

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

PRÁTICAS DE CARTOGRAFIA

DEGGE – LICENCIATURA EM ENGENHARIA GEOESPACIAL

2016/2017

ALGUNS CONCEITOS

SISTEMAS DE REFERÊNCIA ADOTADOS EM PORTUGAL

Direção-Geral do Território (DGT)

http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/sistemas_de_referencia/

Portugal Continental

ED50 - European Datum 1950 (Obsoleto - Substituído pelo sistema PT-TMo6-ETRS89)

Bessel Datum Lisboa (Obsoleto - Substituído pelo sistema PT-TMo6-ETRS89)

Datum Lisboa (Obsoleto - Substituído pelo sistema PT-TMo6-ETRS89)

Datum 73 (Obsoleto - Substituído pelo sistema PT-TMo6-ETRS89) PT-TMo6/ETRS89 - European Terrestrial Reference System 1989

Arquipélago dos Açores	Arquipélago da Madeira	Regiões Autónomas
Datum S. Braz - S. Miguel (Grupo Oriental do Arquipélago dos Açores)		
Datum Base SW - Graciosa (Grupo Central do Arquipélago dos Açores)	Datum Base SE - Porto Santo (Arquipélago da Madeira)	PTRAo8-UTM/ITRF93 - realização do International Terrestrial Reference Frame 1993
Datum Observatório - Flores (Grupo Ocidental do Arquipélago dos Açores)		

Centro de Informação Geoespacial do Exército (CIGeoE)

https://www.igeoe.pt/index.php?id=38&cat=3

Portugal Continental	
Datum Lisboa militares (Obsoleto - Substituído pelo sistema TM/WGS84)	WGS84 / TM (Gauss-Kruger)

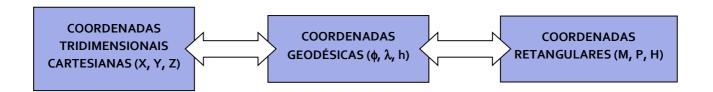
Regiões Autónomas	
WGS 84 / UTM	

TIPOS DE COORDENADAS

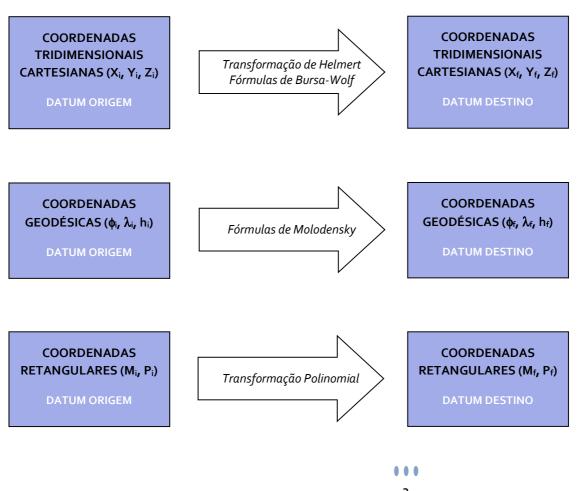
Coordenadas	V.G. Aboboreira (Beja) PT-TMo6-ETRS89
Cartesianas (X, Y, Z)	X= 4993821.5571 m Y= -676850.4038 m Z= 3896819.7516 m
Geodésicas ou geográficas (φ, λ, h)	φ= 37° 53′ 58,7635″ N λ= 07° 43′ 07,2999″ W Gr h= 257,85 m
Retangulares (M, P)	M= 36 448,61 m P= -196 253,96 m

TRANSFORMAÇÃO ENTRE COORDENADAS

TRANSFORMAÇÃO DE COORDENADAS NUM MESMO DATUM



TRANSFORMAÇÃO DE COORDENADAS ENTRE DIFERENTES DATA



Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação direta das coordenadas geodésicas (ϕ , λ) dos seguintes vértices geodésicos nas correspondentes coordenadas retangulares (M, P).

