As we shall see, in this case the above considerations imply that, in sta-

tistical equilibrium at temperature T, the mean number of particles in a state,
whose individual particle energies are &, is given by the Fermi-Dirac formula (for
fermions) n = 1/(e©~A/*sT) 1 1) and Bose-Einstein formula (for “osons) n =
1/(e©~M/&eT) _ 1), which we used in our kinetic-theory studies in tne last chap-
ter [Egs. (3.22a), (3.22b)]. Our derivation of these mean occupation numbers will

Choose one specific mode S [e.g., a nonrelativistic electron plane-wave mode in

a box of side L with spin up and momentum p = (5, 3, 17)h/L]. There is one such

mode S in each of the systems in our ensemble, and these modes (all identical in their

b bl bl

Our derivation focuses on

properties) form a of our original
this subensemble of identical modes S. Because each of these modes can exchange

energy and particles with all the other modes in its system, the subensemble is grand

canonically distributed.

The (many-particle) quantum states allowed for mode S are states in which S
contains a finite number n of particles (quanta). Denote by Eg the energy of one
particle residing in mode S. Then the mode’s total energy when it is in the state |n)
(when it contains n quanta) is &, = n&g. [For a freely traveling, relativistic electron
mode, £ = y/m? + p?, Eq. (1.40), where p is the mode’s momentum, p, = jh/L

for some integer j and similarly for p, and p;; for a phonon mode with angular
eigenfrequency of vibration w, £g = hw.] Since the distribution of the ensemble’s
modes among the allowed quantum states is grand canonical, the probability p, of
being in state |n) is [Eq. (4.25¢)]

=& i i — &,
pn=C exp ( = Jrl"') =C exp (n(y, S)). (4.26)
ksT ksT

where i and T are the chemical potential and temperature of the bath of other modes,
with which the mode S interacts.®
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FERMION MODES: FERMI-DIRAC DISTRIBUTION

Suppose that S is a fermion mode (i.e., its particles have half-integral spin). Then
the Pauli exclusion principle dictates that S cannot contain more than one particle:
n can take on only the values 0 and 1. In this case, the normalization constant in the

distribution function (4.26) is determined by p, + p; = 1, which implies that

- 1 expl(i — Es)/(kpT)]
1+ exp[(in — Es)/(kpT)]

fo Tt expl(i — E9)/ ks

This is the explicit form of the grand canonical distribution for a fermion mode. For
many purposes (including all those in Chap. 3), this full probability distribution is
more than one needs. Quite sufficient instead is the mode’s mean occupation number

= (427a)

1 1

1
s == §, " expl(Es — )/ Ueg T+ 1 expl(Es — /(gD + 1

(4.27b)

Here Eg5 = £g — misthe energy of a particle in the mode with rest mass removed, and

= ju — m is the chemical potential with rest mass removed—the quantities used in

the nonrelativistic (Newtonian) regime.

Equation (4.27b) is the Fermi-Dirac mean occupation number asserted in Chap. 3
[Eq. (3.22a)] and studied there for the special case of a gas of freely moving, non-
interacting fermions. Because our derivation is completely general, we conclude
that this mean occupation number and the underlying grand canonical distribu-
tion (4.27a) are valid for any mode of a fermion field—for example, the modes for an
electron trapped in an external potential well or a magnetic bottle, and the (single-

particle) quantum states of an electron in a hydrogen atom.
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BOSON MODES: BOSE-EINSTEIN DISTRIBUTION

Suppose that S is a boson mode (i.e., its particles have integral spin), so it can contain
any nonnegative number of quanta; that is, » can assume the values 0, 1,2,3, . . .. Then
the normalization condition Z:c’ _o Pn = 1 fixes the constant in the grand canonical
distribution (4.26), resulting in

r=¢ n(i = &s)
Pn= [1 — exp (Tﬁ)] exp(TTs) . (4.282)

From this grand canonical distribution we can deduce the mean number of bosons
in mode S:

1 1
expl(€s — 1)/ (kpT)]— 1 exp[(Es — p)/(kpT)]— 1"

ns=(n)=y np,=

n=1

(4.28b)
in accord with Eq. (3.22b). As for fermions, this Bose-Einstein mean occupation num-
ber and underlying grand canonical distribution (4.28a) are valid generally, and not
solely for the freely moving bosons of Chap. 3.

When the mean occupation number is small, 75 < 1, both the bosonic and the
fermionic distribution functions are well approximated by the classical Boltzmann
mean occupation number

ns = exp[—(Es — i)/ (kgT)]. (429)

In Sec. 4.9 we explore an important modern application of the Bose-Einstein
mean occupation number (4.28b): Bose-Einstein condensation of bosonic atoms in

(= wir

2 3
(e~ m/kT

a magnetic trap.
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4.4.4 Equipartition Theorem for Quadratic, Classical Degrees of Freedom

As a second example of statistical equilibrium distribution functions, we derive the
classical equipartition theorem using statistical methods.
To motivate this theorem, consider a diatomic molecule of nitrogen, N,. Toa good

ion, its energy (its hamil ) can be written as

2

="’—i p—i p3+P—’1+1M,w2e2+J—‘2+—". (430)
2M  2M  2M  2M; 2 v 21 21
Here M is the molecule’s mass; p,, p,, and p; are the components of its translational
momentum; and the first three terms are the molecule’s kinetic energy of translation.
The next two terms are the molecule’s longitudinal vibration energy, with £ the
change of the molecule’s length (change of the separation of its two nuclei) from
equilibrium, P, the generalized momentum conjugate to that length change, w, the
vibration frequency, and M the generalized mass associated with that vibration. The
last two terms are the molecule’s energy of end-over-end rotation, with J, and J, the

comp of angular iated with this two-di I rotator and
I its moment of inertia.
Notice that every term in this hamiltonian is quadratic in a lized coordi-

nate or generalized momentum! Moreover, each of these coordinates and momenta
appears only in its single quadratic term and nowhere else, and the density of states
is independent of the value of that coordinate or momentum. We refer to such a co-
ordinate or momentum as a quadratic degree of freedom.

In some cases (e.g., the vibrations and rotations but not the translations), the en-
ergy E; = «¢? of a quadratic degree of freedom ¢ is quantized, with some energy
separation &, between the ground state and first excited state (and with energy sep-
arations to higher states that are S¢,). If (and only if) the thermal energy kpT is
significantly larger than ¢, then the quadratic degree of freedom ¢ will be excited far
above its ground state and will behave classically. The equipartition theorem applies
only at these high temperatures. For diatomic nitrogen, the rotational degrees of free-
dom J, and J, have g, ~ 10~* eV and g,/ kg ~ 1K, so temperatures big compared

to 1K are required for J, and J, to behave classically. By contrast, the vibrational
degrees of freedom € and P, have 5 ~ 0.1V and &y/kp ~ 1,000 K, so temperatures
of a few thousand Kelvins are required for them to behave classically. Above ~10* K,
the hamiltonian (4.30) fails: electrons around the nuclei are driven into excited states,
and the molecule breaks apart (dissociates into two free atoms of nitrogen).

The equipartition theorem holds for any classical, quadratic degree of freedom
[i.e., at temperatures somewhat higher than 7, = ¢,/(kzT)]. We derive this theorem
using the canonical distribution (4.25a). We write the molecule’s total energy as
E = a2 + E',where E’ does not involve ¢. Then the mean energy associated with ¢ is

[ ag? e P@E+E) 4¢ d(other degrees of freedom)
[ eP@E+ENE d(other degrees of freedom)

(Eg) = (431)
Here the exponential is that of the canonical distribution function (4.25a), the de-
nominator is the normalizing factor, and we have set 8 = 1/(kpT). Because ¢ does
not appear in the portion E’ of the energy, its integral separates out from the others
in both numerator and denominator, and the integrals over E in numerator and de-
nominator cancel. Rewriting [ a&? exp(—pat?) d¢ as —d/dB|[ [ exp(—pat?) d¢),
Eq. (4.31) becomes

__d o2
(B =—2in [[ exp(—pac )dc]
y (432)

=5 [\/%H / due"‘zdu] = i = %k,,T.

Therefore, in statistical equilibrium, the mean energy associated with any classical,
quadratic degree of freedom is %k pT. This is the equipartition theorem. Note that the
factor 3' follows from the quadratic nature of the degrees of freedom.

For our diatomic molecule, at room temperature there are three translational and
two rotational classical, quadratic degrees of freedom (p,, py, p,, Jy, Jy), so the
mean total energy of the molecule is %kﬂ T.Ata temperaturé of several thousand
Kelvins, the two vibrational degrees of freedom, £ and P;, become classical and the
molecule’s mean total energy is %kg T. Above ~10* K the molecule dissociates, and
its two parts (the two nitrogen atoms) have only translational quadratic degrees of
freedom, so the mean energy per atom is 2k, 7.
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Translational, rotational and vibrational

freedom

Motion Structure Degrees of freedom Average energy | 25
Translation All 3 EkT
Linear 2 kT g 2
Rotation : 3 )
Non-linear 3 fkT E 5
Linear IN-(3+2)=3N—=5 | 203N—5)kT =
Vibration % © 104
Non-linear 3N-(3+3)=3N-6 2(3N - G)EkT
A 5 54
Total Linear 3N (3N - 5) kT
Non-linear 3N 3(N — 1)kT 0 — T T T T T T T T — T T T T T
10 20 50 100 200 500 1000 2000 5000 10,000

Temperature (K)

degrees of

109

109

4.6 The Ergodic Hypothesis

The ensembles we have been studying are almost always just conceptual ones that do
not exist in the real universe. We have introduced them and paid so much attention
to them not for their own sakes, but because, in the case of statistical-equilibrium en-
sembles, they can be powerful tools for studying the properties of a single, individual
system that really does exist in the universe or in our laboratory.

This power comes about because a sequence of snapshots of the single system,
taken at times separated by sufficiently large intervals Az, has a probability distri-
bution p (for the snapshots™ instantaneous locations {q, p} in phase space) that is
the same as the distribution function p of some conceptual, statistical-equilibrium
ensemble. If the single system is closed, so its evolution is driven solely by its own
hamiltonian, then the time between snapshots should be Az > 7;, and its snapshots
will be (very nearly) microcanonically distributed. If the single system exchanges en-
ergy, and only energy, with a thermal bath on a timescale 7., then the time between
snapshots should be Az >> 7., and its snapshots will be canonically distributed; sim-
ilarly for the other types of bath interactions. This property of snapshots is equivalent
to the statement that for the individual system, the long-term time average'® of any
function of the system’s location in phase space is equal to the statistical-equilibrium
ensemble average:

A= lim 1
T—oo T

+T/2
f A(q(D), p(1)) =(A) = Z A,pp. (4.33)
-T2 "

This property comes about because of ergodicity: the individual system, as it evolves,
visits each accessible quantum state n for a fraction of the time that is equal to the
equilibrium ensemble’s probability p,,. -
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Entropy

For an ensemble =—ks > paln py.

n

Microcanonical

S:kBlnNs

tates*

The entropy, so defined, has some important properties. One is that when the
ensemble can be broken up into statistically independent subensembles of subsystems
(as is generally the case for big systems in statistical equilibrium), so that p =[], p,»
then the entropy is additive: S = )", S, (see Ex. 4.3). This permits us to regard the
entropy, like the systems’ additive constants of motion, as an extensive variable.

A second very important property is that, as an ensemble of systems evolves,
its entropy cannot decrease, and it generally tends to increase. This is the statistical
mechanical version of the second law of thermodynamics.

