Homework questions from the "Revision..." lectures presentations:

#1. Show that for a one-dimensional system the momentum operator in the coordinate representation is given by $\hat{p}=-i\hbar\frac{d}{dx}$. (Hint: start from the momentum representation for the momentum operator)

- #2. Prove that if an operator is Hermitian then it satisfies the following:
 - 1. Its eigenvalues are always real
 - 2. Its corresponding eigenfunctions are orthogonal
 - 3. Its expectation values are always real
- #3. Show that the momentum operator $\hat{p}_x = -i\hbar \frac{d}{dx}$ is Hermitian.
- #4. Consider following the states: $|\Phi\rangle=3i|\psi_1\rangle-7i|\psi_2\rangle$ and $|\Theta\rangle=-|\psi_1\rangle+2i|\psi_2\rangle$, Where $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthonormal.
 - 1. Calculate: $| \Phi + \Theta \rangle$ and $\langle \Phi + \Theta |$.
 - 2. Calculate the scalars: $\langle \Theta | \Phi \rangle$ and $\langle \Phi | \Theta \rangle$. How o they relate to each other?
 - 3. Are $|\Phi\rangle$ and $|\Theta\rangle$ normalised? If not, normalised them.
- #5. Consider a state which is given in terms of orthonormal vectors $|\psi_1\rangle$, $|\psi_2\rangle$, $|\psi_3\rangle$ as follows:

$$|\Psi\rangle = \frac{1}{\sqrt{15}}|\psi_1\rangle + \frac{1}{\sqrt{3}}|\psi_2\rangle + \frac{1}{\sqrt{5}}|\psi_3\rangle$$

Where $|\psi_{\rm n}\rangle$ are eigenstates of an operator $\hat{\rm A}$ such that: $\hat{A}\mid\psi_{n}\rangle=(3n^2-1)\mid\psi_{n}\rangle$.

- 1. Normalise $|\Psi\rangle$.
- 2. Find the expectation value of \hat{A} in the state $|\Psi\rangle$.
- 3. Find the expectation value of \widehat{A}^2 in the state $|\Psi\rangle$.
- #6. For the simple harmonic oscillator ladder operators \hat{b} , \hat{b}^+ show that:

$$\hat{b}^+|n\rangle = \sqrt{n+1}\,|n+1\rangle,$$

1

$$\hat{b}|n\rangle = \sqrt{n}|n-1\rangle,$$

where $|n\rangle$ is an eigenvector of the Hamiltonian operators.

#7. Calculate matrix elements $\langle n'|\hat{x}|n\rangle$ and $\langle n'|\hat{p}|n\rangle$, where $|n\rangle$ and $|n'\rangle$ are eigenvectors of the Hamiltonian operator for a simple harmonic oscillator.