
EuroSAT: A Novel Dataset and Deep Learning Benchmark
for Land Use and Land Cover Classification

Patrick Helber 1, 2 Benjamin Bischke 1, 2 Andreas Dengel 1, 2 Damian Borth 2

1University of Kaiserslautern, Germany 2German Research Center for Artificial Intelligence (DFKI), Germany
{Patrick.Helber, Benjamin.Bischke, Andreas.Dengel, Damian.Borth}@dfki.de

ABSTRACT
In this paper, we address the challenge of land use and land
cover classification using remote sensing satellite images.
For this challenging task, we use the openly and freely ac-
cessible Sentinel-2 satellite images provided within the scope
of the Earth observation program Copernicus. The key con-
tributions are as follows. We present a novel dataset based
on satellite images covering 13 different spectral bands and
consisting of 10 classes with in total 27,000 labeled images.
We evaluate state-of-the-art deep Convolutional Neural Net-
work (CNNs) on this novel dataset with its different spec-
tral bands. We also evaluate deep CNNs on existing remote
sensing datasets and compare the obtained results. With
the proposed novel dataset, we achieved an overall classi-
fication accuracy of 98.57%. The classification system re-
sulting from the proposed research opens a gate towards a
number of Earth observation applications. We demonstrate
how the classification system can be used for detecting land
use or land cover changes and how it can assist in improving
geographical maps.
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1. INTRODUCTION
We are currently at the edge of having public and con-

tinuous access to satellite image data for Earth observa-
tion. Governmental programs such as ESA’s Copernicus and
NASA’s Landsat are taking significant efforts to make such
data freely available for commercial and non-commercial
purpose with the intention to fuel innovation and entrepreneur-
ship. With access to such data, applications in the domains
of agriculture, disaster recovery, climate change, urban de-
velopment, or environmental monitoring can be realized [2,
3, 5]. However, to fully utilize the data for the previously
mentioned domains, first satellite images must be processed
and transformed into structured semantics. One type of
such fundamental semantics is Land Use and Land Cover
Classification [1, 29]. The aim of land use and land cover
classification is to automatically provide labels describing
the represented physical land type or how a land area is
used (e.g., residential, industrial).

As often in supervised machine learning, performance of
classification systems strongly depends on the availability

Figure 1: Land use and land cover classification using satel-
lite images. Patches are extracted from a satellite image
with the purpose to identify the showed land use or land
cover class. This visualization highlights the classes annual
crop, river, highway, industrial area and residential area.

of high-quality datasets with a suitable set of classes [21].
In particular when considering the recent success of deep
Convolutional Neural Networks (CNN) [12], it is crucial to
have large quantities of training data available to train such
a network. Unfortunately, current land use and land cover
datasets are small-scale or rely on data sources which do not
allow the mentioned domain applications.

In this paper, we propose a novel satellite image dataset
for the task of land use and land cover classification. The
proposed EuroSAT dataset consists of 27,000 labeled im-
ages with a total of 10 different classes. A significant dif-
ference to previous datasets is that the presented satellite
image dataset covers 13 spectral bands allowing to investi-
gate multi-modal fusion approaches in the context of these
bands. This is in particular an open challenge when con-
sidering deep neural networks for classification. In addi-
tion, the proposed dataset is based on openly and freely
accessible Earth observation data allowing a unique range
of applications. The labeled dataset EuroSAT is made pub-
licly available1. Further, we provide a full benchmark by
using deep CNNs on the dataset demonstrating robust clas-
sification performance which can be taken as foundation to
develop applications for the previously mentioned domains.
We outline how the classification model can be used for de-
tecting land use or land cover changes and how it can assist
in improving geographical maps.

We provide this work in the context of the recently pub-

1http://madm.dfki.de/downloads
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Figure 2: This illustration shows an overview of the patch-based land use and land cover classification process using satellite
images. A satellite scans the Earth to acquire images of it. Patches extracted out of these images are used for land use and
land cover classification. The aim is to automatically provide labels describing the represented physical land type or how land
is used. For this purpose, an image patch is feed into a classifier, in this case a neural network, and the classifier delivers the
land use or land cover class represented on the image patch.

lished EuroSAT dataset, which can be used similar to [18]
as a basis for large-scale training of deep learning networks
for satellite images.