111
111
Entropy is maximized when p is constant
(microcanonical ensemble)
Consider the class of all distribution functions p that: (i) vanish unless the con- 5S=8 / (—kgpIn p — Ap)NyaresdT = 0. (4.36b)
stants of motion have the prescribed values € (in the tiny range §€) and K y; (ii) can be Yo

nonzero anywhere in the region of phase space, which we call ), where the prescribed Here A is a Lagrange multiplier that enforces the normalization (4.36a). Performing

values &, K 4 are taken; and (iii) are correctly normalized so that the variation, we find that

— s —_
Eﬂ pn= fy , PNaesdT =1 (@362) f (—kpIn p — kp — A)8pNigesdT =0, (4360)
%,

[Eq. (4.8b)]. We ask which p in this class gives the largest entropy

which is satisfied if and only if p is a constant, p = ¢~'"4/*5, independent of lo-
S=—ks ZX Puln py- cation in the allowed region ), of phase space (i.e., if and only if p is that of the
! microcanonical ensemble). This calculation actually only shows that the microcanon-
ical ensemble has stationary entropy. To show it is a maximum, one must perform
the second variation (i.e., compute the second-order contribution of §p to 85 =

8 [(—kpp In p)NyqresdT). That second-order contribution is easily seen to be

5, 2
525 = / (—k,,%)/vsmsdr <0. (4.36d)

Thus, the microcanonical distribution does maximize the entropy, as claimed.
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Examples

+1

+
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Paradox ?

There is an apparent paradox at the heart of statistical mechanics, and,

at various stages in the development of the subject it has led to
confusion and even despair.

It still creates controversy (see, e.g., Hawking and Penrose, 2010;

Penrose, 1999).

Its simplest and most direct expression is to ask: how can the time-
reversible, microscopic laws, encoded in a time-independent
hamiltonian, lead to the remorseless increase of entropy?
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Entropy increase

Assume, for simplicity, that at time t = 0 all the systems are concentrated in a small but
finite region of phase space with volume AT as shown in Fig. 4.2a, with p = 1/ (Nyates AT)
in the occupied region and p = 0 everywhere else.

Px Pk

AT

9k 9k 9k
(a) (b) ()

FIGURE 4.2 Evolution of a classical ensemble at f = 0 (a) toward statistical equilibrium by means of
phase mixing (b) (cf. Fig. 4.1) followed by coarse-graining of one’s viewpoint (c).

115

As time passes each system evolves under the action of the systems’ common hamiltonian. As
depicted in Fig. 4.2b, this evolution distorts the occupied region of phase space; but Liouville’s
theorem dictates that the occupied region’s volume remain unchanged and, correspondingly,
that the ensemble’s entropy remains unchanged.

S= _kB / (p In p)-/)vstatesdr = kB ln(-/\/’statesAr‘)

How can this be so? The ensemble is supposed to evolve into statistical equilibrium, with its
distribution function uniformly spread out over that entire portion of phase space allowed by the
hamiltonian’s constants of motion—a portion of phase space far, far larger —and in the process
the entropy is supposed to increase.
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Coarsening

Figure 4.2b,c resolves the paradox. As time passes, the occupied region becomes
more and more distorted. It retains its phase-space volume, but gets strung out into
a winding, contorted surface (Fig. 4.2b), which (by virtue of the ergodic hypothe-
sis) ultimately passes arbitrarily close to any given point in the region allowed by the
constants of motion. This ergodic wandering is called phase mixing. Ultimately, the
physicist gets tired of keeping track (or ceases to be able to keep track) of all these con-
tortions of the occupied region and chooses instead to take a coarse-grained viewpoint
that averages over scales larger than the distance between adjacent portions of the oc-
cupied surface, and thereby regards the ensemble as having become spread over the
entire allowed region (Fig. 4.2c). More typically, the physicist will perform a coarse-
grained smearing out on some given, constant scale at all times. Once the transverse
scale of the ensemble’s lengthening and narrowing phase-space region drops below
the smearing scale, its smeared volume and its entropy start to increase. Thus, for an
ensemble of closed systems it is the physicist’ choice (though often a practical necessity) to
perform coarse-grain averaging that causes entropy to increase and causes the ensemble
to evolve into statistical equilibrium.
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Discarding correlations

When one reexamines these issues in quantum mechanical language, one discovers
that the entropy increase is caused by the physicist’s discarding the quantum mechan-
ical correlations (the off-diagonal terms in the density matrix of Box 4.2) that get built
up through the systems’ interaction with the rest of the universe. This discarding of
correlations is accomplished through a trace over the external universe’s basis states
(Box 4.2), and if the state of system plus universe was originally pure, this tracing
(discarding of correlations) makes it mixed. From this viewpoint, then, it is the physi-
cist’ choice to discard correlations with the external universe that causes the entropy
increase and the evolution toward statistical equilibrium. Heuristically, we can say that
the entropy does not increase until the physicist actually (or figuratively) chooses to
let it increase by ignoring the rest of the universe. For a simple example, see Box 4.3
and Ex. 4.9.
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Gravity

119

119

4.10 Statistical Mechanics in the Presence of Gravity ]

Systems with significant gravity behave quite differently in terms of their statistical
mechanics than do systems without gravity. This has led to much controversy as to
whether statistical mechanics can really be applied to gravitating systems. Despite
that controversy, statistical mechanics has been applied in the presence of gravity in a
variety of ways, with great success, resulting in important, fundamental conclusions.
In this section, we sketch some of those applications: to galaxies, black holes, the
universe as a whole, and the formation of structure in the universe. Our discussion is
intended to give just the flavor of these subjects and not full details, so we state some
things without derivation. This is necessary in part because many of the phenomena
we describe rely for their justification on general relativity (Part VII) and/or quantum
field theory in curved spacetime (see, e.g., Parker and Toms, 2009).
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Galaxies as closed systems of non-interacting stars

Tyt ~ 2R /v ~ 10® yr.

4101 Galaxies E21

does not change our conclusions.

can use Hamiltonian dynamics to describe their motions.

A galaxy is dominated by a roughly spherical distribution of dark matter (believed
to comprise elementary particles with negligible collision cross section) with radius
Rp ~3 x 10*' m and mass M, ~ 10" kg. The dark matter and roughly N ~ 10'!
stars, each with fiducial mass m ~ 10°° kg, move in a common gravitational potential
well. (As we discuss in Chap. 28, the ratio of regular, or baryonic, matter to dark matter
is roughly 1:5 by mass.) The baryons (stars plus gas) are mostly contained within a
radius R ~ 3 x 10%° m. The characteristic speed of the dark matter and the stars and
gasis v ~ (GMp/Rp)"/> ~ (GNm/R)"/* ~ 200 kms™". For the moment, focus on
the stars, with total mass M = Nm, ignoring the dark matter and gas, whose presence

Age of galaxy 10'° yr. Galaxies have distant encounters with their neighbors on
timescales that can be smaller than their ages but still much longer than z;; in this
sense, they can be thought of as semiclosed systems weakly coupled to their environ-
ments. In this subsection, we idealize our chosen galaxy as fully closed (no interaction
with its environment). Direct collisions between stars are exceedingly rare, and strong
two-star gravitational encounters, which happen when the impact parameter'® is
smaller than ~Gm/v? ~ R/N, are also negligibly rare except, sometimes, near the
center of a galaxy (which we ignore until the last paragraph of this subsection). We
can therefore regard each of the galaxy’s stars as moving in a gravitational potential
determined by the smoothed-out mass of the dark matter and all the other stars, and
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Entropy of a galaxy

Probability density of N stars

Imagine that we have an ensemble of such galaxies, all with the same number of
stars N, the same mass M, and the same energy E (in a tiny range & E). We begin our
study of that ensemble by making an order-of-magnitude estimate of the probability
p of finding a chosen galaxy from the ensemble in some chosen quantum state. We
compute that probability from the corresponding probabilities for its sul
individual stars. The phase-space volume available to each star in the galaxy is ~
R3(mv)?, the density of single-particle quantum states (modes) in each star’s phase
space is 1/ h%, the number of available modes is the product of these, ~(Rmv/h)>,
and the probability of the star occupying the chosen mode, or any other mode, is
the reciprocal of this product, ~[h/(Rmuv) . The probability of the galaxy occupying
a state in its phase space is the product of the probabilities for each of its N stars
[Eq. (4.180)]:

Y s
~ ~10727X10%, (457)
2 (Rm v)

Are galaxies at equilibrium ?

Are real galaxies in statistical equilibrium? To gain insight into this question, we
estimate the entropy of a galaxy in our ensemble and then ask whether that entropy
has any chance of being the maximum value allowed to the galaxy’s stars (as it must
be if the galaxy is in statistical equilibrium).

Obviously, the stars (by contrast with electrons) are distinguishable, so we can
assume multiplicity M = 1 when estimating the galaxy’s entropy. Ignoring the (neg-

ligible) correlations among stars, the entropy computed by integating p In p over
the galaxy’s full 6N-dimensional phase space is just N times the entropy asso-
ciated with a single star, which is S~ Nky In(AT'/h%) [Egs. (4.37) and (4.8a)],
where AT is the phase-space volume over which the star wanders in its ergodic,
hamiltonian-induced motion (i.e., the phase space volume available to the star).
We express this entropy in terms of the galaxy’s total mass M and its total nonrel-
ativistic energy E ~ —GM?/(2R) as follows. Since the characteristic stellar speed is
v~ (GM/R)"?, the volume of phase space over which the star wanders is AT ~
(mv)*R® ~ (GMm®R)** ~ (~G*M>*m?*/(2E))*/?, and the entropy is therefore

SGalaxy ~ (M/m)kg In(AT/ h?) ~ (3M/(2m))kp In(—=G*M°m*/QER?)).  (458)

122

122

61



17/11/23

The galaxy entropy increases

Is this the maximum possible entropy available to the galaxy, given the constraints
that its mass be M and its nonrelativistic energy be E? No. Its entropy can be made
larger by removing a single star from the galaxy to radius r >> R, where the star’s
energy is negligible. The entropy of the remaining stars will decrease slightly, since
the mass M diminishes by m at constant E. However, the entropy associated with the
removed star, ~(3/2) In(GMm?r/h?), can be made arbitrarily large by making its
orbital radius r arbitrarily large. By this thought experiment, we discover that galaxies
cannot be in a state of maximum entropy at fixed E and M; they therefore cannot be
in a true state of statistical equilibrium.!¢ (One might wonder whether there is entropy
associated with the galaxy’s gravitational field, some of which is due to the stars, and
whether that entropy invalidates our analysis. The answer is no. The gravitational
field has no randomness, beyond that of the stars themselves, and thus no entropy;
its structure is uniquely determined, via Newton’s gravitational field equation, by the

stars’ spatial distribution.)
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Galaxies are not in
statistical equilibrium

Age of the Universe
Today: 14 Billion Years 9 Billion Ye 5 Billion Years 2 Billion Years

@] [8]=]]

Elliptical

® | s
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Spiral

In a real galaxy or other star cluster, rare near-encounters between stars in the
cluster core (ignored in the above discussion) cause individual stars to be ejected
from the core into distant orbits or to be ejected from the cluster altogether. These
ejections increase the entropy of the cluster plus ejected stars in just the manner of
our thought experiment. The core of the galaxy shrinks, a diffuse halo grows, and the
total number of stars in the galaxy gradually decreases. This evolution to ever-larger
entropy is demanded by the laws of statistical mechanics, but by contrast with systems
without gravity, it does not bring the cluster to statistical equilibrium. The long-range
influence of gravity prevents a true equilibrium from being reached. Ultimately, the
cluster’s or galaxy’s core may collapse to form a black hole—and, indeed, most large
galaxies are observed to have massive black holes in their cores. Despite this somewhat
negative conclusion, the techniques of statistical mechanics can be used to understand

galactic dynamics over the comparatively short timescales of interest to astronomers
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410.2 Black Holes 21

