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ABSTRACT &, 8

Remote sensing data processing deals with real-life agplic
tions with great societal values. For instance urban monito
ing, fire detection or flood prediction from remotely sensed
multispectral or radar images have a great impact on eco- Surface
nomical and environmental issues. To treat efficiently #he a
quired data and provide accurate products, remote senaig h
evolved into a multidisciplinary field, where machine learn
ing and signal processing algorithms play an important role
nowadays. This paper serves as a survey of methods and ap-
plications, and reviews the latest methodological advairte
machine learning for remote sensing data analysis.

Spatial
dimensions

Soil
Ne'

A

Spectral dimension
Radiance

Each pixel is defined in
aN-dimensional space,
in which each dimension
represents a wavelength
or frequency, and is used
to identify the material
contained in the pixel

1. INTRODUCTION

Remote sensing is the field of science studying and modeling

the processes occurring on the Earth’s surface and their int Fig. 1. Principle of imaging spectroscopy.

action with the atmosphere [1]. Earth observation at londl a

global scales is nowadays an increasing need. By monitor-

ing urban growth, estimating temperature or ocean salinitjknown asspectrumand is used to identify materials in the

and identifying objects on the surface, remote sensing prascene. Figure 1 shows the principle of imaging spectroscopy

vides valuable information for policy and decision makess, to perform satellite remote sensing. The resulting mugiisp

well as for tourism or defense applications. These objestiv tral image consists of a simultaneous acquisition of s|atia

are possible because materials in a scene reflect, absarb, atbregistered images, in several, spectrally contiguonsiba

emit electromagnetic radiation in a different way depegdin from a remotely operated platform [1, 2].

of their molecular composition and shape. Remote sensing The diversity of objectives and the special characteris-

exploits this physical fact and deals with the acquisitibimoe  tics of the data give rise to the use of a wide range of ma-

formation abouta scene (or specific object) at a short, mediu chine learning and signal processing algorithms. Thesstati

or long distance. tical characterization of remote sensing images turns to be
According to the type of energy resources involved ingifficult because of pixel's high dimensionality, presemde

the data acquisition, remote sensing imaging instrumeants ¢ different kinds of noise sources and uncertainty, theieinh

be passiveor active In this paper we will focus on pas- ent non-linear nature, and the high spatial and spectrahred

sive sensors which have experienced a great evolution in thfancy. Machine learning has been successfully applied-in re

last decades, and pose challenging problems for the machifgote sensing for classification, regression, clusteriading,

learning and signal processing communities. Passiveragste or source separation. However, we feel that promising new

exploit solar radiation to capture the emergentradiatidnich  |earning paradigms, such as transfer, active, structueduk,

is acquired by an airborne or satellite spectrometer aéwdiff forcement, semisupervised or manifold learning, have been

ent wavelengths. The acquired signal or spectral signa&ure payed little or no attention. This paper reviews both tradi-
This work was partially supported by projects from the Spaniinistry tional and new trends in machine learning for remote sensing

of Science TEC2006-13845/TCM, CSD2007-00018 and AvA208g65-  data processing with the main goal of estimulating research
C04-03. and development in both directions.




2. TRADITIONAL MACHINE LEARNING FOR of images and the interest in monitoring Earth’s changesat |
REMOTE SENSING cal and global scales. On the one hand, many multi-temporal
supervised methods have been used during the last yeals, suc
In this section, we review the traditional machine learrdpg as evidence reasoning [31], generalized least squares [32]
proaches to remote sensing applications. Only the most rel@eural networks [33] or support vector machines (SVMs) [34,
vant applications are revised: classification, featurectieln ~ 35]. Hidden Markov random fields [36] and fuzzy-based ap-
and extraction, regression and unmixing. proaches [37] have been also used to link time-varyingsstati
tics. Onthe other hand, change detection approaches liypica
use image subtraction or ratioing, change vector analgsis,
cross-correlation analysis [1]. Recently, neural nets¢&8]
Classification maps are the main product of remote sensingnd kernel methods [9] have been used. Composite kernels
image processing. In the last years, data-driven appreachbave been specifically designed for the combination of mul-
have gained relevance in the remote sensing community. fitemporal, multisensor and multisource information [9].3
particular, non-parametric methods have demonstrated godrecent advances focus on the reduction of the user interven-
performance. Supervised and unsupervised are revised hertion, either by using semi- or unsupervised methods [40, 41]

