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ABSTRACT
A correct delineation of agricultural parcels is a primary requirement
for any parcel-based application such as the estimate of agricultural
subsidies. Currently, high-resolution remote-sensing images provide
useful spatial information to delineate parcels; however, their man-
ual processing is highly time consuming. Thus, it is necessary to
create methods which allow performing this task automatically. In
this work, the use of a machine-learning algorithm to delineate
agricultural parcels is explored through a novel methodology. The
proposed methodology combines superpixels and supervised clas-
sification in order to determine which adjacent superpixels should
be merged, transforming the segmentation issue into a machine
learning matter. A visual evaluation of results obtained by the
methodology applied to two areas of a high-resolution satellite
image of fragmented agricultural landscape points out that the
use of machine-learning algorithm for this task is promising.
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1. Introduction

Accurate and up-to-date information about status, acreage, and the type of agricultural
lands is assumed to be a valuable element for diverse agricultural-related agencies. This
information allows stakeholders among other things to establish agricultural policies
(Mirón Pérez 2005; van Der Molen 2002) to reduce greenhouse gas emissions, regulate
water rights, and estimate subsidies. In this regard, it is important to consider that about
75% of the world’s agricultural lands are small (less than 2 ha) and family operated
(Lowder, Skoet, and Raney 2016). This implies highly fragmented agricultural landscapes
with a high spatial heterogeneity produced by the diversity in sizes, shapes, and crops of
the different agricultural parcels. Therefore, in order to generate precise information
about these agricultural lands, a primary requirement is to have a correct delineation at
parcel level.

The delineation of agricultural lands has been addressed with different initiatives
around the world for a long time. In 1980, the National Research Council published
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the report Need for a Multipurpose Cadastre (NRC 1980) which has been updated by
the study National Land Parcel Data: A Vision for the Future that examines the status
of land-parcel data in the USA and provides a set of recommendations that would
foster a national system for land parcel (NRC 2007). In the European scenario, it can
be mentioned the land parcel identification systems promoted by the European
Union in order to represent the activities of farmers on their lands (Leo and
Lemoine 2001). These initiatives commonly use very high-resolution remotely sensed
imagery to perform a manual delineation of agricultural parcel boundaries. However,
a non-trivial issue is how to process a huge data volume maintaining the accuracy
and time requirements. Even though the manual delineation can be very precise, it
suffers from the subjectivity of operator and is highly time consuming. Moreover, the
repeatability of the delineation is not insured even when the same operator performs
it at two different times.

To address these problems, automatic and semiautomatic methods have been pro-
posed in the remote-sensing literature. Most of these methods are based on image
segmentation. Mueller, Segl, and Kaufmann (2004) proposed an object-based approach
for extracting large human-made objects, especially agricultural fields, from high-resolu-
tion imagery. This approach combined edge detection models with region-based seg-
mentation to extract regularly shaped objects. In the work of Da Costa et al. (2007), an
algorithm to automatically delineate vine parcels from very high resolution images
based on their textural properties was developed. From texture attributes, they applied
a thresholding method to discriminate between vine and non-vine pixels. Tiwari et al.
(2009) proposed a semi-automatic methodology for extracting field boundaries from
data captured by the sensor linear imaging self-scanning sensor-IV on-board
ResourceSat-1 (IRS-P6) satellite. A segmentation using tonal and textural gradients was
performed and the generated regions were classified to derive preliminary field bound-
aries. Finally, Snakes Algorithm was used to refine the geometry of these field bound-
aries. Turker and Kok (2013) used perceptual grouping for automatic extraction of
dynamic sub-boundaries within existing agricultural fields from remote-sensing imagery.
To perform field-based analysis, the approach integrated field boundary data and
satellite imagery. Canny edge detector was used to detect the edge pixels. In general,
approaches based on segmentation methods have the following drawbacks: (1) they are
sensitive to intra-parcel variability which can produce more segments than desired, (2)
most of these methods are highly dependent on a correct parameter selection (e.g. the
similarity measured used to group image pixels) that requires a prior knowledge about
the scene or tuning by trial error. Moreover, variability in sizes and shapes of the plots
which causes a certain configuration parameters do not allow properly delineate all
parcels.