Quantum field theory predicts that, near the horizon of a black hole, the vacuum fluc-
tuations of quantized fields behave thermally, as seen by stationary (non-infalling)
observers. More specifically, such observers see the horizon surrounded by an atmo-
sphere that is in statistical equilibrium (a thermalized atmosphere) and that rotates
with the same angular velocity £ as the hole’s horizon. This remarkable conclusion,
due to Stephen Hawking (1976), William Unruh (1976), and Paul Davies (1977), is
discussed pedagogically in books by Thorne, Price, and MacDonald (1986) and Frolov
and Zelnikov (2011), and more rigorously in a book by Wald (1994). The atmosphere
contains all types of particles that can exist in Nature. Very few of the particles man-
age to escape from the hole’s gravitational pull; most emerge from the horizon, fly up
to some maximum height, then fall back down to the horizon. Only if they start out
moving almost vertically upward (i.e., with nearly zero angular momentum) do they
have any hope of escaping. The few that do escape make up a tiny trickle of Hawking
radiation (Hawking, 1975) that will ultimately cause the black hole to evaporate, un-
less it grows more rapidly due to infall of material from the external universe (which
it will unless the black hole is far less massive than the Sun).
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In discussing the distribution function for the hole’s thermalized, rotating atmo-
sphere, one must take account of the fact that the locally measured energy of a particle
decreases as it climbs out of the hole’s gravitational field (Ex. 26.4). One does so by
attributing to the particle the energy that it would ultimately have if it were to escape
from the hole’s gravitational grip. This is called the particle’s “redshifted energy” and
is denoted by £,. This £, is conserved along the particle’s world line, as is the pro-
jection j - €, of the particle’s orbital angular momentum j along the hole’s spin axis
(unit direction € -

The hole’s horizon behaves like the wall of a blackbody cavity. Into each up-
going mode (single-particle quantum state) a of any and every quantum field that
can exist in Nature, it deposits particles that are thermalized with (redshifted) tem-
perature T}, vanishing chemical potential, and angular velocity €. As a result,
the mode’s distribution function—which is the probability of finding N, particles
in it with net redshifted energy &, ., = N, x (redshifted energy of one quantum
in the mode) and with net axial component of angular momentum j, - € = N, x
(angular momentum of one quantum in the mode)—is

a0+ R 'ja]

(4.59)
kTy

Pa=CexP[
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The temperature T;; and angular velocity 2, like all properties of a black hole,
are determined completely by the hole’s spin angular momentum J ;; and its mass M.
To within factors of order unity, they have magnitudes [Ex. 26.16 and Eq. (26.77)]

N fi _6x1078K N Ju
M 8rkyGMy/d  My/My " MuQGMy )

(4.60)

For a very slowly rotating hole the “~” becomes an “=” in both equations. Notice how
small the hole’s temperature is, if its mass is greater than or of order M. For such holes
the thermal atmosphere is of no practical interest, though it has deep implications for
fundamental physics. Only for tiny black holes (that might conceivably have been

formed in the big bang) is T}, high enough to be physically interesting.

127

127

First law of thermodynamics & BH Entropy

Suppose that the black hole evolves much more rapidly by accreting matter than
by emitting Hawking radiation. Then the evolution of its entropy can be deduced
from the first law of thermod: ics for its here. By techni 1 to
some developed in the next chapter, one can argue that the atmosphere’s equilibrium
distribution (4.59) implies the following form for the first law (where we set ¢ = 1):

dMy =TydSy + Qy -dly (4.61)

[cf. Eq. (26.92)]. Here d M ; is the change of the hole’s mass due to the accretion (with
each infalling particle contributing its €, to d M ;;), d] j; is the change of the hole’s spin
angular momentum due to the accretion (with each infalling particle contributing its
j), and d Sy is the increase of the black holes entropy.

Because this first law can be deduced using the techniques of statistical mechanics
(Chap. 5), it can be argued (e.g., Zurek and Thorne, 1985) that the hole’s entropy

increase has the standard statistical h

ical origin and inter fon: if Nyyies
is the total number of quantum states that the infalling material could have been in
(subject only to the requirement that the total infalling mass-energy be 4 M ; and total
infalling angular momentum be dJ ), then dSy = kp log Nyyes [cf. Eq. (4.35)]. In
other words, the holes entropy increases by kp times the logarithm of the number
of quantum mechanically different ways that we could have produced its changes of
mass and angular momentum, @My, and dJ . Correspondingly, we can regard the
hole’s total entropy as k g times the logarithm of the number of ways in which it could
have been made. That number of ways is enormous, and correspondingly, the hole’s

entropy is enormous. This analysis, when carried out in full detail (Zurek and Thorne,
1985), reveals that the entropy is [Eq. (26.93)]

2

Sy =kg A”z ~1x107kg My )| (462)
4L, M,

where Ay ~ 47 (2GMy/c?) is the surface area of the hole’s horizon, and Lp =

VGh/c* =1.616 x 10733 cm is the Planck length—a result first proposed by Beken-

stein (1972) and first proved by Hawking (1975).

What is it about a black hole that leads to this peculiar thermal behavior and enor-
mous entropy? Why is a hole so different from a star or galaxy? The answer lies in the
black-hole horizon and the fact that things that fall inward through the horizon can-
not get back out. From the perspective of quantum field theory, the horizon produces
the thermal behavior. From that of statistical mechanics, the horizon produces the
loss of information about how the black hole was made and the corresponding en-
tropy increase. In this sense, the horizon for a black hole plays a role analogous to

coarse-graining in conventional classical statistical mechanics.!”
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Zeroth Law

Black holes Classical thermodynamics

For a non-rotating black | For a system in thermal

hole, the event horizon | equilibrium, that system
has constant has constant
surface gravity k. temperature T.

follow
@strange_antiquark
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First Law
Black holes Classical thermodynamics
dM = 8"GdA+ﬂd, dE = TdS — PdV
T
Relates the change in mass to | Relates the change in energy
the change in surface area & to the change in entropy &
change in angular momentum change in volume
follow
@strange_antiquark
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Second Law

Black holes
The surface area of a
black hole is
non-decreasing.
dA=>0
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Classical thermodynamics

The entropy of an
isolated system is
non-decreasing.
ds>0

Third Law

Classical thermodynamics

Black holes
Extremal black holes
(those with vanishing
surface gravity k = 0)

have the minimum
surface area.
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A system at absolute
zero (T = 0 ) have the
minimum entropy.
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More on Black Hole Thermodynamics &
SM (D. Wallace)

In this article, and its sequel, I want to lay out as carefully and thoroughly
as I can the theoretical evidence for BHT. It is written with the zeal of the
convert: I began this project sharing at least some of the outsiders’ scepticism,
and became persuaded that the evidence is enormously strong both that black
holes are thermodynamical systems in the fullest sense of the word, and that
their thermodynamic behaviour has a statistical-mechanical underpinning in
quantum gravity (and, as a consequence, that black hole evaporation is a unitary
process not different in kind from the cooling of other hot systems, and that it
involves no fundamental loss of information).

Black hole thermodynamics (BHT) is perhaps the most striking and unexpected
development in the theoretical physics of the last forty years. It combines the
three main areas of ‘fundamental’ theoretical physics — quantum theory, general
relativity, and thermal physics — and it offers a conceptual testing ground
for quantum gravity that might be the nearest that field has to experimental
evidence. Yet BHT itself relies almost entirely on theoretical arguments, and its
most celebrated result — Hawking’s argument that black holes emit radiation
— has no direct empirical support and little prospect of getting any. So to
outsiders — to physicists in other disciplines, or to philosophers of science — the
community’s confidence in BHT can seem surprising, or even suspicious. Can
we really be so confident of anything without any grounding in observation?
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410.3 The Universe [

Observations and theory agree that the universe, when far younger than 1s old,
settled into a very hot, highly thermalized state. All particles except gravitons were
in statistical equilibrium at a common, declining temperature, until the dark matter
and the neutrinos dropped out of equilibrium and (like the gravitons) became thermo-

dynamically isolated.

During this early relativistic era, the equations of relativistic cosmology imply
(as discussed in Sec. 28.4.1) that the temperature 7' of the universe at age ¢ satisfied
T/Tp~ (t/tp)~ "2 Here Tp = [fic>/(Gk%)]* ~ 10%2 K is the Planck temperature,
and tp = (fiG/c°)/? ~ 10~# s is the Planck time. (This approximate 7'/ T relation-
ship can be justified on dimensional grounds.) Now the region that was in causal
contact at time  (i.e., that was contained within a mutual cosmological horizon) had
avolume ~ (ct)*, and thermodynamic considerations imply that the number of rela-
tivistic particles that were in causal contact at time t was N ~ (kgT't /F)* ~ (t/tp)>/%
(This remains roughly true today when N has grown to ~10°!, essentially all in
microwave background photons.) The associated entropy was then S ~ Nk (cf.

Sec. 4.8).
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Although this seems like an enormous entropy, gravity can do even better. The
most efficient way to create entropy, as described in Sec. 4.10.2, is to form mas-
sive black holes. Suppose that out of all the relativistic particle mass within the
horizon, M ~ NkgT/c?, a fraction f has collapsed into black holes of mass M.
Then, with the aid of Sec. 4.10.2, we estimate that the associated entropy is Sy ~
f(My/M)(t/tp)'/S. If we use the observation that every galaxy has a central
black hole with mass in the ~10°-10° solar mass range, we find that f ~ 10~ and
Sy ~ 10''S today!

Now it might be claimed that massive black holes are thermodynamically isolated
from the rest of the universe because they will take so long to evaporate. That may be
so as a practical matter, but more modest gravitational condensations that create stars
and starlight can produce large local departures from thermodynamic equilibrium,
accompanied by (indeed, driven by) a net increase of entropy and can produce the
conditions necessary for life to develop.
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410.4 Structure Formation in the Expanding Universe:
Violent Relaxation and Phase Mixing 21

The formation of stars and galaxies (“structure”) by gravitational condensation pro-
vides a nice illustration of the phase mixing and coarse-graining that underlie the
second law of thermodynamics (Sec. 4.7.2).

It is believed that galaxies formed when slight overdensities in the dark matter
and gas (presumably irregular in shape) stopped expanding and began to contract
under their mutual gravitational attraction. Much of the gas was quickly converted
into stars. The dark-matter particles and the stars had very little random motion at
this stage relative to their random motions today, v ~ 200 km s~. Correspondingly,
although their physical volume V), was initially only moderately larger than today,
their momentum-space volume V,, was far smaller than it is today. Translated into
the language of an ensemble of N such galaxies, the initial coordinate-space volume
[ d* ~ V" occupied by each of the ensemble’s galaxies was moderately larger than
it is today, while its momentum-space volume [ @*"p ~ V" was far smaller. The
phase-space volume VY V";’ must therefore have increased considerably during the
galaxy formation—with the increase due to a big increase in the relative momenta of
neighboring stars. For this to occur, it was necessary that the stars changed their rel-
ative energies during the contraction, which requires a time-dependent hamiltonian.
In other words, the gravitational potential & felt by the stars must have varied rapidly,
so that the individual stellar energies would vary according to

dE _3H _ 3%

—_—= =m—. (4.66)
dt at ot
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The largest changes of energy occurred when the galaxy was contracting dynami-
cally (collapsing), so the potential changed significantly on the timescale it took stars
to cross the galaxy, 7, ~ 2R /v. Numerical simulations show that this energy trans-
fer was highly efficient. This process is known as violent relaxation. Although violent
relaxation could create the observed stellar distribution functions, it was not by itself
a means of diluting the phase-space density, since Liouville’s theorem still applied.