2. RELATED WORK
In this section, we review previous research in the area

of land use and land cover classification. In this context,
we present datasets consisting of airborne images as well
as datasets consisting of satellite images. Furthermore, we
present state-of-the-art methods in land use and land cover
classification.

2.1 Classification Datasets
Remote sensing image classification is a challenging task.

The progress of classification in the remote sensing area has
particularly been inhibited due to the lack of reliably labeled
ground truth datasets. A popular and intensively researched
[6, 19, 20, 27, 29] remote sensing image classification dataset
known as UC Merced Land Use Dataset (UCM) was intro-
duced by Yang et al. [29]. The dataset consists of 21 land
use and land cover classes. Each class has 100 images and
the contained images measure 256x256 pixels with a spatial
resolution of about 30 cm per pixel. All images are in the
RGB color space and were extracted from the USGS Na-
tional Map Urban Area Imagery collection, i.e. the underly-
ing images were acquired from an aircraft. Unfortunately, a
dataset with 100 images per class is very small-scale. Trying
to enhance the dataset situation, various researchers used
non-freely usable Google Earth2 images to manually create
novel datasets [22, 27, 28, 30]. The datasets use very high-
resolution images with a spatial resolution of up to 30 cm per
pixel. Since the creation of a labeled dataset is extremely
time-consuming, these datasets consist likewise of only a few
hundred images per class. One of the largest datasets is the
Aerial Image Dataset (AID). AID consists of 30 classes with
200 to 400 images per class. The 600x600 high-resolution
images were extracted from Google Earth imagery. How-
ever, the fact of using preprocessed and non-free image data
makes these datasets unsatisfying for real-world Earth obser-
vation applications as proposed in this work. Furthermore,
while these datasets put a strong focus on strengthening the
number of covered classes, the datasets suffer from a very
low number of images per class. The fact of a spatial resolu-
tion of up to 30 cm per pixel, with the possibility to identify

2https://www.google.de/earth/

and distinguish classes like churches, schools etc., make the
presented datasets difficult to compare with the dataset pro-
posed in this work.

Research closer to our work was provided by Penatti et
al. [20] and Basu et al. [1]. Penatti et al. investigated re-
mote sensing satellite images having a spatial resolution of
10 meters per pixel. Based on these images, [20] introduced
the Brazillian Coffee Scene dataset (BCS). The dataset cov-
ers the two classes coffee crop and non-coffee crop. Each
class consists of 1,423 images. The images consist of a red,
green and near-infrared band. Basu et al. [1] introduced
the SAT-6 dataset relying on aerial images. This dataset
has been extracted from images with a spatial resolution of
1 meter per pixel. The image patches are created by us-
ing images from the National Agriculture Imagery Program
(NAIP). SAT-6 covers the 6 different classes: barren land,
trees, grassland, roads, buildings and water bodies. The
proposed patches have a size of 28x28 pixels per image and
consist of a red, green, blue and a near-infrared band.

2.2 Land Use and Land Cover Classification
While CNNs are an established classification method [13],

primarily with the impressive results on image classification
challenges [12, 21, 23], deep CNNs became a common and
popular image classification method. In remote sensing im-
age classification, various different feature extraction and
classification methods (e.g., Random Forest) were evaluated
on the introduced datasets. Yang et al. evaluated bag-of-
visual-words and spatial extension approaches on the UCM
dataset [29]. Basu et al. investigated deep belief networks,
basic CNNs and stacked denoising autoencoders on the SAT-
6 dataset [1]. Basu et al. also represented an own framework
for the land cover classes introduced in the SAT-6 dataset
which extracts features from input images, normalizes the
extracted features and used the normalized features as input
to a deep belief network. Besides low-level color descriptors,
Penatti et al. evaluated deep CNNs on the UCM and BCS
dataset [20]. In addition to deep CNNs, Castelluccio et al.
intensively evaluated various methods (e.g., bag-of-visual-
words, spatial pyramid match kernel) for the classification
of the UCM and BCS dataset. In the context of deep learn-
ing, the used deep CNNs have been trained from scratch
or fine-tuned by using a pretrained network [6, 19, 7, 16].
Mainly, the networks were pretrained on the dataset from
the ILSVRC-2012 image classification challenge [21]. Thus,
these pretrained networks were trained on images from a

https://www.google.de/earth/


Figure 3: These images visualize different band combinations of the spectral bands provided by ESA’s satellite Sentinel-2A.
The left image shows a color-infrared image by combining the near-infrared (B08), red (B04) and green (B03) band. The
middle image displays a combination of the shortwave-infrared 2 (B12), red edge 4 (B08A) and red band (B04). The right
image is constructed using merely the near-infrared (B08) band.

totally different domain. However, the features generalized
well and therefore these pretrained networks proved to be
suitable for remote sensing image classification [17]. The
examined works show that deep CNNs outperform all previ-
ous state-of-the-art approaches on the introduced datasets
[6, 17, 15, 27].

