
MACHINE LEARNING IN REMOTE SENSING DATA PROCESSING

Gustavo Camps-Valls

Image Processing Laboratory (IPL), Universitat de València, Spain
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ABSTRACT

Remote sensing data processing deals with real-life applica-
tions with great societal values. For instance urban monitor-
ing, fire detection or flood prediction from remotely sensed
multispectral or radar images have a great impact on eco-
nomical and environmental issues. To treat efficiently the ac-
quired data and provide accurate products, remote sensing has
evolved into a multidisciplinary field, where machine learn-
ing and signal processing algorithms play an important role
nowadays. This paper serves as a survey of methods and ap-
plications, and reviews the latest methodological advances in
machine learning for remote sensing data analysis.

1. INTRODUCTION

Remote sensing is the field of science studying and modeling
the processes occurring on the Earth’s surface and their inter-
action with the atmosphere [1]. Earth observation at local and
global scales is nowadays an increasing need. By monitor-
ing urban growth, estimating temperature or ocean salinity,
and identifying objects on the surface, remote sensing pro-
vides valuable information for policy and decision makers,as
well as for tourism or defense applications. These objectives
are possible because materials in a scene reflect, absorb, and
emit electromagnetic radiation in a different way depending
of their molecular composition and shape. Remote sensing
exploits this physical fact and deals with the acquisition of in-
formation about a scene (or specific object) at a short, medium
or long distance.

According to the type of energy resources involved in
the data acquisition, remote sensing imaging instruments can
be passiveor active. In this paper we will focus on pas-
sive sensors which have experienced a great evolution in the
last decades, and pose challenging problems for the machine
learning and signal processing communities. Passive systems
exploit solar radiation to capture the emergent radiation,which
is acquired by an airborne or satellite spectrometer at differ-
ent wavelengths. The acquired signal or spectral signatureis
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Fig. 1. Principle of imaging spectroscopy.

known asspectrumand is used to identify materials in the
scene. Figure 1 shows the principle of imaging spectroscopy
to perform satellite remote sensing. The resulting multispec-
tral image consists of a simultaneous acquisition of spatially
coregistered images, in several, spectrally contiguous bands
from a remotely operated platform [1,2].

The diversity of objectives and the special characteris-
tics of the data give rise to the use of a wide range of ma-
chine learning and signal processing algorithms. The statis-
tical characterization of remote sensing images turns to be
difficult because of pixel’s high dimensionality, presenceof
different kinds of noise sources and uncertainty, their inher-
ent non-linear nature, and the high spatial and spectral redun-
dancy. Machine learning has been successfully applied in re-
mote sensing for classification, regression, clustering, coding,
or source separation. However, we feel that promising new
learning paradigms, such as transfer, active, structured,rein-
forcement, semisupervised or manifold learning, have been
payed little or no attention. This paper reviews both tradi-
tional and new trends in machine learning for remote sensing
data processing with the main goal of estimulating research
and development in both directions.



2. TRADITIONAL MACHINE LEARNING FOR
REMOTE SENSING

In this section, we review the traditional machine learningap-
proaches to remote sensing applications. Only the most rele-
vant applications are revised: classification, feature selection
and extraction, regression and unmixing.

2.1. Image classification

Classification maps are the main product of remote sensing
image processing. In the last years, data-driven approaches
have gained relevance in the remote sensing community. In
particular, non-parametric methods have demonstrated good
performance. Supervised and unsupervised are revised here.

2.1.1. Supervised Image Classification

These methods use labeled information about class member-
ship of single pixels (labeled by expert users) to build a model
able to generalize to the whole image (or set of images). At
present, the most successful methods are neural networks [3,
4] and support vector machines [5]. The latter have been ap-
plied to both multispectral [6,7] and hyperspectral [5,8,9] data
in a wide range of domains, including object recognition [10],
landcover and multi-temporal classification [9,11,12], and ur-
ban monitoring [13] to name a few. Another field of growing
interest is that of classifier ensembles [14, 15] and boosting
methods [16].