The mechanism that changed the phase-space density was phase mixing and
coarse-graining (Sec. 4.7.2 above). During the initial collapse, the particles and newly
formed stars could be thought of as following highly perturbed radial orbits. The
orbits of nearby stars were somewhat similar, though not identical. Therefore small
elements of occupied phase space became highly contorted as the particles and stars
moved along their phase-space paths.
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Let us make a simple model of this process by assuming the individual particles
and stars initially populate a fraction f < 1of the final occupied phase-space volume
Vinal- After one dynamical timescale t;,, ~ R/v, this small volume fVj, is (pre-
sumably) deformed into a convoluted surface that folds back on itself once or twice
like dough being kneaded by a baker, while still occupying the same volume f V.-
After n dynamical timescales, there are ~2" such folds (cf. Fig. 4.2b above). After
n ~ —log, f dynamical timescales, the spacing between folds becomes comparable
with the characteristic thickness of this convoluted surface, and it is no longer prac-
tical to distinguish the original distribution function. We expect that coarse-graining
has been accomplished for all practical purposes; only a pathological physicist would
resist it and insist on trying to continue keeping track of which contorted phase-space
regions have the original high density and which do not. For a galaxy we might expect
that f ~ 1073 and so this natural coarse-graining can occur in a time approximately
equal to — log, 10737;,; ~ 10 7;,, ~ 10° yr, which is 10 times shorter than the present
age of galaxies. Therefore it need not be a surprise that the galaxy we know best, our
own Milky Way, exhibits little obvious vestigial trace of its initial high-density (low
phase-space-volume) distribution function.?’
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411 Information Gained When Measuring the State of a System
in a Microcanonical Ensemble 21

In Sec. 4.7, we said that entropy is a measure of our lack of information about the
state of any system chosen at random from an ensemble. In this section we make this
heuristic statement useful by introducing a precise definition of information.
Consider a microcanonical ensemble of identical systems. Each system can reside
in any one of a finite number, Ny, of quantum states, which we label by integers
n=1,2,3,..., Nyaes- Because the ensemble is microcanonical, all Ny states are
equally probable; they have probabilities p, = lﬁNmﬁ. Therefore the entropy of any
system chosen at random from this ensemble isfS = —kg 3", pn In p, = kg In Nyaies
[Egs. (4.34) and (4.35)].
Now suppose that we measure the state of our chosen system and find it to be
(for example) state number 238 out of the N, equally probable states. How much
information have we gained? For this thought experiment, and more generally (see
Sec. 4.11.2 below), the amount of information gained, expressed in bits, is defined to be
the minimum number of binary digits required to distinguish the measured state from all
the other Ny states that the system could have been in. To evaluate this information
gain, we label each state n by the number n — 1 written in binary code (state n = 1
is labeled by {000}, state n = 2 is labeled by {001}, 3 is {010}, 4 is {011}, 5 is {100},
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61is {101}, 7 is {110}, 8 is {111}, etc.). If Nyqaes = 4, then the number of binary digits
needed is 2 (the leading 0 in the enumeration above can be dropped), so in measuring
the system’s state we gain 2 bits of information. If N, = 8, the number of binary
digits needed is 3, so our measurement gives us 3 bits of information. In general,
we need log, Ny, binary digits to distinguish the states from one another, so the
amount of information gained in measuring the system’ state is the base-2 logarithm of
the number of states the system could have been in:

I =108, Nyyes = (1/102) In Nypyyog = 1.4427 In Ny (4.672)

Notice that this information gain is proportional to the entropy S = kg In Nggyes
of the system before the measurement was made:

I=S5/(kgn2). (4.67b)

The measurement reduces the system’s entropy from S = kg In N, to zero
(and increases the entropy of the rest of the universe by at least this amount), and
it gives us I = S/(kg In 2) bits of information about the system. We shall discover
below that this entropy/information relationship is true of measurements made on a
system drawn from any ensemble, not just a microcanonical ensemble. But first we
must develop a more complete understanding of information.
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4M.2 Information in Communication Theory [Z1

The definition of “the amount of information / gained in a measurement” was for-
mulated by Claude Shannon (1948) in the context of his laying the foundations of
C ication theory. Cc ication theory deals (among other things) with the
problem of how to encode most efficiently a message as a binary string (a string of Os
and 1s) in order to transmit it across a communication channel that transports binary
signals. Shannon defined the information in a message as the number of bits required,
in the most compressed such encoding, to distinguish this message from all other messages
that might be transmitted.

Shannon focused on messages that, before encoding, consist of a sequence of sym-
bols. For an English-language message, each symbol might be a single character (a
letter A, B,C, . . ., Zoraspace; N = 27 distinct symbols in all), and a specific message
might be the following sequence of length L = 19 characters: “I DO NOT UNDER-
STAND” Suppose, for simplicity, that in the possible messages, all N distinct symbols
appear with equal frequency (this, of course, is not the case for English-language mes-
sages), and suppose that the length of some specific message (its number of symbols)
is L. Then the number of bits needed to encode this message and distinguish it from
all other possible messages of length L is

I=log, N =Llog, N. (4.682)

In other words, the average number of bits per symbol (the average amount of infor-
mation per symbol) is
I=log, N. (4.68b)
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If there are only two possible symbols, we have one bit per symbol in our message. If
there are four possible (equally likely) symbols, we have two bits per symbol, and so
forth.

It is usually the case that not all symbols occur with the same frequency in the
allowed messages. For example, in English messages the letter “A” occurs with a
frequency pj =~ 0.07, while the letter “Z” occurs with the much smaller frequency
pz =~ 0.001. All English messages, of character length L 3> N = 27, constructed by
a typical English speaker, will have these frequencies of occurrence for “A” and “Z”.
Any purported message with frequencies for “A” and “Z” differing substantially from
0.07 and 0.001 will not be real English messages, and thus need not be included
in the binary encoding of messages. As a result, it turns out that the most efficient
binary encoding of English messages (the most compressed encoding) will use an
average number of bits per character somewhat less than log, N = log, 27 = 4.755.
In other words, the average information per character in English language messages
is somewhat less than log, 27.
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A straightforward generalization of this argument (Ex. 4.17) shows that, when one
constructs messages with very large length L >> N from a pool of N symbols that occur
with frequencies py, p,, . . ., py, the minimum number of bits required to distinguish
all the allowed messages from one another (i.e., the amount of information in each
message) is

N
I=L Z —p, log, p,; (4.70)

n=1

so the average information per symbol in the message is

N N
I= Z —Pnlog; pp=(1/1n2) Z —PnIn p,. (4.71)
n=1

n=1
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4.11.4 Some Properties of Information

Because of the similarity of the general formulas for information and entropy (both
proportional to Y, —p,, In p,), information has very similar properties to entropy.
In particular (Ex. 4.18):

1. Information is additive (just as entropy is additive). The information in two
successive, independent messages is the sum of the information in each
message.

2. If the frequencies of occurrence of the symbols in a message are p,, = 0 for
all symbols except one, which has p, = 1, then the message contains zero
information. This is analogous to the vanishing entropy when all states have
zero probability except for one, which has unit probability.

3. For a message L symbols long, whose symbols are drawn from a pool of N
distinct symbols, the information content is maximized if the probabilities
of the symbols are all equal (p,, = 1/N), and the maximal value of the infor-
mation is / = L log, N. This is analogous to the microcanonical ensemble
having maximal entropy.
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MEMORY AND ENTROPY

Information is also a key concept in the theory of computation. As an important
example of the relationship of information to entropy, we cite Landauer’s (1961, 1991)
theorem: In a computer, when one erases L bits of information from memory, one
necessarily increases the entropy of the memory and its environment by at least
AS = Lkpg In 2 and correspondingly, one increases the thermal energy (heat) of the
memory and environment by at least AQ = TAS = LkgT In 2 (Ex. 4.21).
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Bibliographic Note

Statistical mechanics has inspired a variety of readable and innovative texts. The clas-
sic treatment is Tolman (1938). Classic elementary texts are Kittel (2004) and Kittel
and Kroemer (1980). Among more modern approaches that deal in much greater
depth with the topics covered in this chapter are Lifshitz and Pitaevskii (1980), Chan-
dler (1987), Sethna (2006), Kardar (2007), Reif (2008), Reichl (2009), and Pathria
and Beale (2011). The Landau-Lifshitz textbooks (including Lifshitz and Pitaevskii,
1980) are generally excellent after one has already learned the subject at a more el-
ementary level. A highly individual and advanced treatment, emphasizing quantum
statistical mechanics, is Feynman (1972). A particularly readable account in which
statistical mechanics is used heavily to describe the properties of solids, liquids, and
gases is Goodstein (2002). Readable, elementary introductions to information theory
are Raisbeck (1963) and Pierce (2012); an advanced text is McEliece (2002).

150

150

75



17/11/23

Random Processes

ROBERT BROWN (1828)

These motions were such as to satisfy me, after frequently repeated observation, that they arose
neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle itself.
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6.1 Overview

In this chapter we analyze, among others, the following issues:

What is the time evolution of the distribution function for an ensemble of
systems that begins out of statistical equilibrium and is brought to equilib-
rium through contact with a heat bath?

How can one characterize the noise introduced into experiments or obser-
vations by noisy devices, such as resistors and amplifiers?

What is the influence of such noise on one’s ability to detect weak signals?
What filtering strategies will improve oneé’s ability to extract weak signals
from strong noise?

Frictional damping of a dynamical system generally arises from coupling to
many other degrees of freedom (a bath) that can sap the system’s energy.
What is the connection between the fluctuating (noise) forces that the bath
exerts on the system and its damping influence?
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6.2.1 Random Variables and Random Processes

RANDOM VARIABLE

A (1-dimensional) random variable is a (scalar) function y (), where f is usually time,
for which the future evolution is not determined uniquely by any set of initial data—
or at least by any set that is knowable to you and me. In other words, random variable
is just a fancy phrase that means “unpredictable function” Throughout this chapter,
we insist for simplicity that our random variables y take on a continuum of real values
ranging over some interval, often but not always —o0 to +00. The generalizations to
y with complex or discrete (e.g., integer) values, and to independent variables other
than time, are straightforward.

Examples of random variables are: (i) the total energy E(t) in a cell of gas that is
in contact with a heat bath; (ii) the temperature 7'(t) at the corner of Main Street and
Center Street in Logan, Utah; (iii) the price per share of Google stock P(t); (iv) the
mass-flow rate M (t) from the Amazon River into the Atlantic Ocean. One can also
deal with random variables that are vector or tensor functions of time; in Track-Two
portions of this chapter we do so.
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Flow mass rate from the Amazon’s river
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RANDOM PROCESS
A (1-dimensional) random process (also called “stochastic process”) is an ensemble £
of real random variables y(t) that, in a physics context, all represent the same kind of
physical entity. For example, each y () could be the longitude of a particular oxygen
molecule undergoing a random walk in Earth’s atmosphere. The individual random
variables y(t) in the ensemble € are often called realizations of the random process.
As an example, Fig. 6.1 shows three realizations y(f) of a random process that
represents the random walk of a particle in one dimension. For details, see Ex. 6.4,
which shows how to generate realizations like these on a computer.