	V.G. Aboboreira (Beja)		V. G. Cabeço da Ponta (Porto Santo - Madeira)
PT-TMo6/ETRS89	Datum Lisboa	Datum 73	PTRAo8- UTM/ITRF93
φ= 37° 53′ 58,7635″ N	φ= 37° 53′ 53,17608″ N	φ=37° 53′ 56,01135″ N	φ=33° 02′ 15,2697″ N
λ= 07° 43′ 07,2999″ WGr	λ= 07° 43′ 03,09455″ WGr	λ= 07° 43′ 10,59207″ WGr	λ= 16° 21′ 41,8679″ WGr
h= 257,85 m	h= 208,7901 m	h= 204,8015 m	h= 32,27 m
M= 36 448,61 m	M= 36 448,0117 m	M= 36 445,0373 m	M= 372 851,2519 m
P= -196 253,96 m	P= -196 254,9317 m	P= -196 255,3140 m	P= 3 656 276,3028 m

A transformação direta das coordenadas geodésicas (ϕ , λ) de um ponto nas correspondentes coordenadas planas (x, y) através da projeção de Gauss (também conhecida por Transversa de Mercator) é definida por via analítica através das fórmulas obtidas por desenvolvimento em série:

$$y = k_{o} \cdot (\sigma + \frac{\lambda^{2}}{2} \cdot N \cdot \sin\phi \cdot \cos\phi + \frac{\lambda^{4}}{24} \cdot N \cdot \sin\phi \cdot \cos^{3}\phi \cdot k_{2} + \frac{\lambda^{6}}{720} \cdot N \cdot \sin\phi \cdot \cos^{5}\phi \cdot k_{4}$$

$$+ \frac{\lambda^{8}}{40320} \cdot N \cdot \sin\phi \cdot \cos^{7}\phi \cdot k_{6})$$

$$x = k_{o} \cdot (\lambda \cdot N \cdot \cos\phi + \frac{\lambda^{3}}{6} \cdot N \cos^{3}\phi \cdot k_{1} + \frac{\lambda^{5}}{120} \cdot N \cos^{5}\phi \cdot k_{3} + \frac{\lambda^{7}}{5040} \cdot N \cos^{7}\phi \cdot k_{5})$$

sendo k_\circ o fator de escala, σ o comprimento do arco de meridiano desde o paralelo origem até ao paralelo do ponto, λ a diferença de longitude entre o ponto e o meridiano central da projecção (λ - λ_\circ), ϕ a latitude geográfica do ponto, N a grande normal à latitude ϕ :

$$N = \frac{a}{\left(1 - e^2 \cdot \sin^2 \phi\right)^{\frac{1}{2}}}$$

(a, e^2) os parâmetros característicos do elipsóide de referência e ρ o raio de curvatura do meridiano à latitude ϕ :

$$\rho = \frac{a.(1 - e^2)}{(1 - e^2.\sin^2\phi)^{\frac{3}{2}}}$$

$$e^2 = f \cdot (2 - f)$$

onde e é a excentricidade do elipsóide e f é o achatamento do elipsóide; e ainda

$$\begin{split} k_{_{1}} &= \frac{N}{\rho} - tg^{2}\varphi \\ k_{_{2}} &= \frac{N}{\rho} + 4 \cdot \frac{N^{2}}{\rho^{2}} - tg^{2}\varphi \\ k_{_{3}} &= 4 \cdot \frac{N^{3}}{\rho^{3}} \cdot (1 - 6 \cdot tg^{2}\varphi) + \frac{N^{2}}{\rho^{2}} \cdot (1 + 8 \cdot tg^{2}\varphi) - 2 \cdot \frac{N}{\rho} \cdot tg^{2}\varphi + tg^{4}\varphi \\ k_{_{4}} &= 8 \cdot \frac{N^{4}}{\rho^{4}} \cdot (11 - 24 \cdot tg^{2}\varphi) - 28 \cdot \frac{N^{3}}{\rho^{3}} \cdot (1 - 6 \cdot tg^{2}\varphi) + \frac{N^{2}}{\rho^{2}} \cdot (1 - 32 \cdot tg^{2}\varphi) - 2 \cdot \frac{N}{\rho} \cdot tg^{2}\varphi + tg^{4}\varphi \\ k_{_{5}} &= 61 - 479 \cdot tg^{2}\varphi + 179 \cdot tg^{4}\varphi - tg^{6}\varphi \\ k_{_{6}} &= 1385 - 3111 \cdot tq^{2}\varphi + 543 \cdot tq^{4}\varphi + tq^{6}\varphi \end{split}$$

