
Universo Primitivo
2024-2025 (1º Semestre)

Mestrado em Física - Astronomia

4 Decoupling
• Decoupling from local equilibrium;

• Electroweak and week Interaction rates;
• Particle distributions after decoupling;
• Decoupling and Freeze-Out

• Neutrino decoupling;

• Electron-positron Annihilation;
• Cosmic Neutrino Background;
• Beyond thermal equilibrium: Boltzmann Equation
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Equilibrium condition, interaction timescale, and interaction rate:

Thermal equilibrium of a fluid species can be established if the interaction 
rate, Γ(#), is larger than the expansion rate, % # = (̇/( :

Γ # ≫ %(#)
The timescale for particle interactions, #! = 1/Γ, is therefore much shorter 
than the characteristic timescale of expansion, #" = 1/%:

The interaction rate is the number of interaction events of the species per 
unit of time. It is given by:

where , is the number density of target particles, -, is the interaction cross 
section and, ., is the relative speed between particles. 
The SI unit of Γ ``one over second”: Γ = # $ % = &!".
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Equilibrium condition, interaction timescale, and interaction rate:

For example, in the interaction process:                               one has:
• Γ! = #"$%!" is the iteration rate of the particle species 1

• Γ" = #!$%"! is the iteration rate of the particle species 2 (%"!= %!")

• Γ# = #$$%#$ is the iteration rate of the particle species 3

• Γ$ = ##$%$# is the iteration rate of the particle species 4 (%$#= %#$)

Reverting the equilibrium condition, one should expect that a given particle 
specie has conditions to decouple from the thermal bath when Γ ≲ %, i.e.:

!
"
≲ 1

For a relativistic fluid, the expansion rate of the universe reads (SI):

where, "!" is the Planck Mass:
<latexit sha1_base64="hvRoSGaYRHUpxY+oDkPaAePJM1g="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:

Changing to natural units one has:

Let us now estimate the interaction rate, Γ = #$%, for the fluid of relativistic 
particles: 

• Since particles are relativistic: # ∼ % = 1
• The number density in equilibrium is: (% ∼

& #

'!
)%*# ∝ *#

• The interaction cross section will depend on the type of interaction and mediators. 
For interactions mediated by bosons of mass ,(:

where -( is the generalized structure constant with the gauge boson X

(photon, gluons, relativistic #±, Z# bosons)

(massive, non-relativistic, #±, Z# bosons )

<latexit sha1_base64="t0uhVHrEthuE/WQL+2jZUcahal0="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:
So, the equilibrium condition ratio, Γ/(, becomes:

Implications:
1. At high temperature (( ≳ 100 GeV – the electroweak symmetry breaking 

,#!" ,%,&~100GeV) all interactions are mediated by relativistic massless Gauge bosons. 

For example, for the electroweak interaction (EW), 1' = 0.01, so the ratio: 

So, the EW interaction alone can provide equilibrium conditions for processes 
mediated by the EW force, within the temperature range

100 GeV ≲ * ≲ 10!) GeV

Above the ~10"( GeV (the Grand Unification Theory) scale the Universe is not able 
to acquire an equilibrium state via the electroweak interaction. In fact,  the universe 
may never had conditions to achieve thermal equilibrium above the 10"( GeV scale!

<latexit sha1_base64="FGLSyvaDuWbLNqfcIhzUeF4H0eg="></latexit>
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Equilibrium condition, interaction timescale, and interaction rate:
So, the equilibrium condition ratio, Γ/(, becomes:

Implications:
2. At lower temperature (( ≲ 100 GeV – below the electroweak symmetry breaking). 

Photons and gluons remain massless bosons and since their Γ/4 ~ (!" easily allows to get 
Γ/4 ≫ 1, which provides equilibrium conditions for particles interacting via the strong and 
electromagnetic forces. For relativistic particles interacting via the the weak force, (which 
becomes mediated by massive bosons with ,) ≫ () one has:

which drops below unity for 6 ≲ 7 89:.