L L L L L
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t
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PROBABILITY DISTRIBUTIONS FOR A RANDOM PROCESS
Since the precise time evolution of a random variable y(f) is not predictable, if one
wishes to make predictions, one can do so only probabilistically. The foundation for
probabilistic predictions is a set of probability functions for the random process (i.e.,
for the ensemble € of its realizations).

More specifically, the most general (1-dimensional) random process is fully char-
acterized by the set of probability distributions p;, py, ps, . . . defined as

PnOns b+ - 3 Y25 s Y15 1)AY,, - . . dy,dy,. (6.1)

Equation (6.1) tells us the probability that a realization y(t), drawn at random from
the process (the ensemble &), (i) will take on a value between y, and y; + dy, at time
t;, (ii) also will take on a value between y, and y, + dy, at a later time f,, . .., and
(iii) also will take on a value between y, and y, + dy, atalater time #,. (Note that the
subscript n on p,, tells us how many independent values of y appear in p,, and that
earlier times are placed to the right—a practice common for physicists, particularly
when dealing with propagators.) If we knew the values of all the process’s probability
distributions (an infinite number of p,,s!), then we would have full information about
its statistical properties. Not surprisingly, it will turn out that, if the process in some
sense is in statistical equilibrium, then we can compute all its probability distributions
from a very small amount of information. But that comes later; first we must develop
more formalism.
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ENSEMBLE AVERAGES

From the probability distributions, we can compute ensemble averages (denoted by

brackets). For example, the quantities

(y@p) = / y1P1(y> t)dy; and 0_3.(’1) E([)’(’l) - (J’(fl))lz) (6.2a)

are the ensemble-averaged value of y and the variance of y at time #,. Similarly,

(y)y(ty)) = / Y2Y1P2 (2 13 Y1> 11)dyrdy, (6.2b)

is the average value of the product y(#;)y(fy).

CONDITIONAL PROBABILITIES

Besides the (absolute) probability distributions p,,, we also find useful an infinite series
of conditional probability distributions P,, P;, . . . , defined as

Pn(yn' tnlyn—l' Lp—p5- -

5V H)AY,. (6.3)

This distribution is the probability that, if y(f) took on the values y;, y,, ..., y,_;at
times t;, 1y, . . ., ,_y, then it will take on a value between y, and y, + dy, at a later

time 7,,.
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FIGURE 6.2 The probability P,(v,, 1,]0, #;) that a molecule with
vanishing speed at time ¢, will have speed v, (in a unit interval dv,)
at time #,. Although the molecular speed is a stationary random
process, this probability evolves in time.

STATIONARY RANDOM PROCESSES
A random process is said to be stationary if and only if its probability distributions p,,
depend just on time differences and not on absolute time:

POty + T 50 L+ Y+ T) =PV bys -5V I Yo 1) (65)

If this property holds for the absolute probabilities p,,, then Eq. (6.4) guarantees it also
will hold for the conditional probabilities P,.

Nonstationary random processes arise when one is studying a system whose evo-
lution is influenced by some sort of clock that registers absolute time, not just time
differences. For example, the speeds v(t) of all oxygen molecules in downtown St. An-
thony, Idaho, make up random processes regulated in part by the atmospheric temper-
ature and therefore by the rotation of Earth and its orbital motion around the Sun. The

influence of these clocks makes v(f) a nonstationary random process. Stationary ran-
dom processes, by contrast, arise in the absence of any regulating clocks. An example
is the speeds v(r) of all oxygen molecules in a room kept at constant temperature.
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Stationary and non-stationary molecular velocity
distributions

# of molecules
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Henceforth, throughout this chapter, we restrict attention to random processes that
are stationary (at least on the timescales of interest to us); and, accordingly, we use
1Y) =pi(y, 1) (6.62)
for the probability, since it does not depend on the time #,. We also denote by
Py (32, tly)) = Py(y2, ty1, 0) (6.6b)
the probability that, if a (realization of a) random process begins with the value y,,
then after the lapse of time ¢ it has the value y,.
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Ergodic hypothesis

6.2.3 Ergodic Hypothesis

A (stationary) random process (ensemble £ of random variables) is said to satisfy the
ergodic hypothesis (or, for brevity, it will be called ergodic) if and only if it has the
following property.

Let y(t) be a random variable in the ensemble £ (i.e., let y(f) be any realization of
the process). Construct from y(f) a new ensemble £ whose members are

YX@t)y=y(t + K1), 6.7)

where K runs over all integers, negative and positive, and where T is some very
large time interval. Then £ has the same probability distributions p, as &; that is,
Pu(Yys ty5 .. .5 Yy, 1)) has the same functional form as p,(y,, t,; - ..; Y1, ;) for all
times such that [f; — ;| < T.

This is essentially the same ergodic hypothesis as we met in Sec. 4.6.
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Ergodic processes

As in Sec. 4.6, because of the ergodic hypothesis, time averages defined using any
realization y () of a random process are equal to ensemble averages:

T/2
F=tim 2 [ Fo@)ar=Fon= [ Fommd, 6
T—oo T Jo1)2

for any function F = F(y). In this sense, each realization of the random process is
representative, when viewed over sufficiently long times, of the statistical properties
of the process’s entire ensemble—and conversely. Correspondingly, we can blur the
distinction between the random process and specific realizations of it—and we often
do so.
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6.3.1 Markov Processes; Random Walk

A random process y(t) is said to be Markov (also sometimes called “Markovian”) if
and only if all of its future probabilities are determined by its most recently known
value:

PV Ll Vs tats - - 3 Y0 1) = Po(Vps ty| V1o ta—y) forallz, >...>t,>1,.

(6.9)

This relation guarantees that any Markov process (which, of course, we require to be
stationary without saying so) is completely characterized by the probabilities

P2(¥2, 15 ¥, 0)
P1(y)

p1(y) and Py(yy, t]y)) = (6.10)
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An example of a Markov process is the x component of velocity v, (f) of a dust
particle in an arbitrarily large room,! filled with constant-temperature air. Why?
Because the molecule’s equation of motion is? mdv, /dt = F!(t), and the force F/ (1)
is due to random buffeting by other molecules that are uncorrelated (the kick now is
unrelated to earlier kicks); thus, there is no way for the value of v, in the future to be
influenced by any earlier values of v, except the most recent one.

By contrast, the position x (¢) of the particle is not Markov, because the probabili-
ties of future values of x depend not just on the initial value of x, but also on the initial
velocity v, —or, equivalently, the probabilities depend on the values of x at two initial,
closely spaced times. The pair {x(t), v, (¢)} is a 2-dimensional Markov process (see
Ex. 6.23).
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State Space Discrete Continuous

Type of Parameter

Discrete

(Discrete-parameter)  Continuous-parameter

Markov chain

Markov chain

Continuous  Discrete-parameter Continuous-parameter

Markov process

Markov process
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THE SMOLUCHOWSKI EQUATION

Choose three (arbitrary) times #;, ,, and 5 that are ordered, so f; < 1, < t3. Consider
a (realization of an) arbitrary random process that begins with a known value y; at
t;, and ask for the probability P,(ys, t3]y;) (per unit y3) that it will be at y; at time
t3. Since the realization must go through some value y, at the intermediate time #,
(though we don’t care what that value is), it must be possible to write the probability
to reach y; as

Py(y3, 3lyp 1) =/ P3(y3, 13]y2, 13 Y1 1) Py (32, 1|y 1) Ay,

where the integration is over all allowed values of y,. This is not a terribly interesting
relation. Much more interesting is its specialization to the case of a Markov process.
In that case P3(y3, 13]y3, ; ¥1> ;) can be replaced by Py(y3, 132, 1) = Py(y3, 13 —
1|¥2, 0) = Py(y3, 13 — 1| y,), and the result is an integral equation involving only P;.
Because of stationarity, it is adequate to write that equation for the case t; = 0:

Py(y3, t31y1) =/ Py(y3, t3 — 1 y2) Po (32, 1|y )y (6.11)

This is the Smoluchowski equation (also called Chapman-Kolmogorov equation). It is
valid for any Markov random process and for times 0 < 1, < 3. We shall discover its
power in our derivation of the Fokker-Planck equation in Sec. 6.9.1.
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Passive and active brownian motion

(a) (b)
o A
- y |
No fuel 10 % H,0,
c) PBP
(c) (d) ABP
(e) RTP
. 4
s,
CAP
() aoup (@)
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DRY ACTIVE PARTICLE MODELS FOR A SINGLE PARTICLE

Model Equations of motion Parameters Natural units

\""(t) =p(t) + Pe_ig(t) _ Time scale: 7, = I)l;l

ABP . Pe = V2DDg
B(t) = V2n(t) Length scale: [ = I, = wDg!
(1) = At Time scale: 7, = A}
RTP )= None™ i ‘

d(t) = > Adad(t— T,) Length scale: I =1, = oAy !

%(() = to(t) Time scale: 7,
AOUP ) None

Bo(t) = —Bo(t) + V(1) Length scale: [ = /D,

= = —15% _ v . R _ -t
CAP T(t) = p(t) + Pe” "&(t) Pe = \/73_171( Time scale: 7, = Dy

() =@ +v2n(t) & =wr, Length scale: [ =1, = L‘QI)EI
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YN _ ,
L _ZV I:(V'?k ) — vopk + DV?)::I UN

Smoluchowski equation for ABPs (new project)

Contribution of particle k to the probability current:

FOX, 1) = 70X, 1)+ 70(X, 1)

e o
T X, 1) + T (X, 1) @ el

An Introduction to Modeling Approaches of Active Matter

L. Hecht, J. C. Urena, and B. Liebchen*

Institut fiir Physik kondensierter Materie, Technische Universitit Darmstadt, Probability conservation — Smoluchowski equation:

Hochschulstr. 8, 64289 Darmstadt, Germany

"’ﬂ "):[V 1k)+_;(n]
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GAUSSIAN PROCESSES
A random process is said to be Gaussian if and only if all of its (absolute) probability
distributions are Gaussian (i.e., have the following form):

n n
Pa s b -3 V0 b3 Yo 1) = A exp[— DY ey = Nok— i)], (6.14a)
j=1 k=1
where (i) A and o j; depend only on the time differences t, —t;, 13 — 1y, ..., 1, — 133
(ii) A is a positive normalization constant; (iii) [e; ] is a positive-definite, symmetric
matrix (otherwise p, would not be normalizable); and (iv) y is a constant, which one
readily can show is equal to the ensemble average of y,

y={y = / yp(y) dy. (6.14b)

Since the conditional probabilities are all computable as ratios of absolute proba-
bilities [Eq. (6.4)], the conditional probabilities of a Gaussian process will be Gaussian.
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Gaussian random processes are very common in physics. For example, the total
number of particles N (¢) in a gas cell that is in statistical equilibrium with a heat bath
is a Gaussian random process (Ex. 5.11d); and the primordial fluctuations that gave
rise to structure in our universe appear to have been Gaussian (Sec. 28.5.3). In fact, as
we saw in Sec. 5.6, macroscopic variables that characterize huge systems in statistical
equilibrium always have Gaussian probability distributions. The underlying reason is
that, when a random process is driven by a large number of statistically independent,
random influences, its probability distributions become Gaussian. This general fact is a
consequence of the central limit theorem of probability. We state and prove a simple
variant of this theorem.