Na projeção de Gauss, aplicada à cartografia portuguesa, usa-se um factor de escala k_0 = 1, dada a pequena largura da nossa faixa continental. A projecção UTM é a projeção de Gauss aplicada a cada um dos 60 fusos, de 6º cada, em que podemos dividir o globo terrestre, tomando-se k_0 = 0,9996 (valor escolhido de modo a tornar iguais as deformações da carta no meridiano médio e nos meridianos limítrofes do fuso).

O comprimento aproximado do arco de meridiano σ entre quaisquer duas latitudes ϕ_o e ϕ é determinado através de:

$$\begin{split} \sigma = & a \cdot \left(1 - e^2\right) \cdot \left\{A \cdot \left(\varphi - \varphi_o\right) - \frac{B}{2} \cdot \left(\sin_2\varphi - \sin_2\varphi_o\right) + \frac{C}{4} \cdot \left(\sin_4\varphi - \sin_4\varphi_o\right) - \right. \\ & \left. - \frac{D}{6} \cdot \left(\sin_6\varphi - \sin_6\varphi_o\right) + \frac{E}{8} \cdot \left(\sin_8\varphi - \sin_8\varphi_o\right) - \frac{F}{10} \cdot \left(\sin_1\varphi - \sin_1\varphi_o\right) \right\} \end{split}$$

com

$$A = 1 + \frac{3}{4} \cdot e^{2} + \frac{45}{64} \cdot e^{4} + \frac{175}{256} \cdot e^{6} + \frac{11025}{16384} \cdot e^{8} + \frac{43659}{6536} \cdot e^{10} + \dots$$

$$B = \frac{3}{4} \cdot e^{2} + \frac{15}{16} \cdot e^{4} + \frac{525}{512} \cdot e^{6} + \frac{2205}{2048} \cdot e^{8} + \frac{72765}{6536} \cdot e^{10} + \dots$$

$$C = \frac{15}{64} \cdot e^{4} + \frac{105}{256} \cdot e^{6} + \frac{2205}{4096} \cdot e^{8} + \frac{10395}{16384} \cdot e^{10} + \dots$$

$$D = \frac{35}{512} \cdot e^{6} + \frac{315}{2048} \cdot e^{8} + \frac{31185}{131072} \cdot e^{10} + \dots$$

$$E = \frac{315}{16384} \cdot e^{8} + \frac{3465}{65536} \cdot e^{10} + \dots$$

$$F = \frac{3465}{131072} \cdot e^{10} + \dots$$

	PT-TMo6/ETRS89	Datum Lisboa	Datum 73	PTRAo8- UTM/ITRF93
Elipsoide de referência:	GRS80 a = 6 378 137 m f = 1 / 298,257 222 101	Hayford (ou Internacional 1924) a = 6 378 388 m f = 1/297	Hayford (ou Internacional 1924) a = 6 378 388 m f = 1/297	GRS80 a = 6 378 137 m f = 1/298,257 222 101
Projeção cartográfica:	Transversa de Mercator	Transversa de Mercator	Transversa de Mercator	Transversa de Mercator
Latitude da origem das coordenadas retangulares:	39° 40' 05",73 N	39° 40' 00" N	39° 40' 00" N	00
Longitude da origem das coordenadas retangulares:	08° 07' 59",19 W	o8° 07' 54",862 W	08° 07' 54",862 W	33° W (fuso 25) 27° W (fuso 26) 15° W (fuso 28)
Falsa origem das coordenadas retangulares:	Em M: o m Em P: o m	Em M: o m Em P: o m	Em M: +180,598 m Em P: -86,990 m	Em M: +500 000 m Em P: 0 m
Coeficiente de redução de escala no meridiano central:	1,0	1,0	1,0	0,9996

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação inversa das coordenadas retangulares (M, P) dos vértices geodésicos utilizados no exercício $\mathbf 1$ nas correspondentes coordenadas geodésicas (ϕ , λ).