So relativistic particles interacting via weak force (e.g. neutrinos) are able to remain in
equilibrium with the fluid in the temperature range:

1 MeV ≲ * ≲ 100 GeV

Below this temperature they should decouple from the fluid (Ex. Neutrinos & DM WIMPs).
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<latexit sha1_base64="FGLSyvaDuWbLNqfcIhzUeF4H0eg="></latexit>
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Key events in the thermal history of the universe

Pree particle species interacting via the 
weak, electromagnetic and strong 
forces have conditions to attain thermal 
equilibrium with the primordial fluid;

Electroweak interacting species may 
attain thermal equilibrium with the fluid 
up to the GUT 10$%GeV scale; 

Particle species interacting via the 
electromagnetic force have 
conditions to attain thermal equilibrium 
with the primordial fluid;

Summary:

where the subscript ; denotes quantities at the decoupling time <* [=* = = <* , >* = > <* , 
?+ = ?(<*)].
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Particle distributions after decoupling
Let us now study what happens to the phase space distribution of a given particle species, 
B(?, >, < > <*),  after that species decouples from the fluid at time <*.

The number of particles within the volume element )*)#+ around the point (-, +) of 

the phase space is:

If no particles are created or destroyed after decoupling, the left-hand side of this equation 
remains constant.  On the right-hand side, we know that the volume element, EF, scales with 
=,. For the momentum, from G' = ,' + >' one can derive the following scaling: 

So, E,> scales =!,. The scaling of > is straightforward for massless particles (e.g. radiation) and 
is also valid for massive non-relativistic particles (check it – note that , is the rest mass). So, for 
massless or massive relativistic particles one can write: 

)/ = 0 -, +, 1 )* )#+

+ ∝ 3 = ℎ5/6 ∝ 7,!

--
-
=
7-
7
⟺ -- = -

7-
7

+-
+
=
7-,!

7,!
⟺ +- = +

7
7-
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Particle distributions after decoupling
If no particles are created or destroyed as the universe ages, the number of particles in a 
volume element in the phase space, 78, remains constant. Since 79 ∝ :# and 7#; ∝ :,#,

one concludes that the distribution function, f, keeps its functional form (i.e., it’s shape) 
as the universe expands. However, the arguments of < (= and ;) scale with :(?). So, if a 
particle species decouples at B. with a distribution function C and one considers the 
scalings of its arguments one has:

11

Is constant if no particles are 
created/destroyed after decoupling

0(-- , +- , 9-) = 0 -
7- 9
7

, +(9)
7 9
7-

, 9 > 9-

The right-hand side of this equation, is in fact, the distribution function after decoupling.
Dropping ? (because B is independent of position) this means that after decoupling f keeps its 
form but the momentum scales as above:

0 + 9 , 9 > 9- ≔ 0 +(9)
7 9
7-

, 9 > 9- = 0(+- , 9-)
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Particle distributions after decoupling
So, depending on the relativistic state of the particles, one has two possibilities:

1. The species decouples while is relativistic (here we assume I = 0, e.g. massless neutrinos)

B > < , < > <* ≔ B > <
= <

=*
, < > <* =

K

2M,
1

exp >
=/=*
(*

± 1
=

K

2M,
1

exp
>
( ± 1

where ( = ((<) was set as:

( < = (*
=*
=
=

(*
1 + Q*

(1 + Q)

This ( ∝ =!" scaling arises because no particles are created or destroyed after decoupling, 
and the functional form of B remains unchanged. So, the number density of a relativistic 
species after decoupling scales as:

#- = K-
S 3 (,

M'
= K-

S 3 (*
,

M'
=*
=

,
⟺ #- = #-,*

=*
=

,

Therefore, species that are relativistic at decoupling their number density after decoupling 
scales as V. ∝ W!/ (i.e., as before decoupling whenever K∗1 is constant – away from mass 
thresholds). 