173
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Gaussian processes with different kernels
- 'H:(IT‘I,-FC)Z‘ .
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6.3.3 Doob’s Theorem for Gaussian-Markov Processes, and Brownian Motion

A large fraction of the random processes that one meets in physics are Gaussian, and
many are Markov. Therefore, the following remarkable theorem is very important.
Any 1-dimensional random process y(t) that is both Gaussian and Markov has the
following form for its conditional probability distribution Py:

1 (0 —3)*
Py(yy, tlyp) = - exp | ——2 | (6.18a)
[27'”7)",2]7 ZUYI

where the mean y, and variance ayz at time ¢ are given by
1

Y=y +e "y — ), Uyz’ =(1—e */")o 2 (6.18b)

Here y and 0,7 are respectively the processs equilibrium mean and variance (the
values at f — 00), and 7, is its relaxation time. This result is Doob’s theorem.® We shall
prove it in Ex. 6.5, after we have developed some necessary tools.
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175
t=0
+=0.021,
t=0.21,
L |
Y2
FIGURE 6.4 Evolution of the conditional probability P,(y,, t|y,) for a Gaussian-Markov
random process [Eq. (6.18a)], as predicted by Doob’s theorem. The correlation function
and spectral density for this process are shown later in the chapter in Fig. 6.8.
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6.4 Correlation Functions and Spectral Densities
6.4.1 Correlation Functions;

Let y(t) be a (realization of a) random process with time average y. Then the corre-
lation function of y(#) is defined by

_ _ 1 (172
€ =B® 3T 0 —31= Jim 7 [ v =30 + 1) — 5.

(6.19)

This quantity, as its name suggests, is a measure of the extent to which the values of y
attimest and ¢ + 7 tend to be correlated. The quantity 7 is sometimes called the delay
time, and by convention it is taken to be positive. [One can easily see that, if one also
defines C\(7) for negative delay times 7 by Eq. (6.19), then C,,(—7) = C,(). Thus
nothing is lost by restricting attention to positive delay times.]

As an example, for a Gaussian-Markov process with P, given by Doob’s formula
(6.18a) (Fig. 6.4), we can compute C () by replacing the time average in Eq. (6.19) with
an ensemble average: C () = J ¥2 y1 P2(v2» T3 ¥p) dy; dy,. If we use py(yy, T3 yy) =
Py(yy, T3 yp) P1(yD) [Eq. (6.10)], insert P, and p, from Egs. (6.18), and perform the
integrals, we obtain

Cy(t) =0/, (6.20)

177
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This correlation function has two properties that are quite general:

1. The following is true for all (ergodic and stationary) random processes:

Cy 0) s (6.21a)

as one can see by replacing time averages with ensemble averages in defini-
tion (6.19); in particular, C,(0) = (y — ¥)? = ((y — )?), which by defini-
tion is the variance a).z of y.

(0

[N

. In addition, we have that

C,(t) asymptotes to zero for 7 > 7,, (6:21b)

where 7, is the process’s relaxation time or correlation time (see Fig. 6.5). This
is true for all ergodic, stationary random processes, since our definition of
ergodicity in Sec. 6.2.3 relies on each realization y(r) losing its memory of
earlier values after some sufficiently long time 7. Otherwise, it would not be
possible to construct the ensemble &’ of random variables Y X (1) [Eq. (6.7)]
and have them behave like independent random variables.

FIGURE6.5 Properties (6.21) of correlation functions.
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6.4.2 Spectral Densities

There are several different normalization conventions for Fourier transforms. In this
chapter, we adopt a normalization that is commonly (though not always) used in the
theory of random processes and that differs from the one common in quantum theory.
Specifically, instead of using the angular frequency w, we use the ordinary frequency
f = w/(27). We define the Fourier transform of a function y(t) and its inverse by

+00 +00
()= / yner i, y(t)= f F(He T df | (629)

00 —00

Notice that with this set of conventions, there are no factors of 1/(27) or 1/+/27
multiplying the integrals. Those factors have been absorbed into the df of Eq. (6.23),
sincedf =dw/(27m).

Theintegrals in Eq. (6.23) are not well defined as written because a random process
¥(t) is generally presumed to go on forever so its Fourier transform y( f) is divergent.
One gets around this problem by crude trickery. From y() construct, by truncation,
the function

y@t) if-T/2<t<+T/2,

yrt) = [ (6.24a)
0 otherwise.

179
179
Then the Fourier transform y7(f) is finite, and by Parseval’s theorem (e.g., Arfken,
Weber, and Harris, 2013) it satisfies
+T/2 ) +00 ) +00 ) 00 )
| bobda= [brora= [ it =2 [ 5ok
-T/2 —00 —00 0
(6.24b)
In the last equality we have used the fact that because y(¢) is real, y7(f) = ¥7(—f),
where * denotes complex conjugation. Consequently, the integral from —o0 to 0 of
|F7(f)|? is the same as the integral from 0 to +00. Now, the quantities on the two
sides of (6.24b) diverge in the limit as T — 00, and it is obvious from the left-hand
side that they diverge linearly as T'. Correspondingly, the limit
1 [T ) 5 [ )
li —/ Hdt = i —/ y d 6.24
AT y®] A7 [yr(HI7df (6.240)
is convergent.
These considerations motivate the following definition of the spectral density (also
sometimes called the power spectrum) S,(f) of the random process y(t):
2 +T/2 ) 2
S,(f)= lim —' / [y(t) — yle>™/"dt (6.25)
T—oo T| J-1p2
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Notice that the quantity inside the absolute value sign is just 7( f), but with the mean
of y removed before computation of the Fourier transform. (The mean is removed to
avoid an uninteresting delta function in S, (f) at zero frequency.) Correspondingly,

by virtue of our motivating result (6.24c), the spectral density satisfies f0°° Sy(fHdf =

. T/2 S S
limy_, %fjr//z [y — ylzdt =0 -2 :o'yz, or

/ * S,(f)df =C,0) =0?. (6.26)
) ) )

Thus the integral of the spectral density of y over all positive frequencies is equal to
the variance of y.

By convention, our spectral density is defined only for nonnegative frequencies f.
This is because, were we to define it also for negative frequencies, the fact that y () is
real would imply that S, (f) = S, (—f), so the negative frequencies contain no new
information. Our insistence that f be positive goes hand in hand with the factor 2 in
the 2/ T of definition (6.25): that factor 2 folds the negative-frequency part onto the
positive-frequency part. This choice of convention is called the single-sided spectral
density. Sometimes one encounters a double-sided spectral density,

. 1
S;louble-slded(f) — ES)(Ifl)’ (6.27)

inwhich f isregarded as both positive and negative, and frequency integrals generally
run from —00 to +00 instead of 0 to 0o (see, e.g., Ex. 6.7).
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Meaning of the spectral density

‘We can infer the physical meaning of the spectral density from previous experience
with light spectra. Specifically, consider the scalar electric field® E(f) of a plane-
polarized light wave entering a telescope from a distant star, galaxy, or nebula. (We
must multiply this E(t) by the polarization vector to get the vectorial electric field.)
This E(t) is a superposition of emission from an enormous number of atoms, mol-
ecules, and high-energy particles in the source, so it is a Gaussian random process.
It is not hard to convince oneself that E(t)’s spectral density Sg(f) is proportional
to the light power per unit frequency d€/dtdf (the light's power spectrum) en- frequency f
tering the telescope. When we send the light through a diffraction grating, we get
this power spectrum spread out as a function of frequency f in the form of spec-

FIGURE6.6 A spectrum obtained by sending light through a diffraction grating. The intensity of the
image is proportional to d€/dtdf, which, in turn, is proportional to the spectral density Sg(f) of
tral lines superposed on a continuum, as in Fig. 6.6. The amount of light power in the electric field () of the light that entered the diffraction grating.

this spectrum, in some narrow bandwidth Af centered on some frequency f, is

dE/dtdf)Af o« Sp(f)Af (assuming S is nearly constant over that band).
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6.4.4 The Wiener-Khintchine Theorem;

The Wiener-Khintchine theorem says that, for any random process y(t), the correlation
function C(t) and the spectral density S, (f) are the cosine transforms of each other
and thus contain precisely the same information:

C,(r)= /-oo S,(f) cos2r fr)df, S,(f) :4/00 C,(t) cos2n fr)dr.
) e ) 0 )

(6.29)
The factor 4 results from our folding negative frequencies into positive in our defini-
tion of the spectral density.
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Proof of Wiener-Khintchine Theorem. This theorem is readily proved as a con-
sequence of Parseval’s theorem: Assume, from the outset, that the mean has been
subtracted from y(#), so y = 0. (This is not really a restriction on the proof, since C,
and S, are insensitive to the mean of y.) Denote by y7(#) the truncated y of Eq. (6.24a)
and by y;(f) its Fourier transform. Then the generalization of Parseval’s theorem’

400 s
f (eh* + hg*)di = / @h* + hghdf (6.300)

—0o0 —00
[withg = yz(t)and h = y(t + ) bothrealand with g = &T(f),fz = yr(f)e /7],
states

+00 +00 .
f yr(®)yr(t +1)dt = / VeI (fle T df. (6.30b)

—00 —00

By dividing by T, taking the limit as 7 — 00, and using Egs. (6.19) and (6.25), we
obtain the first equality of Egs. (6.29). The second follows from the first by Fourier
inversion. m
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As an application of the Wiener-Khintchine theorem, we can deduce the spectral
density S, (f) for any Gaussian-Markov process by performing the cosine transform
of its correlation function C(7) = O'yze"/ r [Eq. (6.20)]. The result is

(4/t)0,?
Qrf)?+ (/1)

Sy(f) =

(6.32)

see Fig. 6.8.

(a)

FIGURE6.8 (a) The correlation function (6.20) and (b) the spectral density (6.32) for a Gaussian-

Markov process. The conditional probability P,(y,, t|y,) for this process is shown in Fig. 6.4.
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6.6 Noise and Its Types of Spectra

Experimental physicists and engineers encounter random processes in the form of
noise that is superposed on signals they are trying to measure. Examples include:

1. In radio communication, static on the radio is noise.

2. When modulated laser light is used for optical communication, random
fluctuations in the arrival times of photons always contaminate the signal;
the effects of such fluctuations are called “shot noise” and will be studied in
Sec. 6.6.1.

