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(Complementary)
Statistical Physics
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Emergence over the length scales 
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Emergence of the Physical laws
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The book emphasizes study of macroscopic 
phenomena, sometimes called emergence, 
over the ever-downward dive into 
theoretically fundamental ideas such 
as string theory, which at some point 
become empirically irrelevant by having no 
observable consequences in our world. 

The arguments come full circle with 
modern dark energy ideas suggesting 
that spacetime or the vacuum may not be 
empty, but rather (for all we can observe) a 
medium, a possibility ironically glimpsed 
even by Einstein whose career began with 
demolishing the similar but too-simplistic 
notion of ether with his special 
relativity work.
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Many particle systems

Many-particle systems often admit
an (analytical) statistical description
when their number becomes large.

In that sense they are simpler than
few-particle systems. This feature
has several diferent names – the law
of large numbers, ergodicity, etc. –
and it is one of the reasons for the
spectacular successes of statistical
physics.
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Objectives

Introduzir e aplicar os métodos da Física Estatística a uma 
ampla gama de problemas, com ênfase em Astrofísica.

O curso baseia-se nos capítulos 3 - 6 do livro Modern Classical 
Physics de Kip Thorne e Roger Blandford. 

Evita-se repetir matéria dada anteriormente, como 
Termodinâmica e o formalismo de Fisica Estatistica.  

O capítulo 6 é coberto em parte nas aulas teóricas e oferecido 
como further or independent study, no âmbito da avaliação.
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Contents
1. Kinetic Theory and Statistical Mechanics 

1.1 Phase Space and Distribution Function
• Examples:  Newtonian Number Density in Phase Space, Relativistic 

Number Density in Phase Space, Distribution Function f (x, v, t) for 
Particles in a Plasma, Distribution Function Iν/ν3 for Photons

1.2 Thermal-Equilibrium Distribution Functions (derived earlier, only stated 
here) 
1.3 Isotropic Distribution Functions and Equations of State 

• Examples: Equations of State for a Nonrelativistic Hydrogen Gas, 
Relativistic Density, Pressure, Energy Density, and Equation of State, 
Equation of State for a Relativistic Degenerate Hydrogen Gas, Equation 
of State for Radiation 

1.4 Evolution of the Distribution Function: Liouville’s Theorem, the 
Collisionless Boltzmann Equation, and the Boltzmann Transport Equation 

• Examples: Transport Coefficients, Diffusive Heat Conduction inside a 
Star, Order-of-Magnitude Analysis, Analysis Using the Boltzmann 
Transport Equation

1.4 Statistical Mechanics in the Presence of Gravity 
• Examples: Galaxies, Black Holes, The Universe, Structure Formation in 

the Expanding Universe: Violent Relaxation and Phase Mixing 
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• Examples: Information Gained When Measuring the State of a System in a Microcanonical 
Ensemble, Information in Communication Theory, Examples of Information Content, Some 
Properties of Information, Capacity of Communication Channels

1.5 Entropy and Information

2.  Random Processes 
2.1 Random Variables and Random Processes 
2.2 Probability Distributions & Ergodic Hypothesis 
2.3 Markov Processes and Gaussian Processes 
2.4 Correlation Functions and Spectral Densities 

• Examples: Physical Meaning of Spectral Density, Light Spectra, and Noise in a Gravitational 
Wave Detector. 

2.5 Cross Correlation and Correlation Matrix 

3. Filtering Random Processes
3.1 Filters, Their Kernels, and the Filtered Spectral Density

• Examples: Brownian Motion and Random Walks

4.  Fluctuation-Dissipation Theorem 
4.1 Elementary Version of the Fluctuation-Dissipation Theorem; Langevin Equation, Johnson Noise in 
a Resistor, and Relaxation Time for Brownian Motion
4.2 Generalized Fluctuation-Dissipation Theorem; Thermal Noise in a Laser Beam’s Measurement of 
Mirror Motions; Standard Quantum Limit for Measurement Accuracy and How to Evade It