2.1.2. Unsupervised Image Classification

Unsupervised classification of remote sensing images is a crit-
ical problem in many applications, either for visualization and
monitoring of similar areas in the scene or as a pre-processing
step for supervised classifiers. Many clustering methods have
been designed, such as rule-based [17], neural networks [18–
20], or based on SVMs [21]. Three approaches dominate the
field. First, fuzzy clustering has been used alone [22, 23] or
combined with multiobjective optimization [24] for exploit-
ing spatially membership relations. Second, fusion of mul-
tisource information has been conducted either with graph-
cuts [25], projection pursuit [26], hierarchical clustering [27],
or Markov random fields [28] for contextual regularization.
Also, multicomponent image segmentation with self-organizing
maps (SOM) and hybrid genetic algorithms [20] have been
proposed. Finally, it is worth mentioning the use of dynamic
clustering strategies for spatio-temporal reasoning [29]and
visualization [30].

2.1.3. Multitemporal Classification and Change Detection

Multitemporal and change detection problems are very active
because of the increasing availability of complete time series

of images and the interest in monitoring Earth’s changes at lo-
cal and global scales. On the one hand, many multi-temporal
supervised methods have been used during the last years, such
as evidence reasoning [31], generalized least squares [32],
neural networks [33] or support vector machines (SVMs) [34,
35]. Hidden Markov random fields [36] and fuzzy-based ap-
proaches [37] have been also used to link time-varying statis-
tics. On the other hand, change detection approaches typically
use image subtraction or ratioing, change vector analysis,or
cross-correlation analysis [1]. Recently, neural networks [38]
and kernel methods [9] have been used. Composite kernels
have been specifically designed for the combination of mul-
titemporal, multisensor and multisource information [9, 39].
Recent advances focus on the reduction of the user interven-
tion, either by using semi- or unsupervised methods [40,41].

2.2. Feature Selection and Extraction

A critical issue when working with high dimensional datasets,
such as hyperspectral images, is that the computational time
is increased and the high collinearity and presence of noisy
bands can degrade the quality of the model. But maybe more
important is the study of the relative relevance of the acquired
bands to perform a given task. Remember that spectral bands
have a physical meaning and can be related to the properties
of the elements to be identified or modeled.

Feature selection has been studied in remote sensing un-
der classical discriminative criteria [42]. Lately, advanced
machine learning methods have been used, such as genetic
algorithms [43], or SVM-based recursive feature elimination
[44]. Recently more attention has been focused on feature ex-
traction methods. Even though the use of linear methods such
as PCA or PLS is quite common, recent advances to cope
with nonlinearities in the data based on multivariate kernel
machines have been presented [45].

2.3. Signal Unmixing

Pixels are invariably a mixture of the signatures of the var-
ious materials found within the spatial extent of the ground
instantaneous field view. An important problem in remote
sensing is the development of automatic extraction methods
of the spectral pure pixels (known asendmembers) directly
from the image. These pure pixels are the basis to express
all pixels as a linear (or non-linear) combination of them, and
this, in turn, allows subpixel detection [2] or mineral map-
ping [46]. Some classical techniques for this purpose include
the N-FINDR algorithm [47], the vertex component algorithm
(VCA) in [48], and an orthogonal subspace projection (OSP)
technique in [49], among others [50]. Selection of the free pa-
rameters and inclusion of spatial information in the unmixing
process are key issues nowadays [51]. Recently support vec-
tor domain description (SVDD) has been also used to select
the pure pixels [45].



2.4. Regression and Model Inversion

Robust, fast and accurate regression tools are a critical de-
mand in remote sensing. The estimation of biophysical pa-
rameters is of special relevance in order to better understand
the environment dynamics at local and global scales [1]. The
inversion of analytical models introduces a higher level of
complexity, induces an important computational burden, and
sensitivity to noise becomes an important issue. In the recent
years, nevertheless, the use ofempirical modelsadjusted to
learn the relationship between the acquired spectra and ac-
tual ground measurements has become very attractive.Para-
metric models have some important drawbacks, which typ-
ically lead to poor prediction results on unseen (test) data.
As a consequence,non-parametricand potentiallynon-linear
regression techniques have been effectively introduced, such
as neural networks [52, 53], support vector regression (SVR)
[54,55], relevance vector machines (RVM) [56], or Gaussian
Processes (GP) [57]. Even been more accurate than analyti-
cal models, they lack interpretability and rely on trainingdata
from the observed scene, which limits its extensive use.