Para efectuar a transformação inversa das coordenadas planas Gauss (ou UTM) nas correspondentes coordenadas geodésicas basta utilizar um processo iterativo:

1) Toma-se como ponto de partida um valor aproximado para ϕ (ϕ_{ap}), saído de um cálculo anterior ou considerando um valor aproximado para o arco de meridiano σ :

$$\sigma_{ap} = \frac{P}{k_0}$$

sendo P a distância à perpendicular; donde a primeira aproximação para ϕ é dada por:

$$\phi = \phi_0 + \frac{\sigma_{ap}}{A \cdot a \cdot (1 - e^2)}$$

2) Com base neste valor aproximado da latitude recalcula-se o comprimento de arco de meridiano σ usando a expressão:

$$\begin{split} \sigma &= a \cdot \left(1 - e^2\right) \cdot \left\{A \cdot \left(\varphi - \varphi_0\right) - \frac{B}{2} \cdot \left(\sin 2\varphi - \sin 2\varphi_0\right) + \frac{C}{4} \cdot \left(\sin 4\varphi - \sin 4\varphi_0\right) - \right. \\ &\left. - \frac{D}{6} \cdot \left(\sin 6\varphi - \sin 6\varphi_0\right) + \frac{E}{8} \cdot \left(\sin 8\varphi - \sin 8\varphi_0\right) - \frac{F}{10} \cdot \left(\sin 10\varphi - \sin 10\varphi_0\right) \right\} \end{split}$$

3) Com este novo valor para σ podemos determinar a correcção a aplicar a φ através de:

$$\Delta \phi = \frac{\left(\sigma_{ap} - \sigma\right)}{\rho}$$

onde

$$\rho = \frac{a.(1 - e^2)}{(1 - e^2.\sin^2\phi)^{\frac{3}{2}}}$$

sendo o novo valor da latitude igual a:

$$\phi' = \phi + \Delta \phi$$

- 4) Entra-se de seguida num processo iterativo, recalculando σ , ρ e $\Delta \phi$ e o novo valor da ϕ' até que $\Delta \phi$ seja inferior à precisão desejada (10⁻¹⁰);
- 5) Com o valor da latitude φ' resultante do processo iterativo, calcula-se a latitude e longitude do ponto, através das seguintes expressões:

$$\begin{split} & \varphi = \varphi' - \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^2}{2 \cdot k_0 \cdot N}\right) + \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^4}{24 \cdot k_0^3 \cdot N^3}\right) \cdot \left(-4 \psi^2 + 9 \psi \cdot \left(1 - t^2\right) + 12 t^2\right) - \\ & - \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^6}{720 \cdot k_0^5 \cdot N^5}\right) \cdot \left(8 \psi^4 \cdot \left(11 - 24 t^2\right) - 12 \psi^3 \cdot \left(21 - 71 t^2\right) + 15 \psi^2 \cdot \left(15 - 98 t^2 + 15 t^4\right) + \\ & + 180 \psi \cdot \left(5 t^2 - 3 t^4\right) - 360 t^4\right) + \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^8}{40320 \cdot k_0^7 \cdot N^7}\right) \cdot \left(1385 + 3633 t^2 + 4095 t^4 + 1575 t^6\right) \end{split}$$

$$\begin{split} &(\lambda - \lambda_0) \cdot cos \varphi' = \left(\frac{M}{k_0 \cdot N}\right) - \left(\frac{M^3}{6 \cdot k_0^3 \cdot N^3}\right) \cdot \left(\psi + 2t^2\right) + \\ &+ \left(\frac{M^5}{120 \cdot k_0^5 \cdot N^5}\right) \cdot \left(-4\psi^3 \cdot \left(1 - 6t^2\right) + \psi^2 \cdot \left(9 - 68t^2\right) + 72\psi t^2 + 24t^4\right) - \\ &- \left(\frac{M^7}{5040 \cdot k_0^7 \cdot N^7}\right) \cdot \left(61 + 662t^2 + 1320t^4 + 720t^6\right) \end{split}$$

sendo M a distância à meridiana, $\psi = \frac{N}{\rho}$, calculado com o valor da latitude ϕ' , e $t = tg\phi'$.