Decoupling from thermal equilibrium

13

Particle distributions after decoupling: 
We concluded that the temperature of decoupled relativistic species also scales with the 
inverse of the scale factor (( = (* =*/=) as it happens for relativistic species in thermal 
equilibrium away from mass thresholds ((2 ∝ K∗1

!"/, =!" ). The decoupling is not instantaneous 
(and needs to be described with the Boltzmann equation). The Figure below shows the 
decoupling of the neutrinos from the primordial fluid.

When neutrinos decouple,
K∗1, decreases and 
therefore the temperature 
of the fluid, (2, decreases 
at a lower rate than the 
temperatures of the 
decoupled species. 

Particle distributions after decoupling
2. The species decouples while it is non-relativistic (, ≫ ()

where the non-relativistic limit allows to drop the ± 1 factor in B and to expand the square 
root to 1st order. In the last equality 

These scalings render the distribution function with the same functional form of a 
distribution of non-relativistic particles with temperature and chemical potential written 
with the same approximations at decoupling time, B >*, <* .

Decoupling from thermal equilibrium
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Particle distributions after decoupling
Using these scalings in the expressions for the number density of a non-relativistic species
one obtains that, after decoupling the number density scales as: 

This means that if a particle species decouples when it is non-relativistic, its number 
density also scales as:

Therefore, species that are non-relativistic at decoupling their number density after 
decoupling also scale as V. ∝ W!/.

Decoupling from thermal equilibrium
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(2,4 = 2.726

Particle distributions after decoupling
Example: photons (relativistic) 

(2,* = 2.726 1 + Q* ∼ 3000 K

Relativistic: Non-Relativistic: 

CMB

/( /(

16
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Decoupling and Freeze-out
As massive particles decouple their abundances are Boltzmann suppressed by <,//1. 
While relativistic, for 1 ≫ >, one should expect that #%/T# is constant (because #% ∝ T#).
However, these predictions assume that the decoupling species is always in equilibrium as 
its density is being supressed. But this hypothesis cannot hold at very low temperatures, 
1 ≪ >, because particle abundances become too small to be able to establish equilibrium.

At high enough ,/( one 
should expect that the real 
number density departures from 
the equilibrium prediction: 

In fact, beyond  ,/( larger 
than ~10 the ratio #565_89/T,

becomes constant again. The 
density, #565_89, is the non-
equilibrium Freeze-Out 
density.

Decoupling from thermal equilibrium
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Neutrino decoupling:

Neutrinos are coupled to the thermal bath via weak interaction processes like: 

At 10 MeV, photons, neutrinos, electrons (and their antiparticles)  are the 
only remaining particles of the relativistic fluid. Then, 0∗,reads:

Using this in the Friedman equations 

Combining with the expression for Γ one concludes that neutrinos decouple 
below at about 1 MeV (accurate calculation yields / = 0.8 MeV) . 
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Electron-positron annihilation
Electron-positron annihilation occurs soon after the neutrino decoupling. In fact, as 

soon as 1 ≲ 1.022 MeV electron-positron pair creation becomes less effective, and 

the interaction 

progressively moves to the right (more pairs I,/ I2 being destroyed than created). 

• Neutrino decoupling occurs 
around ( ∼ 0. 8 MeV;

• ^!/ ^: annihilation occurs 
around ( ∼ 0. 5 MeV, with a 
transition 0.1 ≲ (/MeV ≲ 1

• But these processes partially 
overlap. Neutrino decoupling 
is not over when electro-
positron annihilation starts

Neutrino 
decoupling

3±

*∗

Decoupling from thermal equilibrium
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Electron-positron annihilation
Let us now compute the effective degrees of freedom of relativistic particles before 

neutrino decoupling and after electron-positron annihilation. 

Before neutrino decoupling (J ≳ L MNO):
Relativistic particles species are the P, I± and T5, so:

After electron-positron annihilation (7 ≲ 9. : ;<=):
Relativistic particles species are just the P and T5 (note that neutrinos are already 

decoupled but they remain relativistic and therefore contribute to the entropy):

Since entropy is conserved one has: 
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Electron-positron annihilation
So, one can write:

But after decoupling neutrino temperature scales as:                                                       .