Figure 4: This image shows a Sentinel-2 satellite image in
the RGB color space generated by combining the red (B04),
green (B03) and blue (B02) spectral band. The shown im-
age gives an impression of the visible objects at a spatial
resolution of 10 meters per pixel.

3. DATASET ACQUISITION
Besides NASA with its Landsat Mission3, the European

Space Agency (ESA) steps up efforts to improve Earth obser-
vation within the scope of the Copernicus program4. Under
this program, ESA operates a series of satellites known as
Sentinels5. In order to address the challenge of land use and
land cover classification, we use multispectral image data
provided by the Sentinel-2A satellite.

Sentinel-2A is one out of a two-satellite constellation con-
sisting of the identical land monitoring satellites Sentinel-2A
and Sentinel-2B. The satellites were successfully launched in
June 2015 and March 2017. Both sun-synchronous satellites

3https://www.nasa.gov/mission pages/landsat/main
4http://www.copernicus.eu/
5https://sentinels.copernicus.eu

capture the global Earth’s land surface with a Multispec-
tral Imager (MSI) covering 13 different spectral bands listed
in Table 1. The three bands B01, B09 and B10 are in-
tended to be used for the correction of atmospheric effects
(e.g., aerosols, cirrus or water vapor). The remaining bands
are primarily intended to identify and monitor land use and
land vegetation. In addition to mainland, large islands as
well as inland and coastal waters are covered by these two
satellites. Each satellite will deliver optical imagery for at
least 7 years with a spatial resolution of up to 10 meters per
pixel. Both satellites carry fuel for up to 12 years of oper-
ation which allows for an extension of the operation. The
two-satellite constellation generates a coverage of almost the
entire Earth’s land surface every five days, i.e. the satellites
scan each point in the covered area every five days.6 This
short repeat cycle as well as the future operation allows a
continuous monitoring of the Earth’s land surface for about
the next decade. Most importantly, the data is openly and
freely accessible and can be used for any application (com-
mercial or non-commercial use). Detailed information about
the Sentinel-2 satellites is covered in the corresponding doc-
umentation.7

In order to show the spatial resolution of 10 meters per
pixel, Figure 4 illustrates a sample scene originated from the
combination of the red (B04), green (B03) and blue (B02)
band. To emphasize different optical aspects, several spec-
tral bands can be combined. In remote sensing, these combi-
nations are used to make different aspects visible, which are
poorly visible or cannot be seen using RGB color space im-
ages. One example is the combination of shortwave-infrared,
near-infrared and green light to identify floods. An example
of a color-infrared image, which results from the combination
of the near-infrared (B08), red (B04) and green (B03) band,
is shown in Figure 3. A shortwave-infrared image arisen
from the combination of the shortwave-infrared 2 (B12), red
edge 4 (B08A) and red (B04) band is also shown in Figure 3.
Furthermore, Figure 3 shows an image consisting of merely
the near-infrared (B08) band.

We are convinced that the vast data volume of these satel-
lies in combination with powerful machine learning methods
will influence future research. Therefore, one of our key re-
search aims is to make this vast data source accessible for

6The one-satellite constellation has a repeat cycle of 10 days.
7https://sentinel.esa.int/documents/247904/685211/
Sentinel-2 User Handbook

https://www.nasa.gov/mission_pages/landsat/main
http://www.copernicus.eu/
https://sentinels.copernicus.eu
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook


(a) Industrial (b) Residential (c) Annual crop (d) Permanent crop

(e) River (f) Sea & lake (g) Herbaceous vegetation (h) Highway

(i) Pasture (j) Forest

Figure 5: This overview shows sample images of all 10 classes covered in the proposed EuroSAT dataset. The image patches
measure 64x64 pixels. Each class contains 2,000 to 3,000 image patches. In total, the dataset has 27,000 images.

machine learning applications. To construct an image clas-
sification dataset, we conducted the following steps:

1. Satellite Image Acquisition: We gathered satellite im-
ages of cities distributed in over 30 European countries.

2. Dataset Creation: Based on the obtained satellite im-
ages, we created a dataset of 27,000 labeled image
patches. The image patches measure 64x64 pixels and
have been manually checked.