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação direta entre coordenadas geodésicas (ϕ , λ , h) dos seguintes vértices geodésicos nas correspondentes coordenadas cartesianas tridimensionais (X, Y, Z).

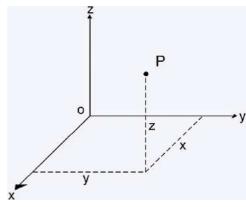
V.G. Aboboreira (Beja)	V. G. Cabeço da Ponta (Porto Santo - Madeira)
PT-TMo6/ETRS89	PTRAo8-UTM/ITRF93
φ= 37° 53′ 58,7635″ N	φ=33° 02′ 15,2697″ N
λ= 07° 43′ 07,2999″ WGr	λ= 16° 21′ 41,8679″ WGr
h= 257,85 m	h= 32,27 m
X= 4993821,5571 m	X= 5135480,8889 m
Y= -676850,4038 m	Y= -1507717,9053 m
Z= 3896819,7516 m	Z= 3457470,4300 m

Considerando um triedro cartesiano OXYZ centrado com o elipsóide de referência, com o eixo dos ZZ coincidente com o seu eixo de revolução, com o eixo dos XX assente no semi-plano origem das longitudes geodésicas e o eixo dos YY escolhido de modo a tornar o triedro directo, as coordenadas geodésicas (ϕ , λ , h) de um ponto genérico relacionam-se com as suas coordenadas cartesianas tridimensionais (X, Y, Z) por meio das seguintes expressões:

$$X = (N+h) \cdot \cos \phi \cdot \cos \lambda$$

$$Y = (N+h) \cdot \cos \phi \cdot \sin \lambda$$

$$Z = \left[\left(1 - e^2 \right) \cdot N + h \right] \cdot \sin \phi$$



sendo N a grande normal ao elipsóide de referência à latitude ϕ , h a altitude elipsoidal do ponto e (a, e²) os seus parâmetros de forma. Estas expressões correspondem à transformação directa das coordenadas geodésicas (ϕ , λ , h) de um ponto nas correspondentes coordenadas cartesianas tridimensionais (X, Y, Z).

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação inversa entre coordenadas cartesianas tridimensionais (X, Y, Z) dos vértices geodésicos utilizados no exercício 3 nas correspondentes coordenadas geodésicas (ϕ , λ , h).

A transformação inversa das coordenadas cartesianas tridimensionais (X, Y, Z) de um ponto nas correspondentes coordenadas geodésicas (ϕ , λ , h) é executada recorrendo a um processo iterativo:

1) A longitude λ pode ser facilmente calculada a partir das coordenadas cartesianas tridimensionais utilizando a seguinte expressão:

$$\lambda = \operatorname{arctg}\left(\frac{Y}{X}\right)$$

2) A latitude é obtida por um processo iterativo dado que as quantidades φ e h são dependentes uma da outra, pelo que se utiliza um valor aproximado para a latitude o qual é calculado por:

$$\phi_{ap} = \operatorname{arctg}\left(\frac{Z}{P \cdot (1 - e^2)}\right)$$

com Piqual a:

$$P = (X^2 + Y^2)^{1/2}$$

3) Com base neste valor aproximado da latitude calcula-se o valor de N, e em seguida o valor para a altitude elipsoidal h usando a expressão:

$$h = \frac{P}{\cos \phi} - N$$

4) O processo iterativo continua recalculando o valor de ϕ , com N e h calculados no passo anterior, utilizando a expressão:

$$\phi = \arctan\left(\frac{Z + e^2 \cdot N \cdot \sin\phi}{P}\right)$$

5) Com este novo valor da latitude φ, recalcula-se o valor de N, da altitude elipsoidal h e em seguida um novo valor para a latitude φ e assim sucessivamente até alcançar a precisão desejada para a transformação (φ_i-φ_{i-1} =10⁻¹⁰).