3. Even the best of atomic clocks fail to tick with absolutely constant angular
frequencies w. Their frequencies fluctuate ever so slightly relative to an ideal
clock, and those fluctuations can be regarded as noise.
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6.6.1 Shot Noise, Flicker Noise, and Random-Walk Noise; Cesium Atomic Clock

Physicists, astronomers, and engineers give names to certain shapes of noise spectra:

S,(f) independent of f—white noise spectrum, (6.44a)
S, (f) o< 1/ f —flicker noise spectrum, (6.44b)
Sy(f)x1/f 2_random-walk spectrum. (6.44c)
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White noise, Sy independent of f, is called “white” because it has equal amounts
W h i t e n O i S e of power per unit frequency S, at all frequencies, just as white light has roughly equal
powers at all light frequencies. Put differently, if y(¢) has a white-noise spectrum,
then its rms fluctuations in fixed bandwidth A f are independent of frequency f (i.e.,

/S,(F)Af is independent of f).
| m
1" |
™ " e e ™
188
188

94



17/11/23

Flicker noise

Flicker noise, Sy o 1/f, gets its name from the fact that, when one looks at the time
evolution y(r) of arandom process with a flicker-noise spectrum, one sees fluctuations
(“flickering”) on all timescales, and the rms amplitude of flickering is independent
of the timescale one chooses. Stated more precisely, choose any timescale At and
then choose a frequency f ~ 3/At, so one can fit roughly three periods of oscillation
into the chosen timescale. Then the rms amplitude of the fluctuations observed will
be \/W, which is a constant independent of f when the spectrum is that of
flicker noise, S, o< 1/f. In other words, flicker noise has the same amount of power
in each octave of frequency. Figure 6.10 is an illustration: both graphs shown there
depict random processes with flicker-noise spectra. (The differences between the two
graphs will be explained in Sec. 6.6.2.) No matter what time interval one chooses,
these processes look roughly periodic with one, two, or three oscillations in that time
interval; and the amplitudes of those oscillations are independent of the chosen time

(a) (b)

FIGURE 610 Examples of two random processes that have flicker noise spectra, S, (f) o 1/f. Adapted
from Press (1978).

interval. Flicker noise occurs widely in the real world, at low frequencies, for instance,
in many electronic devices, in some atomic clocks, in geophysics (the flow rates of
rivers, ocean currents, etc.), in astrophysics (the light curves of quasars, sunspot
numbers, etc.); even in classical music. For an interesting discussion, see Press (1978).
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Brown or random walk noise

a
=
=

Random-walk noise, S, < 1/f 2, arises when a random process y(t) undergoes a
random walk. In Sec. 6.7.2, we explore an example: the time evolving position x(¢) of
a dust particle buffeted by air molecules—the phenomenon of Brownian motion.
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Flicker vs White noise (f vs t)

191
191
1x107" 5% 10712
5x 102
_ 2x 10712
_'£ 2% 10 1x 1012
= 1x102 g 5x 1073
“IK‘O 5x102
3 2x 10131
2 x102' | white 1x 1053
1x102L S0 = copst 1 1 5% 10-14LL 1 1 1 1 1
107 10 10° 10% 107 102 102 103 10* 10° 108 107
f(Hz) ()
(@) (b)
FIGURE 611 (a) Spectral density of the fluctuations in angular frequency w of a typical cesium atomic
clock. (b) Square root of the Allan variance for the same clock; see Ex. 6.13. Adapted from Galleani
(2012). The best cesium clocks in 2016 (e.g., the U.S. primary time and frequency standard) have
amplitude noise, /S, and o, 1000 times lower than this.
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Noise in gravitational-wave detectors as a function
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Fluctuation-dissipation theorem

,M o M
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Frequency (Hz)

Friction is generally caused by interaction with the huge number of degrees of freedom
of some sort of bath (e.g., the molecules of air against which a moving ball or dust
particle pushes). Those degrees of freedom also produce fluctuating forces. In this
section, we study the relationship between the friction and the fluctuating forces when
the bath is thermalized at some temperature T (so it is a heat bath).

For simplicity, we restrict ourselves to a specific generalized coordinate g of the
system that will interact with a bath (e.g., the x coordinate of the ball or dust particle).

‘We require just one special property for g: its time derivative § = dg /dt must appear
in the system’s lagrangian as a kinetic energy,

1 .
Ekinelic = quz’ (6.70)

and in no other way. Here m is a (generalized) mass associated with g. Then the
equation of motion for g will have the simple form of Newton’s second law, m§ = F,
where F includes contributions F from the system itself (e.g., a restoring force in the
case of a normal mode), plus a force Fp, due to the heat bath (i.e., due to all the
degrees of freedom in the bath). This Fj,q, is a random process whose time average
is a frictional (damping) force proportional to g:

Foath = —R4,  Foath = Foan + F'- (6.71)

Here R is the coefficient of friction. The fluctuating part F’ of Fy,y, is responsible for
driving ¢ toward statistical equilibrium.
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Three specific examples, to which we shall return below, are as follows.

1. The system might be a dust particle with g its x coordinate and m its mass.
The heat bath might be air molecules at temperature 7', which buffet the dust
particle, producing Brownian motion.

2. The system might be an L-C-R circuit (i.e., an electric circuit containing an
inductance L, a capacitance C, and a resistance R) with ¢ the total electric
charge on the top plate of the capacitor. The bath in this case would be the
many mechanical degrees of freedom in the resistor. For such a circuit, the
“equation of motion” is

Li+C7lg=Fuwt)=—Rq+ F/, (672)

so the effective mass is the inductance L; the coefficient of friction is the re-
sistance (both denoted R); —Rg + F is the total voltage across the resistor;

and F’ is the fluctuating voltage produced by the resistor’s internal degrees _/\/\/\/_/YYY\_I I—

of freedom (the bath) and so might better be denoted V'.

3. The system might be the fundamental mode of a 10-kg sapphire crystal with
q its generalized coordinate (cf. Sec. 4.2.1). The heat bath might be all the o = Inmsin(et)
other normal modes of vibration of the crystal, with which the fundamental - Ad
mode interacts weakly. "
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LANGEVIN EQUATION

In general, the equation of motion for the generalized coordinate g (¢) under the joint
action of (i) the bath’s damping force —R¢, (ii) the bath’s fluctuating forces F’, and
(iii) the system’s internal force F will take the form [cf. Eq. (6.71)]

mg + Rg=F + F'(1). (6.73)

The internal force F is derived from the system’s hamiltonian or lagrangian in the
absence of the heat bath. For the L-C-R circuit of Eq. (6.72) that forceis F = —C 14
for the dust particle, if the particle were endowed with a charge Q and were in an
external electric field with potential ® (¢, x, y, z), it would be F = — Q3 ®/dx; for the
normal mode of a crystal, it is ' = —maw?q, where o is the mode’s eigenfrequency.
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stochastic differential equation (6.73) is known as the Langevin equation.

Because the equation of motion (6.73) involves a driving force F’(t) that is a ran-
dom process, one cannot solve it to obtain ¢ (7). Instead, one must solve it in a statistical
way to obtain the evolution of ¢’s probability distributions p, (g, t;5 . . .5 g, t,)- This
and other evolution equations involving random-process driving terms are called by
modern mathematicians stochastic differential equations, and there is an extensive

body of mathematical formalism for solving them. In statistical physics the specific
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ELEMENTARY FLUCTUATION-DISSIPATION THEOREM

Because the damping force —Rqg and the fluctuating force F’ both arise from inter-
action with the same heat bath, there is an intimate connection between them. For
example, the stronger the coupling to the bath, the stronger will be the coefficient of
friction R and the stronger will be F’. The precise relationship between the dissipa-
tion embodied in R and the fluctuations embodied in F’ is given by the following
fluctuation-dissipation theorem: At frequencies

<1/, (6.74a)

where 7, is the (very short) relaxation time for the fluctuating force F’, the fluctuating
force has the spectral density

hf

ehf/ksT) _ 1

Spi(f) =4R (%hf + ) in general, (6.74b)

Sp(f) =4RkgT in the classical domain, kT > hf. (6.74¢)

Here T is the temperature of the bath, and 4 is PlancK’s constant.
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Notice that in the classical domain, kzT > hf, the spectral density has a white-
noise spectrum. In fact, since we are restricting attention to frequencies at which
F’ has no self-correlations (f~! > t,), F’ is Markov; and since it is produced by
interaction with the huge number of degrees of freedom of the bath, F’ is also
Gaussian. Thus, in the classical domain F’ is a Gaussian-Markov, white-noise process.

At frequencies f > kpT/h (quantum domain), in Eq. (6.74b) the term Sy, =
4R%h f is associated with vacuum fluctuations of the degrees of freedom that make
up the heat bath (one-half quantum of fluctuations per mode as for any quantum
mechanical simple harmonic oscillator). In addition, the second term, Sp/(f) =
4Rhf e "f/kBT) associated with thermal excitations of the bath’s degrees of freedom,
is exponentially suppressed because at these high frequencies, the bath’s modes have
exponentially small probabilities of containing any quanta at all. Since in this quantum
domain Sz/(f) does not have the standard Gaussian-Markov frequency dependence
(6.32), in the quantum domain F” is not a Gaussian-Markov process.
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Proof of the Fluctuation-Dissipation Theorem.

In principle, we can alter the system’s internal restoring force F without altering its
interactions with the heat bath [i.e., without altering R or S,(f)]. For simplicity, we
set F to zero so g becomes the coordinate of a free mass. The basic idea of our proof
is to choose a frequency f,, at which to evaluate the spectral density of F’, and then,
in an idealized thought experiment, very weakly couple a harmonic oscillator with
eigenfrequency f, to g. Through that coupling, the oscillator is indirectly damped
by the resistance R of ¢ and is indirectly driven by R’s associated fluctating force
F', which arises from a bath with temperature 7. After a long time, the oscillator will
reach thermal equilibrium with that bath and will then have the standard thermalized
mean kinetic energy (E = kT in the classical regime). We shall compute that mean
energy in terms of Sg/( f,) and thereby deduce S/(f,).
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The Langevin equation (6.73) and equation of motion for the coupled free mass
and harmonic oscillator are

mij + RG=—kQ+ F'(1), MQ+Mw)0=—xq. (675)

Here M, Q, and w, = 21 f,, are the oscillator’s mass, coordinate, and angular eigen-
frequency, and « is the arbitrarily small coupling constant. (The form of the coupling
terms —k Q and —k¢ in the two equations can be deduced from the coupling’s in-
teraction hamiltonian H; = k¢ Q.) Equations (6.75a) can be regarded as a filter to
produce from the fluctuating-force input F’(f) a resulting motion of the oscillator,
o) = fj;o K(t —t')F'(t')dt’. The squared Fourier transform |K (f)|? of this fil-
ter’s kernel K (t —t’) is readily computed by the standard method [Eq. (6.51) and
associated discussion] of inserting a sinusoid e ! (with @ = 27 f) into the filter
[i.e., into the differential equations (6.75a)] in place of F’, then solving for the sinu-
soidal output Q, and then setting | K|? = | Q|2. The resulting | K |? is the ratio of the
spectral densities of input and output. We carefully manipulate the resulting |K |? so
as to bring it into the following standard resonant form:

|BP?
(@ — @,)? + 2Mw2R|B)?]

S,(H)=K(HPSpi(f) = Sp(f).  (675b)
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Here B =« /[2M a)o(ma)z + i Rw,)] is arbitrarily small because « is arbitrarily small;
and wéz = »? + 4mMw?| B|* is the oscillator’s squared angular eigenfrequency after
coupling to ¢, and is arbitrarily close to @? because |B|* is arbitrarily small. In
these equations we have replaced w by w, everywhere except in the resonance term
(w— a);)2 because | K |? is negligibly small everywhere except near resonance, w = w,,.

The mean energy of the oscillator, averaged over an arbitrarily long timescale, can
be computed in either of two ways.
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1. Because the oscillator is a mode of some boson field and is in statistical
equilibrium with a heat bath, its mean occupation number must have the
standard Bose-Einstein value n = 1/[¢"o/ ®8T) _ 1], and since each quan-

tum carries an energy fiw,, the mean energy is

- hw, 1

E= Tl "] + Ehw"' (6.75¢)
Here we have included the half-quantum of energy associated with the
mode’s vacuum fluctuations.

Because on average the energy is half potential and half kinetic, and the
mean potential energy is %mwi (2, and because the ergodic hypothesis tells

us that time averages are the same as ensemble averages, it must be that

»

o0
E= Z%ngwz(QZ) =Mao? f So(f)df. (675d)
0

By inserting the spectral density (6.75b) and performing the frequency integral with
the help of the narrowness of the resonance, we obtain

£= Sefo)

4R
Equating this to our statistical-equilibrium expression (6.75¢) for the mean energy,
we see that at the frequency f, = w,/(27) the spectral density Sp/(f,) has the
form (6.74b) claimed in the fluctuation-dissipation theorem. Moreover, since f,, can
be chosen to be any frequency in the range (6.74a), the spectral density Sg/(f) has
the claimed form anywhere in this range. m

(6.75€)
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BROWNIAN MOTION

In Secs. 6.3.3 and 6.7.2, we have studied the Brownian motion of a dust particle being
buffeted by air molecules, but until now we omitted any attempt to deduce the motion’s
relaxation time 7,. We now apply the fluctuation-dissipation theorem to deduce ,,
using a model in which the particle is idealized as a sphere with mass m and radius a

that, of course, is far larger than the air molecules.