Recently in computer vision field, approaches intending to imitate the delineation
made by an expert through supervised classification methods have been successfully
applied to natural image segmentation (Nunez-Iglesias et al. 2013). Therefore, it is
assumed that a similar approach could be useful for agricultural parcels delineation.
The objective of this work is to establish whether approaches based on machine
learning are able to correctly learn how to delineate agricultural parcels in high-resolu-
tion images.
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In this work, a novel methodology to delineate agricultural parcels following a
supervised classification approach is presented. The proposed methodology uses super-
pixels as minimum processing units, whereas a process of agglomeration of superpixels
is used to obtain a final segmentation where the parcels (objects of interest) are
distinguished. Superpixels are a form of image segmentation; however, the focus lies
more on a controlled over-segmentation. Thus, the image is divided into several homo-
geneous regions with a determined number of pixels. Superpixels can then be agglom-
erated for obtaining larger regions. In this regard, a classification method is trained using
part of a segmented scene under study, to take the determination whether two adjacent
superpixels should be merged. The structure of the article is the following: the data used
in this study as well as the proposed methodology are described in the next Section. The
obtained results are presented and discussed in Section 3. Finally, main conclusions are
given in Section 4.

2. Data and methods

2.1. Study site and dataset

The study area corresponds to a Chilean central valley (70°40′7″W, 32°48′11″S) mostly
characterized by small agricultural parcels with crops of full canopy coverage and
orchards. A WorldView-2 (WV-2) satellite image, acquired on 3 December 2011, was
used in this study. The WV-2 image has a spatial resolution of 2.4 m and four spectral
bands which properties are described in Table 1. To evaluate the proposed approach,
two regions of 522 × 522 pixels each were clipped from the WV-2 scene (Figure 1).
Figure 1(a,b) correspond to the areas under analysis, from here on called Image A and
Image B, respectively. Agricultural parcels in both images have been manually deli-
neated obtaining reference parcel maps.

2.2. Methodology

To delineate agricultural parcels, the proposed methodology combines superpixel pro-
cessing and a classification method, which provide the basis to decide when two
adjacent superpixels should be merged. An overall overview of the proposed methodol-
ogy is shown in Figure 2.

The methodology starts with an over-segmentation of the image obtained through a
superpixel algorithm (see Section 2.2.1). Then, from the generated superpixel represen-
tation, a dataset is created by extracting segment features of each pair of superpixels.
Instances in dataset are labelled in two classes depending on if they belong to the same
object (parcel) or not; this information is given by a previously generated reference

Table 1. Spectral properties of the
WV-2 images.
Band Spectral range (nm)

Blue 450–510
Green 510–580
Red 630–690
Near infrared 770–895
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parcel map. Dataset generation is described in detail in Section 2.2.2. Finally, dataset is
used to generate a machine learning model, through training a classification method
(Section 2.2.3). This model is later used to determine from dataset features whether two
superpixels should be merged.

All processes, used in this methodology, are carried out using in-house developed
codes and run on the MATLAB® platform.

2.2.1. Superpixel processing
A superpixel is a small, local, and coherent cluster which contains a statistically homo-
geneous image region according to certain criteria such as colour, texture, among others

Figure 1. Study areas are shown in a real colour composition. Borders of each parcel are displayed in
red. (a) and (b) Correspond to Images A and B, respectively.

Figure 2. Overall overview of the proposed methodology.
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(Ren and Malik 2003). Superpixels are a form of image segmentation, but the focus lies
more on an image over-segmentation, not on segmenting meaningful objects (Schick
and Stiefelhagen 2011). In this regard, superpixel processing is not seen as an end in
itself but rather a preprocessing step in order to solve a major problem, in this case the
efficient analysis of a scene. Superpixel techniques enhance image analysis, e.g. reducing
the influence of noise and intra-class spectral variability, preserving most edges of
images, and improving the computational speed of later steps such as the segmentation
of meaningful objects (Achanta et al. 2012).

Superpixel processing is carried out by a modified version of the segmentation
method called simple linear iterative clustering (SLIC) (Achanta et al. 2012), which is in
turn based on the well-known k-means method, to group image pixels into superpixels.
The original SLIC algorithm works in the RGB colour space (defined by only the Red,
Green, and Blue spectral bands) and considers two parameters: k, the desired number of
superpixels, and c, the compactness factor. A larger value of c emphasizes the impor-
tance of the spatial proximity resulting in more compact superpixels. The SLIC version
used in this work corresponds to the implemented by Gonzalo Martín et al. (2015),
which extends the method to work with multispectral images.

2.2.2. Creation of dataset
All available spectral bands (i.e. four bands, from blue to near infrared) as well as three
spectral indices commonly used in remote-sensing image analysis are used for feature
extraction. The spectral indices (defined in Equation (1)–(3)) used in this study are
normalized difference vegetation index (Rouse et al. 1974), normalized difference
water index (Gao 1996), and spectral shape index (Chen et al. 2009).