Moreover, since 16,89:;<9 = 1=, 89:;<9, one has:

Electron-positron annihilation
From which one concludes that:

So, after I,/ I2 annihilation the neutrino temperature is somewhat smaller than the 

the photon temperature: 

With this result one can estimate the relativistic degrees of freedom for 1 ≲ 0.5 MeV:

Which explains the difference between V∗? and V∗ at low temperatures.

Decoupling from thermal equilibrium
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Electron-positron annihilation
However, this result is only valid if the decoupling of neutrinos was instantaneous (and 
happened before the beginning of the electron-positron annihilation).

But these processes are not instantaneous and in fact overlap in time. Part of the energy and 
entropy of the electron-positron annihilation leaks into the remaining relativistic species,  
increasing their temperature, via a decrease of K∗1 and K∗ (as discussed in slide 13).

A more accurate computation (considering the variation of K∗1(() and K∗(() and the 
Boltzmann formalism) gives:

0∗ = 3.38 ; 0∗+ = 3.94
To keep the calculation of the effective degrees of freedom simple, it is usual to define a 
quantity, `;<<, known as effective number of neutrino species, so that:

Where a=>> = 3.046 (a=>> is by itself a parameter that can be fit by CMB observations). If 
neutrino decoupling was instantaneous a=>> = 3. 23

3.38

Decoupling from thermal equilibrium
Cosmic Neutrino Background 
A Cosmic Neutrino background (C?B) should be present in the universe since decoupling. Its 
temperature should scale with with the inverse of scale factor, and it is related to the CMB 

temperature (which also scales with the inverse of the scale factor) as:

(which corresponds to (?,4 = 0.17 meV).

Plugging this result in the expression of the neutrino number and energy densities one obtains:

Assuming a=>> = 3.046 and the observed values of the CMB densities, one obtains #?,4 =
112 cm!, and Ω?,4 = 0.00014 (assuming massless neutrinos).

24
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Beyond thermal equilibrium: the Boltzmann Equation
Equilibrium quantities such as density expression derived in the previous chapter assume that 
the decoupling species is always in equilibrium as its density is being supressed. In reality, this 
hypothesis cannot hold at very low temperatures, ( ≪ ,, because particle abundances 
become too small to be able to achieve equilibrium. The formal way of computing out of 
equilibrium densities is by using the Boltzmann equations approach (see next slides).  

Out of equilibrium 
density, #-

Equilibrium density, 
#-
=@

Freeze Out density, 
#AB==C=!DEF ≠ #-

=@

Decoupling from thermal equilibrium

Where the left-hand side is the same equation as above but in the right-hand side one adds a 
collision term, j-[ #G ], that accounts for sinks / sources of the density of the species #- due to 
interaction (collisions) with other species #G. 
The latter equation is known as the collisional Boltzmann equation. 
When j- #G = 0 one obtains the collisionless Boltzmann equation (above) 26

Boltzmann Equation
We have established that in the absence of interactions, the number density of a decoupled 
species, i, scales as #- = #4,- =

!,. So: 

E#-
E<

= −3 #4-=
!'=̇ = −3

=̇

=
#- ⟺

E#-
E<

+ 3
=̇

=
#- = 0

where the last equation is the continuity equation (up to a multiplicative factor, ,). Multiplying 
and dividing by =, one can also express this equation as: 

1

=,
E #-=

,

E<
= 0

This equation also holds when the particle species is in equilibrium way from mass thresholds 
(i.e. when the net number of particles remains constant). 
One can generalise this expression to include interactions:

1

=,
E #-=

,

E<
= j- #G



Decoupling from thermal equilibrium
Boltzmann Equation

The form of the collision term D@[ FA ] depends on the type of interaction. For 
interactions of 2 particles species (3 body interactions are in principle much less likely):

(this means that species 1 annihilates with species 2, giving rise to species 3 and 4. 
Conversely species 3 and 4 annihilate back to species 1 and 2). 