5. Fokker-Planck Equation 
5.1 Fokker-Planck for a 1-Dimensional Markov Process 
5.2 Optical Molasses: Doppler Cooling of Atoms
5.3 Fokker-Planck for a Multidimensional Markov Process; Thermal Noise in an Oscillator 
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Bibliography 
(primary)

Modern Classical Physics, by K 
Thorne and R Blandford, 
Princeton University Press, 2018 
(Chapters 3, 4 and 6) 
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Bibliography (secondary)

Newtonian kinetic theory is treated in many textbooks on statistical physics. At an elementary level, Kittel 
and Kroemer (1980, Chap. 14) is rather good. Texts at a more advanced level include Kardar (2007, Chap. 
3), Reif (2008, Secs. 7.9–7.13 and Chaps. 12–14), and Reichl (2009, Chap. 11). 

For a very advanced treatment with extensive applications to electrons and ions in plasmas, and electrons, 
phonons, and quasi-particles in liquids and solids, see Lifshitz and Pitaevskii (1981).
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1. Solution of 5 sets of homework problems (2 problems every two weeks) 50%
2. Final written paper 50% 

The students who have already taken a course on Statistical Physics can swap the solution of one 
of the problems per set by mentoring one or two students who have not taken a previous course 
on Statistical Physics.    

The grade will take into account the written solutions of the problems and the paper, as well as 
any discussion of these after they are handed in. Successful mentoring will be graded with top 
marks.

Evaluation
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The role of problems/exercises

PRACTICE. EXERCISES THAT
GIVE PRACTICE AT
MATHEMATICAL

MANIPULATIONS (E.G., OF
TENSORS). 

DERIVATION. EXERCISES THAT 
FILL IN DETAILS OF 

ARGUMENTS OR DERIVATIONS 
WHICH ARE SKIPPED OVER IN 

THE TEXT. 

EXAMPLE. EXERCISES THAT 
LEAD THE READER STEP BY 

STEP THROUGH THE DETAILS 
OF SOME IMPORTANT 

EXTENSION OR APPLICATION 
OF THE MATERIAL IN THE TEXT. 

PROBLEM. EXERCISES WITH 
FEW IF ANY HINTS, IN WHICH 
THE TASK OF FIGURING OUT 

HOW TO SET THE 
CALCULATION UP AND GET 
STARTED ON IT OFTEN IS AS 

DIFFICULT AS DOING THE 
CALCULATION ITSELF. 

CHALLENGE. AN ESPECIALLY 
DIFFICULT EXERCISE WHOSE 

SOLUTION MAY REQUIRE THAT 
ONE READ OTHER BOOKS OR 
ARTICLES AS A FOUNDATION 

FOR GETTING STARTED. 
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Peer-to-peer learning

13

You learn more when you take the role of a trainer. Mentors reinforce their 
knowledge and gain insights while preparing or while trying to clarify the 
doubts of learners who aren’t as familiar with the topic.

Hence, it’s not just the learners who are at an advantage; mentors get a lot 
out of it too.
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Kinetic Theory

The gaseous condition is exemplified in the soirée, where the members rush about
confusedly, and the only communication is during a collision, which in some 
instances may be prolonged by button-holing.

JAMES CLERK MAXWELL (1873)
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Kinetic theory deals with the statistical 
distribution of a “gas” made from a huge 
number of “particles” that travel freely, 
without collisions, for distances (mean free 
paths) long compared to their sizes.

In kinetic theory, the key concept is the 
distribution function, or number density of 
particles in phase space, N, that is, the 
number of particles of some species (e.g., 
electrons) per unit of physical space and of 
momentum space.