NDVI ¼ BNIR � BR
BNIR þ BR

(1)

NDWI ¼ BG � BNIR
BG þ BNIR

(2)

SSI ¼ BR þ BB þ 2BGj j (3)

where BR, BB, BG, and BNIR represent the red, blue, green, and near-infrared spectral
bands, respectively. In addition, a set of texture-based features is computed using local
entropy (Equation (4)) from the above features, varying the size of the neighbourhood
(N) in which entropy is measured. The local entropy is calculated as follows (Gonzalez,
Woods, and Eddins 2004)

H ¼ �
Xl�1

i¼0

p zið Þlog2p zið Þ (4)

where zi is a random variable indicating intensity, pðzÞ is the histogram of the intensity
levels in N, and l is the number of possible intensity levels.

Thus, using aforementioned features (e.g. spectral indices, and texture), each super-
pixel is characterized by a feature vector (f), whose components are defined by the
average value of the pixel feature values that are part of it. Finally, the dataset F, used in
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the classification process, is created by characterizing each pair of superpixels (i and j),
using their corresponding feature vectors, as follows

Fij ¼ fi � fj
�� �� "i�j (5)

where fi is the feature vector of the ith superpixel, and �j j represents the absolute value.
The main idea is to create a multidimensional feature space, in which a machine-
learning (classifier) method learns a function able to predict when a pair of superpixels
belong to the same object. In this work, an absolute difference is used; however, pairs of
superpixels can be characterized in diverse ways (e.g. by applying different distance
measures or by concatenating both feature vectors); in this regard, the feature vector
representing the relationship between those superpixels must be a vector with some
properties such as symmetry (i.e. Fij ¼ Fji), and it cannot be negative.

Since the aim of this work is to agglomerate superpixels, only those that are adjacent
are considered. A label set L (target labels) is created using the information about the
adjacency of superpixels and the available reference parcel map (ground-truth data).
Thus, each instance of dataset F is labelled according to Equation (6).

Lij ¼ fþ1; if i and j belong to the sameparcel and i � j;
�1; otherwise

(6)

where i corresponds to the ith superpixel and Lij represents the label of the instance Fij.
Here, a positive label for Lij indicates that superpixels i and j should be merged, whereas
a negative one means that both superpixels belong to different objects; hence, they
should not be merged.

2.2.3. Classification process
Due to the characteristics of the landscape under analysis, target labels are imbalanced
(i.e. there are more positive labels than negative, or in other words, more pairs of
superpixels belong to the same object). Therefore, a classifier that considers this dis-
tribution of the classes is needed in order to obtain satisfactory results. For this reason,
the RUSBoost algorithm is used as classifier.

RUSBoost is a hybrid boosting/sampling method proposed by Seiffert et al. (2010),
which is a state-of-the-art method for learning from imbalanced datasets. RUSBoost
improves boosting algorithm by resampling training data in order to balance the class
distribution. Unlike other ensemble methods, RUSBoost applies an under-sampling
strategy to randomly remove samples from the majority class, before the training of
each weak learner algorithm that is part of the ensemble. It combines many weak
classifiers gt into a strong classifier G by linear combination. The final classifier is
constructed as

GðxÞ ¼ argmax
y2Y

X

t

gtðx; yÞ log 1
αt

(7)

where gtðx; yÞ represents the output of classifier gt , expressed as the posterior prob-
ability for the class y 2 Y given the feature vector x.

The resulting class y of RUSBoost method, given the input feature vector x, is the one
that gets the maximum value. The weak learners are added incrementally to GðxÞ. In
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each iteration t, RUSBoost randomly subsamples the majority class in training set X until
a subset X 0

t with a desired class distribution is reached. For example, if the desired class
ratio r is 50:50, then the majority class examples are randomly removed until the
numbers of majority and minority class examples are equal. Hence, a weight αt is
assigned to the weak learner according to the relation

αt ¼ εt
1� εt

(8)

where εt represents the pseudo loss based on the original training set X and it is
calculated as

εt ¼
X

ði;yÞ:yi�y

DtðiÞ 1� gt xi; yið Þ þ gt xi; yð Þð Þ (9)

where gt xi; yið Þ expresses the posterior probability of the classifier gt for a class yi that is
different from the real class. D is a weight distribution for all examples in X, which
weights (Dt) are updated after each iteration as follows

Dtþ1ðiÞ ¼ DtðiÞα
1
2 1þht xi;yið Þ�ht xi;y:y�yið Þð Þ
t (10)

and then, Dtþ1 is normalized to 1. Initially, the weight of each example D1ðiÞ is set to 1=n,
where n is the number of examples in the training set (X).