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas cartesianas tridimensionais (X, Y, Z) - Transformação de Helmert/Fórmulas de Bursa-Wolf - de dois *data* distintos.

	Ponto
Datum 73	PT-TMo6/ETRS89
X= 4815286 m	X= 4815062,1368 m
Y= -578951 m	Y= -578841,2009 m
Z= 4129745 m	Z= 4129782,0548 m

A transformação de sete parâmetros de Helmert, expressa em formato matricial, é designada por fórmula de Bursa-Wolf e tem a seguinte forma:

$$\begin{bmatrix} X_{n} \\ Y_{n} \\ Z_{n} \end{bmatrix} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + (1 + \alpha) \cdot \begin{bmatrix} 1 & -R_{z} & R_{y} \\ R_{z} & 1 & -R_{x} \\ -R_{y} & R_{x} & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

onde (X, Y, Z) são as coordenadas de um dado ponto no sistema de referência geocêntrico origem, (X_n, Y_n, Z_n) são as coordenadas desse mesmo ponto no sistema de referência geocêntrico destino, (Δ X, Δ Y, Δ Z) são as componentes do vetor que une os centros dos dois elipsóides, (R_X, R_Y, R_Z) são os ângulos de rotação em torno dos eixos de referencial de origem e α é o factor de escala (expresso em partes por milhão - ppm).

Nota: A fórmula apresentada encontra-se em conformidade com a norma ISO 1911:2007. No entanto, é de ter em conta outras versões utilizadas em alguns programas que se reflectem nos sinais e/ou no sentido das rotações.

De seguida apresentam-se os parâmetros da transformação de Bursa-Wolf do datum Lisboa e datum 73 para PT-TMo6-ETRS89 retirados do sítio da Direção-Geral do Território (http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/transformacao_de_coordenadas/paramet ros_de_transformacao_de_coordenadas/portugal_continental/bursa_wolf_do_datum_lisboa_e_datum _73_para_pt_tmo6_etrs89/) em fevereiro de 2017.

C	Parâmetros de Transformação de Bursa-Wolf do Datum Lisboa e Datum 73 para PT-TMo6-ETRS89		
	Datum Lisboa para PT-TMo6/ETRS89	Datum 73 para PT-TMo6/ETRS89	
ΔX (m)	-283,088	-230,994	
ΔY (m)	-70,693	+102,591	
ΔZ (m)	+117,445	+25,199	
R _X (")	-1,157	+0,633	
R _Y (")	+0,059	-0,239	
R _z (")	-0,652	+0,900	
α (ppm)	-4,058	+1,950	

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas geodésicas (ϕ , λ , h) - Fórmulas de Molodensky - de dois data distintos.

Ponto	
Datum 73	PT-TMo6/ETRS89
φ= 40° 36′ 10″ N	φ= 40° 36′ 12,92913″ N
λ= 6° 51′ 17″ WGr	λ= 6° 51′ 13,48258″ WGr
h= 826 m	h= 884,0728 m

A transformação de Molodensky tem cinco parâmetros tendo a sequinte forma:

$$\begin{cases} -\Delta X \sin \varphi \cos \lambda - \Delta Y \sin \varphi \sin \lambda + \Delta Z \cos \varphi + \Delta a \frac{e^2 N \sin \varphi \cos \varphi}{a} + \Delta f \sin \varphi \cos \varphi \left(\frac{a}{b} \rho + \frac{b}{a} N\right) \\ \varphi_n = \varphi + \frac{-\Delta X \sin \lambda + \Delta Y \cos \lambda}{(N+h) \cos \varphi} \\ \lambda_n = \lambda + \frac{-\Delta X \sin \lambda + \Delta Y \cos \lambda}{(N+h) \cos \varphi} \\ h_n = h + \Delta X \cos \varphi \cos \lambda + \Delta Y \cos \varphi \sin \lambda + \Delta Z \sin \varphi - \Delta a \left(\frac{a}{N}\right) + \Delta f \left(\frac{b}{a} N \sin^2 \varphi\right) \end{cases}$$