3.1 Satellite Image Acquisition
We have downloaded satellite images recorded by the satel-

lite Sentinel-2A via Amazon S38. We chose satellite images
associated with the cities covered in the European Urban
Atlas9. The covered cities are distributed over the following
30 countries: Austria, Belgium, Bulgaria, Cyprus, Czech
Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portu-
gal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzer-
land and United Kingdom. In order to improve the chance of
getting valuable image patches, we selected satellite images
with a low cloud level. Besides the possibility to generate a
cloud mask, ESA provides a cloud level value for each satel-
lite image offering a quick solution to choose images with a
low percentage of clouds covering the land scene.

We aimed for the objective to comprise as many countries
as possible in order to cover the high intra-class variance

8https://aws.amazon.com/de/public-datasets/sentinel-2/
9http://land.copernicus.eu/local/urban-atlas/
urban-atlas-2012

Table 1: All 13 bands covered by Sentinel-2’s Multispectral
Imager (MSI). For each spectral band, its identification, the
spatial resolution and the central wavelength are listed.

Band Spatial Central
Resolution Wavelength

m nm

B01 - Aerosols 60 443
B02 - Blue 10 490
B03 - Green 10 560
B04 - Red 10 665
B05 - Red edge 1 20 705
B06 - Red edge 2 20 740
B07 - Red edge 3 20 783
B08 - NIR 10 842
B08A - Red edge 4 20 865
B09 - Water vapor 60 945
B10 - Cirrus 60 1375
B11 - SWIR 1 20 1610
B12 - SWIR 2 20 2190

inherent to remote sensing image classes. Furthermore, we
have extracted images recorded all over the year to get vari-
ance as high as possible inherent in the covered land use and
land cover classes.

3.2 Dataset Creation
The amount of available satellite data is tremendous (the

two-satellite constellation provides about 1.6 TB of com-

https://aws.amazon.com/de/public-datasets/sentinel-2/
http://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
http://land.copernicus.eu/local/urban-atlas/urban-atlas-2012


Figure 6: Four examples of bad image patches are shown.
All four samples are intended to show industrial areas.
Clearly, no industrial area is shown due to clouds, misla-
beling, dead pixels or ice/snow.

pressed images per day). Unfortunately, even with this
amount of data, supervised machine learning is constrained
due to the lack of ground truth data. Motivated by the
observation that existing benchmark datasets are not satis-
fying for the intended applications with Sentinel-2 satellite
images and the objective to make this open and free satellite
data accessible to various Earth observation applications, we
generated a labeled dataset. The dataset consists of 10 dif-
ferent classes with 2,000 to 3,000 images per class. In total,
the dataset has 27,000 images. The patches measure 64x64
pixels. We have chosen 10 different land use and land cover
classes based on the principle that they showed to be visible
at the resolution of 10 meters per pixel and are frequently
enough covered by the European Urban Atlas to generate
thousands of image patches. To differentiate between differ-
ent agricultural land uses, the proposed dataset covers the
classes annual crop, permanent crop (e.g., fruit orchards,
vineyards or olive groves) and pastures. The dataset also
discriminates built-up areas. It therefore covers the classes
highway, residential and industrial areas. Different water
bodies appear in the classes river and sea & lake. Further-
more, undeveloped environments such as forest and herba-
ceous vegetation are comprised. An overview of the covered
classes with four samples per class is illustrated in Figure 5.

We manually checked all 27,000 images multiple times and
corrected the ground truth by sorting out mislabeled images
as well as images full of snow/ice. Example images which
have been discarded are shown in Figure 6. The samples
are intended to show industrial areas. Clearly, no industrial
area is visible. Please note, the proposed dataset has not
received atmospheric correction. This can result in images
with a color cast. Extreme cases are visualized in Figure 7.
With the intention to advocate the classifier to also learn
these cases, we did not filter the respective samples and let
them flow into the dataset.