°

j
NG
pressure

-2

[Eq. (14.34)]

R =é6mpva,

where p ~ 1kg m™ is the density of air. (Notice that this resistance is proportional to
the sphere’s radius a or circumference; if A were >> a, then R would be proportional

to the sphere’s cross sectional area, i.e., to a%.)

The equation of motion for the dust particle, when we ignore the molecules’ fluc-
tuating forces, is mdv/dt = — Rv. Here the resistance (friction) R due to interaction
with the molecules has a form that depends on whether the molecules’ mean free
- path A is small or large compared to the particle. From the kinetic-theory formula
A =1/(nopy,), where n is the number density of molecules and oy, is their cross
section to scatter off each other (roughly their cross sectional area), we can deduce
that for air A ~ 0.1 um. This is tiny compared to a dust particle’s radius a ~ 10 to
1,000 z2m. This means that, when interacting with the dust particle, the air molecules
03 will behave like a fluid. As we shall learn in Chap. 15, the friction for a fluid de-
pends on whether a quantity called the Reynolds number, Re = va/v, is small or large
compared to unity; here v ~ 107> m? s~ is the kinematic viscosity of air. Inserting
s numbers, we see that Re ~ (v/0.1 m s~")(a/100 zzm). The speeds v of dust particles
12 being buffeted by air are far smaller than 0.1 m s~! as anyone who has watched them

in a sunbeam knows, or as you can estimate from Eq. (6.53a). Therefore, the Reynolds
E 2 2 number is small. From an analysis carried out in Sec. 14.3.2, we learn that in this low-
Re fluid regime, the resistance (friction) on our spherical particle with radius a is

204

204

102



17/11/23

When we turn on the molecules’ fluctuating force F’, the particle’s equation of

states that Sz = 4RkpT. Therefore, we have

Sp 4RkyT 4RkyT/m?

v

relaxation time (not to be confused with the bath’s relaxation time),

17, =m/R=m/(6mpva).

TRrQrm? T R+ @ufm? | @afp+ R/mp

motion becomes mdv/dt + Rv = F’. Feeding e*/* through this equation in place
of F’, we get the output v = 1/(R + i27 fm), whose modulus squared then is the ratio
of S, to Sg. In this obviously classical regime, the fluctuation-dissipation theorem

(6.77)
By comparing with the S, that we derived from Doob’s theorem, Eq. (6.53b), we can

read off the particle’s rms velocity (in one dimension, x or y or z), 0, =
which agrees with Eq. (6.53a) as it must—and we can also read off the particle’s

kT /m—

(6.78)

If we had tried to derive this relaxation time by analyzing the buffeting of the particle
directly, we would have had great difficulty. The fluctuation-dissipation theorem,

Doob’s theorem, and the fluid-mechanics analysis of friction on a sphere have made

the task straightforward.
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6.9 Fokker-Planck Equation

In statistical physics, we often want to know the collective influence of many degrees
of freedom (a bath) on a single (possibly vectorial) degree of freedom g. The bath
might or might not be thermalized. The forces it exerts on g might have short range
(as in molecular collisions buffeting an air molecule or dust particle) or long range
(as in Coulomb forces from many charged particles in a plasma pushing stochastically
on an electron that interests us, or gravitational forces from many stars pulling on a
single star of interest). There might also be long-range, macroscopic forces that pro-
duce anisotropies and/or inhomogeneities (e.g., applied electric or magnetic fields).
We might want to compute how the bath’s many degrees of freedom influence, for
example, the diffusion of a particle as embodied in its degree of freedom g. Or we
might want to compute the statistical properties of g for a representative electron in
a plasma and from them deduce the plasma’s transport coefficients (diffusivity, heat
conductivity, and thermal conductivity). Or we might want to know how the gravita-
tional pulls of many stars in the vicinity of a black hole drive the collective evolution
of the stars’ distribution function.
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6.9.1 Fokker-Planck for a 1-Dimensional Markov Process

For a 1-dimensional Markov process y(t) (e.g., the x component of the velocity of a
particle) being driven by a bath (not necessarily thermalized!) with many degrees of
freedom, the Fokker-Planck equation'! states

3 p =~ (AP + L2 (B g (694
9 27 dy y)r 20y2 Y) £l -

Here P, = P,(y, t|y,) is to be regarded as a function of the variables y and  with y,
fixed; that is, Eq. (6.94) is to be solved subject to the initial condition

Py(y, 0ly,) =48(y — ¥,)- (6.95)

As we shall see later, this Fokker-Planck equation is a generalized diffusion equation
for the probability P,: as time passes, the probability diffuses away from its initial
location, y = y,, spreading gradually out over a wide range of values of y.
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In the Fokker-Planck equation (6.94) the function A(y) produces a motion of the
mean away from its initial location, while the function B(y) produces a diffusion of
the probability. If one can deduce the evolution of P, for very short times by some
other method [e.g., in the case of a dust particle being buffeted by air molecules, by
solving statistically the Langevin equation mdv/dt + Rv = F'(t)], then from that
short-time evolution one can compute the functions A(y) and B(y):

1 +00
A(y) = lim — " )P (Y, At|y)dy', .
(6)) Am 2 /_ N O =Py |y)dy (6.962)

+00

— | i r_ 2 1 ’
B(y)_AI}r—nm Ar ) o (V' = )Py, Atly)dy'. (6.96b)
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(These equations can be deduced by reexpressing the limit as an integral of the time
derivative 3 P,/dt and then inserting the Fokker-Planck equation and integrating by
parts; Ex. 6.19.) Note that the integral (6.96a) for A(y) is the mean change Ay in the
value of y that occurs in time At, if at the beginning of At (at # = 0) the value of the
process is precisely y; moreover (since the integral of y P, is just equal to y, which is
a constant), A(y) is also the rate of change of the mean, dy/dt. Correspondingly we
can write Eq. (6.96a) in the more suggestive form

A(y) = lim ﬂ =(d—y> . (6.97a)
At—=0 \ At dt /g

Similarly, the integral (6.96b) for B(y) is the mean-squared change in y, (Ay)?, if at
the beginning of At the value of the process is precisely y; and (as one can fairly easily
show; Ex. 6.19) it is also the rate of change of the variance crf = [(y — )2 Pydy'.
Correspondingly, Eq. (6.96b) can be written as

2 do?
B(y) = lim @Gy*) _ ) . (6.97b)
a0 \ " Ar ),
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It may seem surprising that Ay and W can both increase linearly in time for
small times [cf. the A7 in the denominators of both Eq. (6.97a) and Eq. (6.97b)],
thereby both giving rise to finite functions A(y) and B(y). In fact, this is so: the linear
evolution of Ay at small # corresponds to the motion of the mean (i.e., of the peak of
the probability distribution), while the linear evolution of (Ay)? corresponds to the
diffusive broadening of the probability distribution.

A solution to the one-dimensional Fokker—Planck equation, with both
the drift and the diffusion term. In this case the initial condition is a
Dirac delta function centered away from zero velocity. Over time the

distribution widens due to random impulses.
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DERIVATION OF THE FOKKER-PLANCK EQUATION (6.94)

Because y is Markoyv, it satisfies the Smoluchowski equation (6.11), which we rewrite

here with a slight change of notation:

+00

Pz(,v,z+r|y,,>=f Py(y — & tlyo) Poy — & + & Tly — E)dE.

—00

(6.98a)

Take 7 to be small so only small ¢ will contribute to the integral, and expand in a Taylor
series in 7 on the left-hand side of (6.98a) and in the & of y — £ on the right-hand side:

= 1[ " .
Pz(le)’o)'l-Z; o 20 130 [T
n=1 """

+00
=/ Py(y, t|y,) P,(y + &, T|y)dE

—00

n=1

o0 1 +00 n
+2 pr /_OO (—é)"a—y"[Pz(y.tIyo)Pz(y+é,r|y)]dé- (6.98b)
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In the first integral on the right-hand side the first term is independent of ¢ and can
be pulled out from under the integral, and the second term then integrates to one;
thereby the first integral on the right reduces to Py(y, t]y,), which cancels the first
term on the left. The result is then
o0

1| 9"
> = [ﬁpz(y, tl)’o):l L

]
w1

i (= an +00 R
=y CE L hovyy [ e +ade] e
=y -0

Divide by 7, take the limit T — 0, and set £ =y’ — y to obtain

(71)'! an
f Van(y)Pz(y,tIm], (6.99)

a 00
—Py(y, tly,) =
o 23> 1Y) § o

where
1 +00

M,(y) = AleOE - O =»)"P0, Atly) dy (6.99b)

is the nth moment of the probability distribution P, after time At. This is a form
of the Fokker-Planck equation that has slightly wider validity than Eq. (6.94). Almost
always, however, the only nonvanishing functions M,,(y) are M; = A, which describes
the linear motion of the mean, and M, = B, which describes the linear growth of the
variance. Other moments of P, grow as higher powers of At than the first power, and
correspondingly, their M,,s vanish. Thus, almost always'? (and always, so far as we
are concerned), Eq. (6.99a) reduces to the simpler version (6.94) of the Fokker-Planck
equation.
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TIME-INDEPENDENT FOKKER-PLANCK EQUATION

If, as we assume in this chapter, y is ergodic, then p,(y) can be deduced as the limit
of Py(y, t|y,) for arbitrarily large times . Then (and in general) p; can be deduced
from the time-independent Fokker-Planck equation:

19%

39y [B(y)p1(»)]=0. (6.100)

9
—3—[A(y)p1(y)] +
y
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GAUSSIAN-MARKOV PROCESS

For a Gaussian-Markov process, the mathematical form of P,(y;, t|y;) is known from
Doob’s theorem: Egs. (6.18). In the notation of those equations, the Fokker-Planck
functions A and B are

Ay = (@5,/d1),g = (1~ $)/7,, and B(y) = (do? /1), =207/,
Translating back to the notation of this section, we have

A== =N/t  B»)=2]/7,. (6.101)

Thus, if we can compute A(y) and B(y) explicitly for a Gaussian-Markov process,
then from them we can read off the process’s relaxation time t,, long-time mean y,
and long-time variance of. As examples, in Ex. 6.22 we revisit Brownian motion of a
dust particle in air and in the next section, we analyze laser cooling of atoms. A rather
different example is the evolution of a photon distribution function under Compton
scattering (Sec. 28.6.3).
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Brownian dynamics simulation for particles in 1-D linear potential compared with
the solution of the Fokker—Planck equation
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Bibliographic Note

Random processes are treated in many standard textbooks on statistical physics,
typically under the rubric of fluctuations or nonequilibrium statistical mechanics (and
sometimes not even using the phrase “random process”). We like Kittel (2004), Sethna
(2006), Reif (2008), and Pathria and Beale (2011). A treatise on signal processing that
we recommend, despite its age, is Wainstein and Zubakov (1962). There are a number
of textbooks on random processes (also called “stochastic processes” in book titles),
usually aimed at mathematicians, engineers, or finance folks (who use the theory of
random processes to try to make lots of money, and often succeed). But we do not like
any of those books as well as the relevant sections in the above statistical mechanics
texts. Nevertheless, you might want to peruse Lax et al. (2006), Van Kampen (2007),
and Paul and Baschnagel (2010).
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