onde ϕ_n , λ_n , h_n são a latitude, longitude (em radianos) e a altitude elipsoidal (em metros) a obter, ϕ , λ , h são a latitude, longitude (em radianos) e a altitude elipsoidal (em metros) originais, ΔX , ΔY , ΔZ as componentes do vetor que une os centros dos dois elipsóides, a, b os semi-eixos maior e menor do elipsóide origem, e, f a primeira excentricidade e o achatamento do elipsóide origem, Δa , Δf a diferença entre os semi-eixos maiores e os achatamentos dos dois elipsóides, N o raio de curvatura do primeiro vertical (Grande Normal) e ρ o raio de curvatura do meridiano.

$$b = a \cdot (1 - f)$$

. . .

De seguida apresentam-se os parâmetros da transformação de Molodensky do datum Lisboa e datum 73 para PT-TMo6-ETRS89 retirados do sítio da Direção-Geral do Território (http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/transformacao_de_coordenadas/paramet ros_de_transformacao_de_coordenadas/portugal_continental/molodensky_do_datum_lisboa_e_datu m_73_para_pt_tmo6_etrs89/) em fevereiro de 2017.

Parâmetros de Transformação de Molodensky do Datum Lisboa e Datum 73 para PT-TMo6-ETRS89			
	Datum Lisboa para Datum 73 para PT-TMo6/ETRS89 PT-TMo6/ETRS89		
ΔX (m)	-303.861	-223.150	
ΔY (m)	-60.693	+110.132	
ΔZ (m)	+103.607	+36.711	
∆a (m)	-251.000	-251.000	
Δf (m)	-1.4192686x10 ⁻⁵	-1.4192686x10 ⁻⁵	

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas retangulares (M, P) - Transformação Polinomial - de dois *data* distintos.

	Ponto
Datum 73	PT-TMo6/ETRS89
M= 20000 m	M= 19999,7773 m
P= 20000 m	P= 20000,1413 m
h= 100 m	h= 155,6977 m

A transformação polinomial de grau 2 permite transformar coordenadas retangulares num determinado datum nas coordenadas retangulares num outro datum:

$$M_n = a_0 + a_1 u + a_2 v + a_3 u^2 + a_4 u v + a_5 v^2$$

$$P_n = b_0 + b_1 u + b_2 v + b_3 u^2 + b_4 u v + b_5 v^2$$

onde M_n , P_n são as coordenadas rectangulares a obter, X, Y as coordenadas rectangulares originais, a_i , b_i os coeficientes de transformação, X_o , Y_o , h, k os parâmetros de normalização e u e v têm a seguinte forma:

$$v = \frac{X - X_0}{h} \qquad v = \frac{Y - Y_0}{k}$$

De seguida apresentam-se os parâmetros da transformação polinomial do datum Lisboa e datum 73 para PT-TMo6-ETRS89 retirados do sítio da Direção-Geral do Território (http://www.dgterritorio.pt/cartografia_e_geodesia/geodesia/transformacao_de_coordenadas/paramet ros_de_transformacao_de_coordenadas/portugal_continental/polinomios_de_grau_2_do_datum_lisbo a_e_datum_73_para_pt_tmo6_etrs89/) em fevereiro de 2017.

Coeficientes de Transformação Polinomial de Grau 2 do Datum Lisboa e Datum 73 para PT-TMo6-ETRS89		
	Datum Lisboa para PT-TMo6/ETRS89	Datum 73 para PT-TMo6/ETRS89
a _o	+1,38051	+0,28961
aı	+129998,56256	+129999,16977
a2	-1,69483	-5,26888
аз	-0,57226	+0,32257
a4	-2,9606	-o,878 ₅₃
a ₅	-2,45601	-1,22237
bo	+0,80894	-0,08867
b1	+1,31669	+2,39595
b2	+279995,74505	+279997,91435
b3	+0,24888	+0,15146
b4	+2,65999	+1,11109
b5	-3,86484	-1,06143
Xo	0	0
Yo	0	0
h	+130000	+130000
k	+280000	+280000