Besides the 13 covered spectral bands, the new dataset has
two central innovations. Firstly, the dataset is not based on
non-free satellite images like Google Earth imagery or rely
on old remote sensing data which is not available on a high-
frequent basis in future (e.g., NAIP used in [1]). Instead, an
open and free Earth observation program whose satellites
deliver images for the next 7 to 12 years is used allowing
real-world Earth observation applications10. Secondly, the
dataset uses a 10 times lower spatial resolution than the
benchmark dataset closest to our research but at once dis-
tinguishes 10 classes instead of 6. For instance, we split up
the built-up class into a residential and an industrial class
or distinguish between different agricultural land uses.

10The satellites Sentinel-2C and Sentinel-2D are already
planned to continue the Earth observation mission after-
wards.

Figure 7: Color cast due to atmospheric effects.

Table 2: Classification accuracy (%) of fine-tuned
GoogLeNet and ResNet-50 CNNs on the investigated
datasets. Both CNNs have been pretrained on the image
classification dataset ILSVRC-2012 [21].

Dataset GoogLeNet ResNet-50
UCM 97.32 96.42
AID 93.99 94.38

SAT-6 98.29 99.56
BCS 92.70 93.57

EuroSAT 98.18 98.57
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Figure 8: Confusion matrix of a fine-tuned ResNet-50 CNN
on the proposed EuroSAT dataset using satellite images in
the RGB color space.

4. DATASET BENCHMARKING
As shown in previous work [6, 15, 17, 19], deep CNNs have

demonstrated to outperform all previous approaches on land
use and land cover classification datasets. Accordingly, we
use the state-of-the-art deep CNN models GoogleNet [25]
and ResNet-50 [9, 10] for the classification of the introduced
datasets. These networks evolved by innovations such as the
inception module [25, 26, 24, 14] and the residual unit [9,
10].

For the proposed EuroSAT dataset, we also investigate
the performance of the 13 spectral bands with respect to the
classification task. In this context, the classification perfor-
mance using single-band images as well as images based on
common band combinations are evaluated.

4.1 Comparative Evaluation
In order to train and evaluate deep CNNs on the proposed

novel and the introduced existing datasets, we respectively
split the data for each dataset into a training and test set at
the ratio of 80:20. We ensured that the split is applied class-



Table 3: Classification accuracy (%) of a fine-tuned ResNet-
50 CNN on the proposed EuroSAT dataset with three differ-
ent band combinations as input. A color-infrared (CI) image
results from the combination of the near-infrared (B08), red
(B04) and green (B03) band. An RGB image is obtained
by combining the red (B04), green (B03) and blue (B02)
band. A shortwave-infrared (SWIR) image is the result of
the combination of the shortwave-infrared 2 (B12), red edge
4 (B08A) and red (B04) band.

Band Combination Accuracy (ResNet-50)
CI 98.30

RGB 98.57
SWIR 97.05

wise. While the red, green and blue bands are covered by
almost all airborne or satellite image classification datasets,
the proposed EuroSAT dataset consists of 13 spectral bands.
For the comparative evaluation, we computed images in the
RGB color space by combining the bands red (B04), green
(B03) and blue (B02). For the respective dataset, we fine-
tuned GoogLeNet and ResNet-50 CNN models, which were
pretrained on the ILSVRC-2012 image classification dataset.
[21]. In all evaluations, we first trained the last layer with a
learning rate of 0.01. Afterwards, we fine-tuned through the
entire network with a low learning rate between 0,001 and
0,0001.

We computed the overall classification accuracy to eval-
uate the performance of the different CNN models on the
investigated datasets. Table 2 lists the achieved classifica-
tion results for the different CNN models. The deep CNNs
achieve state-of-the-art results on the UCM dataset and
outperform previous results on the other three presented
datasets by about 2-4% (AID, SAT-6, BCS) [6, 19, 22]. Ta-
ble 2 shows that the ResNet-50 architecture performs best on
the introduced EuroSAT land use and land cover classes. In
order to allow an evaluation on the class level, Figure 8 shows
the confusion matrix of this best performing network. Even
if rarely, it is shown that the classifier sometimes confuses
the agricultural land classes as well as the classes highway
and river.