This N and the frame-independent laws it obeys provide us with a means for computing, from 
microphysics, the macroscopic quantities of continuum physics: mass density, thermal energy density, 
pressure, equations of state, thermal and electrical conductivities, viscosities, diffusion coefficients, . . . .
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Kinetic Theory

15

Examples:
• Whether neutrons in a nuclear reactor can survive long enough to maintain a 

nuclear chain reaction and keep the reactor hot.
• How galaxies, formed in the early universe, congregate into clusters as the

universe expands.
• How spiral structure develops in the distribution of a galaxy’s stars.
• How, deep inside a white-dwarf star, relativistic degeneracy influences the

equation of state of the star’s electrons and protons.
• How a supernova explosion affects the evolution of the density and temperature

of interstellar molecules.
• How anisotropies in the expansion of the universe affect the temperature

distribution of the cosmic microwave photons—the remnants of the big bang.
• How changes of a metal’s temperature affect its thermal and electrical

conductivity (with the heat and current carried by electrons).
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KT in different limits
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Real (physical) and momentum spaces
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Phase space

The 3-dimensional physical space and 3-dimensional momentum space together constitute
a 6-dimensional phase space, with coordinates {x, y, z, px , py , pz}.

Consider the 6-dimensional volume d2V ≡ dVxdVp. 

In any Cartesian coordinate system, we can think of dVx as a cube located at (x, y, z) with
edge lengths dx, dy, dz, and similarly for dVp. Then, as computed in this coordinate system, 
these volumes are
dVx= dx dy dz,  dVp= dpx dpy dpz, 

and

d2V = dx dy dz dpx dpy dpz.
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Phase space

Direct product of direct space and reciprocal space
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Newtonian distribution function

is called the particle distribution function.

The number density of particles at location (x, p) in phase space at time t 
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Newtonian and relativistic distribution functionN
In Newtonian theory, the volumes dVx and dVp occupied by our collection of dN
particles are independent of the reference frame that we use to view them. 

Not so in relativity theory: dVx undergoes a Lorentz contraction when one views it
from a moving frame, and dVp also changes; but (as we shall see) their product d2V = 
dVxdVp is the same in all frames. 

Therefore, in both Newtonian theory and relativity theory, the distribution function
N = dN/d2V is independent of reference frame, and also, of course, independent of
any choice of coordinates. 

N is a coordinate independent scalar in phase space.
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Spacetime

Relativistic distribution function
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Momentum space and mass hyperboloid
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Phase space
This 7- or 8-dimensional phase 
space, by contrast with the 
nonrelativistic
6-dimensional phase space, is 
frame independent. No 
coordinates or reference
frame are actually needed to 
define spacetime and explore its 
properties, and
none are needed to define and 
explore 4-momentum space or 
the mass hyperboloid—
though inertial (Lorentz) 
coordinates are often helpful in 
practical situations.
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Volumes in phase space and distribution function
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Distribution function for photons
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Mean occupation number 𝜂
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Quantum states 
in momentum 
space
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Density of states & occupation number
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Fermions, bosons and the classical limit
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Thermal equilibrium distribution functions
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Classical or Boltzmann distribution function

42

The

42
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Mean occupation number:  𝜂 = < 𝑛! >
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Particle density and flux (N)
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Stress tensor (N)

46

46



17/11/23

24

Equations of state
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Classical ideal gas PV = NkBT
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Relativistic Number-Flux 4-Vector S and Stress-
Energy Tensor T
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0th, 1st and 2nd moments ofN
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Meaning of the moments ofN
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Zeroth
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Hydrogen
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Degenerate Hydrogen boundary (plasma) 
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Zero T approximation
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Outer and inner shells of high- and 
low-mass white dwarfs respectively 

& neutron stars
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Interior of white dwarfs
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Evolution of the Sun
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Relativistic Density, Pressure, Energy Density, and
Equation of State (isotropic systems)
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Equation of State for a Relativistic Degenerate
Hydrogen Gas (zero T)
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White dwarfs
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Equation of state for termal radiation
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Through 
Statistical Mechanics 
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Quantum gases: fermions and bosons (grand
canonical ensemble)
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3D
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Equation of state of
Bosons for any
dimensionD

73

Note the classical limit when the dimensionality 
D → ∞

73

Equations of state for 
Bosons and Fermions in 
2 dimensions

• The classical limit is the straight line 
for positive p below the FD and above 
the BE equations. 