2.1. Image classification

2.1.1. Supervised Image Classification 2.2. Feature Selection and Extraction

These methods use labeled information about class membek-critical issue when working with high dimensional dataset
ship of single pixels (labeled by expert users) to build aelod such as hyperspectral images, is that the computational tim
able to generalize to the whole image (or set of images). Ais increased and the high collinearity and presence of noisy
present, the most successful methods are neural netwarks [@ands can degrade the quality of the model. But maybe more
4] and support vector machines [5]. The latter have been apmportant is the study of the relative relevance of the a@gli
plied to both multispectral [6,7] and hyperspectral [S5]8&a bands to perform a given task. Remember that spectral bands
in a wide range of domains, including object recognition][10 have a physical meaning and can be related to the properties
landcover and multi-temporal classification [9,11,12an  of the elements to be identified or modeled.

ban monitoring [13] to name a few. Another field of growing  Feature selection has been studied in remote sensing un-
interest is that of classifier ensembles [14, 15] and bogstinder classical discriminative criteria [42]. Lately, adeed
methods [16]. machine learning methods have been used, such as genetic
algorithms [43], or SVM-based recursive feature elimioati

[44]. Recently more attention has been focused on feature ex
traction methods. Even though the use of linear methods such
Unsupervised classification of remote sensing images is-acras PCA or PLS is quite common, recent advances to cope
ical problem in many applications, either for visualizatand ~ with nonlinearities in the data based on multivariate kerne
monitoring of similar areas in the scene or as a pre-proegssi machines have been presented [45].

step for supervised classifiers. Many clustering methods ha
been designed, such as rule-based [17], neural networks [1§
20], or based on SVMs [21]. Three approaches dominate the
field. First, fuzzy clustering has been used alone [22, 23] oPixels are invariably a mixture of the signatures of the var-
combined with multiobjective optimization [24] for exptei jous materials found within the spatial extent of the ground
ing spatially membership relations. Second, fusion of mulinstantaneous field view. An important problem in remote
tisource information has been conducted either with graphsensing is the development of automatic extraction methods
cuts [25], projection pursuit [26], hierarchical clustegi[27],  of the spectral pure pixels (known asdmembejsdirectly

or Markov random fields [28] for contextual regularization.from the image_ These pure pixels are the basis to express
Also, multicomponentimage segmentation with self-organg  all pixels as a linear (or non-linear) combination of themd a
maps (SOM) and hybrid genetic algorithms [20] have beefhis, in turn, allows subpixel detection [2] or mineral map-
proposed. Finally, it is worth mentioning the use of dynamicping [46]. Some classical techniques for this purpose ifelu
clustering strategies for spatio-temporal reasoning f28]  the N-FINDR algorithm [47], the vertex component algorithm
visualization [30]. (VCA) in [48], and an orthogonal subspace projection (OSP)
technique in [49], among others [50]. Selection of the frae p
rameters and inclusion of spatial information in the unmagxi
process are key issues nowadays [51]. Recently support vec-
Multitemporal and change detection problems are very activtor domain description (SVDD) has been also used to select
because of the increasing availability of complete timéeser the pure pixels [45].

2.1.2. Unsupervised Image Classification

3. Signal Unmixing

2.1.3. Multitemporal Classification and Change Detection



2.4. Regression and Model Inversion (typically few) labeled data and the wealth of unlabeled-sam

. . les to model the manifold data structure. In remote sens-
Robust, fast and accurate regression tools are a critical d%

. . S . ) g, several methods have been developed, eghaerative
mand in remote sensing. The estimation of biophysical pa-

. . . or discriminative The estimation of the conditional density
rameter_s s of special rglevance in order to beter undeista to be included in generative models have been extensively ex
Fhe en_vwonment dy_namlcs at IO(.:al and global s_,cales [1]. Th loited [64]. Recently, many graph-based methods have been
Inversion Of. analytical models introduces a higher level 0developed for classification [61, 65], regression [55], tard
compl_e>.<|ty, mdqces an 'mpo”ar?t computgﬂonal burded, anget detection [66, 67]. Also, the design of cluster and bdgge
sensitivity to noise becomes an important issue. In thentece