To follow the out of equilibrium evolution of, for example, (! one needs to consider the 
balance of efficiency of the reaction between 1 and 2, that originates a sink of density, and 
the (reverse) reaction between 3 and 4, that originates a source of (!.  This can be 
translated into the collisional Boltzmann equation by replacing the collision term H%[ (B ]
with 2 terms:

where IFCFD is a sink term describing the destruction of particles (due to the reaction to 
the right) and JFEFF is a source term describing the creation of particles of type 1 (due 
to the reaction to the left). 
Naturally, each term should be proportional to the densities of each pair. 27
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Boltzmann Equation

Now, the parameters W and X can be written as:

Ø W = $ % is the thermally averaged cross section (W #!#" = Γ!#!)

Ø X needs to be related to W so that the right-hand side of the equation vanishes

when particles are in equilibrium. 

Where the densities inside the parenthesis are equilibrium densities #%
9G

. Thus:



Boltzmann Equation
It is instructive to write to write the collisional Boltzmann in terms of the number of particles in 
a commoving volume, defined in Chapter 3 as:   

Decoupling from thermal equilibrium

which is a conserved quantity (whenever the net number of particles is conserved) resulting 
from the entropy conservation equation. Setting #- = a-& in the Boltzmann equation gives:

29

a- =
#-
&

1

=,
E #"=

,

E<
= − $% #"#' −

#"#'
#,#H =@

#,#H ⟺

⟺
1

=,
E a" &=

,

E<
= − $% a"a'&

' −
a"a'
a,aH =@

a,aH&
' ⟺

⟺
&=,

=,
Ea"
E<

= − $% &' a"a' −
a"a'
a,aH =@

a,aH

Ea"
E<

= − $% &a"a' 1 −
a"a'
a,aH =@

a,aH
a"a'

where &=, is constant because the entropy S = &F = FIJK &=
, is a conserved quantity. Further 

rearranging the previous equation, one has: 

Boltzmann Equation
Rearranging further and using the fact that & a' = #' and Γ" = $% #'

Decoupling from thermal equilibrium
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1

a"

Ea"
E<

= − $% & a' 1 −
a"a'
a,aH =@

a,aH
a"a'

⟺

one can finally write the Boltzmann equation as: 

Since: 

⟺
E lna"
E<

= − $% #' 1 −
a"a'
a,aH =@

a,aH
a"a'

⟺

⟺
E lna"
E<

= −Γ" 1 −
a"a'
a,aH =@

a,aH
a"a'

E lna"
E<

=
E lna"
E ln =

E ln =

E<
=

E lna"
E ln =

=̇

=
= 4

E lna"
E ln =

4
E lna"
E ln =

= −Γ" 1 −
a"a'
a,aH =@

a,aH
a"a'

⟺

⟺
E lna"
E ln =

= −
Γ"
4

1 −
a"a'
a,aH =@

a,aH
a"a'
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Boltzmann Equation
In summary: one can transform the collisional Boltzmann equation in terms of the 

equilibrium condition ratio Γ/( , and the number of particles of the intervening 

species, /% = #%/Y:

Which is of simple interpretation :
• The factor Γ!/( describes the interaction efficiency. 

• The 2nd term in the parenthesis characterises deviations from equilibrium. 

When all species are in equilibrium it gives 1 and the equation’s r.h.s. is zero. 

So ZC remains constant, i.e., freezes out. 

• If [C ≪ \, the r.h.s of the equation is supressed and ZCalso freezes out.

• If [C ≫ \ equilibrium is rapidly established. For example, if /! > /!
9G

the 

r.h.s. becomes negative (more particles will be destroyed). If /! < /!
9G

the 

r.h.s. becomes positive (more particles will be created). Both effects push 
ZC → ZC

HI
.   31
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Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)
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Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)
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Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)