• The effective repulsions in FD increase 
p while the effective attractions in BE 
decrease it, w. r. to the classical EoS.

74

74



17/11/23

38

+

75

75

76

76



17/11/23

39

Formalism: Liouville’s Theorem
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Harmonic oscillators
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Collisionless Boltzmann equation
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Boltzmann transport equation
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Transport 
coefficients
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Transport 
coefficients
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Transport 
coefficients

83

83

Transport 
coefficients
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Statistical 
Mechanics 
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The founding fathers
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Systems: closed and semi-closed

87
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Hamiltonian dynamics for closed systems
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Ensembles
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Preliminaries

91
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Distribution function
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Conservation law for systems & Liouville equation
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Liouville’s theorem
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Boltzmann transport equation
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Canonical distribution
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Translational, rotational and vibrational degrees of
freedom
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Entropy

111

For an ensemble

Microcanonical

111

Entropy is maximized when 𝜌 is constant
(microcanonical ensemble)
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Examples
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Paradox ? 

There is an apparent paradox at the heart of statistical mechanics, and, 
at various stages in the development of the subject it has led to 
confusion and even despair.

It still creates controversy (see, e.g., Hawking and Penrose, 2010; 
Penrose, 1999). 

Its simplest and most direct expression is to ask: how can the time-
reversible, microscopic laws, encoded in a time-independent
hamiltonian, lead to the remorseless increase of entropy?
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Entropy increase

115

Assume, for simplicity, that at time t = 0 all the systems are concentrated in a small but 
finite region of phase space with volume  ,    as shown in Fig. 4.2a, with                              
in the occupied region and ρ = 0 everywhere else.

115

As time passes each system evolves under the action of the systems’ common hamiltonian. As 
depicted in Fig. 4.2b, this evolution distorts the occupied region of phase space; but Liouville’s
theorem dictates that the occupied region’s volume remain unchanged and, correspondingly,         
that the ensemble’s entropy remains unchanged. 

How can this be so? The ensemble is supposed to evolve into statistical equilibrium, with its
distribution function uniformly spread out over that entire portion of phase space allowed by the
hamiltonian’s constants of motion—a portion of phase space far, far larger —and in the process
the entropy is supposed to increase.
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Coarsening
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Discarding correlations
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Gravity
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121

Galaxies as closed systems of non-interacting stars 

Age of galaxy  

121

Entropy of a galaxy
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Probability density of N stars Are galaxies at equilibrium ?
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The galaxy entropy increases
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Galaxies are not in 
statistical equilibrium  
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First law of thermodynamics & BH Entropy
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More on Black Hole Thermodynamics & 
SM (D. Wallace)
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Structure of the milky way
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Entropy and 
information

141

141

142

142



17/11/23

72

143

143

144

144



17/11/23

73

145

145

146

146



17/11/23

74

147

147

148

148



17/11/23

75

149

149

150

150



17/11/23

76

151

151

152

152



17/11/23

77

153

153

154

154



17/11/23

78

155

Flow mass rate from the Amazon’s river
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Random walks in 2d and 3d
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Stationary and non-stationary molecular velocity
distributions
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Ergodic hypothesis
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Ergodic processes
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Passive and active brownian motion

169
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Models
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Smoluchowski equation for ABPs (new project)

171

171

172

172



17/11/23

87

173

173

Gaussian processes with different kernels
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Meaning of the spectral density
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White noise
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Flicker noise

189
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Brown or random walk noise   
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Flicker vs White noise (f vs t)
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Noise in atomic clocks
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Noise in gravitational-wave detectors as a function
of frequency
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Fluctuation-dissipation theorem
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209

209

210

A solution to the one-dimensional Fokker–Planck equation, with both 
the drift and the diffusion term. In this case the initial condition is a
Dirac delta function centered away from zero velocity. Over time the 
distribution widens due to random impulses.
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Brownian dynamics simulation for particles in 1-D linear potential compared with
the solution of the Fokker–Planck equation
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