3. NEW TRENDS IN MACHINE LEARNING FOR
REMOTE SENSING

The special characteristics of the acquired data motivatesthe
continuous research in machine learning methods for tackling
particular remote sensing problems. In this section, we sum-
marize some promising machine learning paradigms of recent
application in remote sensing.

3.1. Manifold Learning

Recently the field ofmanifold learninghas appeared as a
powerful framework to analyze nonlinearities in the data. The
field is related to that ofdimensionality reductionandnon-
linear feature extraction, which is scattered throughout com-
puter science, machine learning, image processing and cyber-
netics. The main goal in manifold learning is to map high
dimensional data into a lower dimension while preserving the
main features of the original data for better analysis. In this
way, visualization and understanding of high-dimensionaldata
becomes feasible. Traditional linear dimensionality reduc-
tion methods fail in describing the inherent structure of re-
mote sensing data. Consequently some preliminary works us-
ing nonlinear transforms have been presented, such as Isomap
[58, 59], Laplacian methods [60, 61] or Local Linear Embed-
ding [59, 62]. Besides, some algorithms that analyze thein-
trinsic dimensionalityof hyperspectral images can be men-
tioned [63].

3.2. Semi-supervised Learning

A related field to manifold learning is semi-supervised learn-
ing, which is concerned in developing models that exploit the

(typically few) labeled data and the wealth of unlabeled sam-
ples to model the manifold data structure. In remote sens-
ing, several methods have been developed, eithergenerative
or discriminative. The estimation of the conditional density
to be included in generative models have been extensively ex-
ploited [64]. Recently, many graph-based methods have been
developed for classification [61, 65], regression [55], andtar-
get detection [66, 67]. Also, the design of cluster and bagged
kernels have been successfully presented [68]. Also the trans-
ductive SVM has been applied for image classification [69,
70] and change detection [40]. In [71], a semisupervised ker-
nel Fisher discriminant classifier was proposed. These meth-
ods, however, cannot readily applicable to large scale prob-
lems with millions of unlabeled samples, as is often the case.

3.3. Transfer Learning

A common problem in remote sensing is that of updating
land-cover maps by classifying temporal series of images when
only training samples collected at one time are available. This
is known as transfer learning or domain adaptation. The prob-
lem was initially tackled with partially unsupervised classi-
fiers, under parametric formalisms [72] and neural networks
[73]. The approach was then successfully extended to domain
adaptation SVM (DASVM) [74]. A related problem is also
that of classifying an image with samples from different im-
ages, which induces the sample selection bias or covariance
shift problems. These problems have been recently presented
by defining proper kernel machines [75].

3.4. Active Learning

In remote sensing, application of active learning methods that
select the most relevant samples for training is quite recent.
A SVM method for object-oriented classification was pro-
posed in [76], while maximum likelihood classifiers for pixel-
based classification was presented in [77]. Recently, this ap-
proach was extended in [78] by proposing boosting to iter-
atively weight the selected pixels. In [79, 80] information-
based active learning was proposed for target detection, and
in [81], a model-independent active learning method was pro-
posed for very-high resolution satellite images.

3.5. Structured Learning

Most of the techniques revised so far assume a simple set of
outputsY, for instance binary labelsY = {−1, 1}. How-
ever, more complex output spaces can be imagined, e.g. pre-
dicting multiple labels (land use and land cover simultane-
ously), multi-temporal image sequences, or abundance frac-
tions. Such complex output spaces are the topic of struc-
tured learning, one of the most recent developments in ma-
chine learning. Only a computer vision application [82] and
the preliminary results in [83] have been presented for image
processing.



4. CONCLUSIONS

The field that machine learning occupies in remote sensing
has been summarized in this paper. Attention has been paid
not only to the standard machine learning paradigms (classi-
fication, regression and feature extraction/selection), but also
to recently and promising ones, such as manifold, semisuper-
vised, active, transfer and structured learning. The special
peculiarities of the images open the field for research and de-
velopment of new methods. And viceversa, the new learning
paradigms available offer new ways of looking at old, yet un-
solved, problems.
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