During classification process, dataset F and label set L provide the feature vectors and
their corresponding classes in the form of the patterns Fij; Lij

� �
that the classifier must

learn in order to delineate agricultural parcels.

3. Results

To prove the potential of the proposed approach, two experiments have been carried
out. The first one uses the image A to generate the classification model which is
subsequently tested on image B. The second experiment is similar to previous one but
interchanging the images used to generate and test the model.

From each image, a total of 5450 superpixels were automatically generated
through modified SLIC method (i.e. extended to multispectral images), where each
superpixel is composed of 50 pixels on average. The number of pixels that constitutes
each superpixel was chosen experimentally to agree with the size of most of the
treetops present in the images under analysis. They represent 2% of observations to
analyse respect to the entire number of pixels under analysis per image. Due to
visualization issues, only enlarged regions containing a set of generated superpixels
are shown in Figure 3. As can be observed, superpixels adhere well to the boundaries
of spectrally homogeneous regions, in particular, borders of parcels are well
delineated.

The number of instances generated for scenes A and B is 12,691 (77.44% positive and
22.56% negative) and 12,994 (78.75% positive and 21.24% negative), respectively. Each
instance was characterized by a vector of 28 features: seven corresponding to the four
bands and the spectral indexes, and the remaining 21 to the local entropy computed on
neighbourhoods of three different sizes (9, 17, 33) over the seven first features. These
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instances were used to create two datasets, one for each image. During the classification
step, a total of 1000 decision trees were used as weak classifiers to build a single
RUSBoost classifier using a ratio of sampling of 50:50.

To evaluate the results obtained by the classifier, a 10-fold cross validation was performed
separately using both datasets. During each fold, non-overlapping testing and validation sets
(which correspond to seen data) were generated by randomly selecting positive and negative
instances maintaining their original class distribution. The obtained results showed mean
accuracies (user and producer) greater than 89% with a small standard deviation (lower than
1.09 on average) for positive instances (merge), whereas user and producer accuracies lie
between 73% and 78% in the case of negative instances. This may occur because there are
few negative (do not merge) instances for training the classifier, requiring more negative
instances to improve these results. The assessment of classification using the test set is
displayed in Table 2. The low variability of the accuracies in 10 folds points out that the
method is stable; therefore, similar results are expected during the validation process.

To test our approach, the classifier of the foldwith thebest overall accuracy in the validation
setwas used to determinewhich superpixels should bemerged in the test image. Thus, overall
accuracies of 83.53%and85.58%were obtained using as input the test images (unseendata) A
and B, respectively. The results of applying thesemodels to validation and test data are shown
in Figure 4, as seen the results in validation set fit better with the ground truth than the results

Figure 3. Superpixel segmentation of two small areas. Borders of each superpixel are shown in red.
(a) and (b) Correspond to Images A and B, respectively.

Table 2. Accuracy assessment of the classification (validation set).
Image Class User’s accuracy (%) Producer’s accuracy (%)

A + (merge) 94.01 ± 1.09 92.85 ± 0.84
− (do not merge) 75.13 ± 3.32 78.63 ± 2.85

B + (merge) 89.58 ± 0.87 92.97 ± 0.71
− (do not merge) 73.66 ± 2.95 76.57 ± 2.99
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obtained in test set. However, in both cases, most of the superpixels were correctly merged,
indicating that better results can be obtained by improving the methodology.

4. Conclusions

This article has presented a methodology for the automatic delineation of agricul-
tural parcels in high-resolution images (WV-2). The proposed methodology uses an

Figure 4. First row shows the results obtained by the best models in the seen data for Images A (a)
and B (b), as well as the results of the same model applied to unseen data (second row) for Images A
(c) and B (d). For visualization purposes, only it is shown that white borders of superpixels should be
separated.
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extended version of SLIC algorithm for over-segmentating the image to generate
superpixels and a supervised classification method to determine when adjacent
superpixels should be merged. The results showed that it is possible to train a
machine learning to delineate agricultural parcels. In this regard, learning from
data, how agricultural parcel is delineated poses an alternative to traditional seg-
mentation algorithms, which could be exploited to imitate the labour of a human
operator. Two main aspects will be improved in future research: (1) determining the
optimal features to train the methodology, (2) exploring different ways to measure
the similarity of adjacent superpixels (e.g. testing diverse distances), and (3) extend-
ing the process to different interest objects and scales.
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