hel h eofoirical modelsdiusted t kernels have been successfully presented [68]. Also the-tra
years, nevertheless, the useeohpirical modelsadjusted to ductive SVM has been applied for image classification [69,

learn the relationship between the acquired spectra and a:}(-)] and change detection [40]. In [71], a semisupervised ker

tuall[ grounéj rlner?surements. has k?[eci)rge V%ry ittra(t::?m:.]-t nel Fisher discriminant classifier was proposed. These-meth
Metric models have some important drawbacks, whic yp'ods, however, cannot readily applicable to large scale-prob

ically lead to poor prediction results on unseen (test) 'data}ems with millions of unlabeled samples, as is often the case
As a consequencapn-parametri@and potentiallynon-linear '

regression techniques have been effectively introduaeth s ,
as neural networks [52, 53], support vector regression (SVRS-3- Transfer Leaming

[54,55], relevance vector machines (RVM) [56], or Gaussiarh common problem in remote sensing is that of updating

Processes (GP) [57]. Even been more accurate than analyfimd-cover maps by classifying temporal series of imageswh
cal models, they lack interpretability and rely on trainf@a oy training samples collected at one time are availabhes T

from the observed scene, which limits its extensive use.  is known as transfer learning or domain adaptation. The-prob
lem was initially tackled with partially unsupervised das
3. NEW TRENDS IN MACHINE LEARNING FOR fiers, under parametric formalisms [72] and neural networks
REMOTE SENSING [73]. The approach was then successfully extended to domain

adaptation SVM (DASVM) [74]. A related problem is also
The special characteristics of the acquired data motivages that of classifying an image with samples from different im-
continuous research in machine learning methods for tagkli ages, which induces the sample selection bias or covariance
particular remote sensing problems. In this section, we-sunshift problems. These problems have been recently presente
marize some promising machine learning paradigms of recety defining proper kernel machines [75].
application in remote sensing.

3.4. Active Learning

3.1. Manifold Learnin . o . .
g In remote sensing, application of active learning methbes t

Recently the field ofmanifold learninghas appeared as a select the most relevant samples for training is quite riecen
powerful framework to analyze nonlinearities in the dathe T A SVM method for object-oriented classification was pro-
field is related to that oflimensionality reductiomndnon-  posed in [76], while maximum likelihood classifiers for plixe
linear feature extractionwhich is scattered throughout com- based classification was presented in [77]. Recently, this a
puter science, machine learning, image processing and-cybgroach was extended in [78] by proposing boosting to iter-
netics. The main goal in manifold learning is to map highatively weight the selected pixels. In [79, 80] information
dimensional data into a lower dimension while preservirgy th based active learning was proposed for target detectiah, an
main features of the original data for better analysis. Is th in [81], a model-independent active learning method was pro
way, visualization and understanding of high-dimensidiash posed for very-high resolution satellite images.

becomes feasible. Traditional linear dimensionality =du

tion methods fail in describing the inherent structure of re 3 5 structured Learning

mote sensing data. Consequently some preliminary works us-

ing nonlinear transforms have been presented, such aspsomi{ost of the techniques revised so far assume a simple set of
[58,59], Laplacian methods [60, 61] or Local Linear Embed-outputs), for instance binary labely = {-1,1}. How-

ding [59, 62]. Besides, some algorithms that analyzeithe €ver, more complex output spaces can be imagined, e.g. pre-

trinsic dimensionalityof hyperspectral images can be men-dicting multiple labels (land use and land cover simultane-
tioned [63]. ously), multi-temporal image sequences, or abundance frac

tions. Such complex output spaces are the topic of struc-
tured learning, one of the most recent developments in ma-
chine learning. Only a computer vision application [82] and
A related field to manifold learning is semi-supervisedtear the preliminary results in [83] have been presented for enag
ing, which is concerned in developing models that explat th processing.

3.2. Semi-supervised Learning



4. CONCLUSIONS

(10]

The field that machine learning occupies in remote sensing
has been summarized in this paper. Attention has been paid
not only to the standard machine learning paradigms (elassj11]

fication, regression and feature extraction/selectiaunt)also

to recently and promising ones, such as manifold, semisuper

vised, active, transfer and structured learning. The speci
peculiarities of the images open the field for research and d¢12]

velopment of new methods. And viceversa, the new learning

paradigms available offer new ways of looking at old, yet un-
solved, problems.

(13]
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