4.2 Band Evaluation
In order to investigate the performance of deep CNNs

using single-band images as well the common shortwave-
infrared and color-infrared band combinations, we used the
pretrained ResNet-50 with a fixed training-test-split to com-
pare the performance of the different spectral bands. For the
single-band image evaluation, we used images as input con-
sisting of the information gathered from a single spectral
band. We investigated all spectral bands, even the bands
not intended for land monitoring. Bands with a lower spatial
resolution have been upsampled to 10 meters per pixel using
cubic-spline interpolation [8]. Figure 9 shows a comparison
of the spectral band’s performance. It is shown that the red,
green and blue bands outperform all other bands. Interest-
ingly, the bands red edge 1 (B05) and shortwave-infrared 2
(B12) with an original spatial resolution of merely 20 meters
per pixel showed an impressive performance. The two bands
even outperform the near-infrared band (B08) which has a
spatial resolution of 10 meters per pixel.
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Figure 9: Overall classification accuracy (%) of a fine-tuned
ResNet-50 CNN on the given EuroSAT dataset using single-
band images.

In addition to the RGB band combination, we also in-
vestigated the performance of the shortwave-infrared and
color-infrared band combinations. Table 3 shows a compar-
ison of the performance of these combinations. As shown,
image combinations outperform single-band images. Fur-
thermore, images in the RGB color space performed best on
the introduced land use and land cover classes.

Please note, networks pretrained on the ILSVRC-2012 im-
age classification dataset have initially not been trained on
images other than RGB images.

5. APPLICATIONS
The openly and freely accessible satellite images offer a

broad range of possible applications. In this section, we
demonstrate that the novel dataset published with this pa-
per allows going beyond the pure scientific classification but
also delivers impact for real-world applications. The clas-
sification result with an overall accuracy of 98.57% paves
the way for these applications. We show applications in the
area of land use and land cover change detection as well as
how the proposed research can assist in keeping geographical
maps up-to-date.

5.1 Land Use and Land Cover
Change Detection

Since the two-satellite constellation will scan the Earth’s
land surface for about the next decade on a repeat cycle of
five days, a trained classifier can be used for monitoring land
surfaces and detect changes in land use or land cover.

To demonstrate land use and land cover change detec-
tion, we selected images from the same spatial region but
from different points in time. Using the trained classifier,
we investigated 64x64 image regions. A change has taken
place if the classifier delivers different classification results
on patches taken from the same spatial 64x64 region. In the
following, we show three examples of spotted changes. In the
first example shown in Figure 10, the classification system
recognized that in the marked area the land has changed.



The left image was acquired in the surroundings of Shang-
hai, China in December 2015 showing an area classified as
industrial. The right image was acquired in the same area in
December 2016 showing that the industrial buildings have
been demolished. The second example is illustrated in Fig-
ure 11. The left image was acquired in the surroundings
of Dallas, USA in August 2015 showing no dominant resi-
dential area in the highlighted area. The right image was
acquired in the same area in March 2017. The system has
identified a change in the highlighted area showing a residen-
tial area has been constructed. The third example presented
in Figure 12 shows that the system detected deforestation
near Villamontes, Bolivia. The left image was acquired in
October 2015. The right image was acquired in September
2016 showing that a large area has been deforested.

The shown examples find their usage in urban area devel-
opment, nature protection or sustainable development. For
instance, since deforestation is a main contributor to climate
change, the detection of deforestation is particularly of in-
terest (e.g., to notice illegal clearing of forest).

5.2 Assistance in Mapping
While a classification system using 64x64 patches does not

allow a finely graduated segmentation or mapping, it can-
not only detect changes as shown in the previous examples,
it can also facilitate keeping maps up-to-date. This foun-
dation is an extremely helpful assistance with maps created
in a crowdsourced manner like OpenStreetMap (OSM). A
possible system could verify already tagged areas, identify
mistagged areas or bring large area tagging. As shown in
Figure 13, the industrial areas seen in the left up-to-date
satellite image are almost completely covered in the corre-
sponding OSM mapping. The right up-to-date satellite im-
age also shows industrial areas. However, a major part of
the industrial areas is not covered in the corresponding map.
Due to the high temporal availability of Sentinel-2 satellite
images in the future, the proposed research together with
the published dataset can be used to build systems which
assist in keeping maps up-to-date. A detailed analysis of
the respective land area can then be provided using high-
resolution satellite images and an advanced segmentation
approach [4, 11].

Figure 10: Change detection application 1a: The left image
was acquired in the surroundings of Shanghai in Decem-
ber 2015 showing an area classified as industrial. The right
image was acquired in December 2016 showing that the in-
dustrial buildings have been demolished.

Figure 11: Change detection application 1b: The left image
was acquired in the surroundings of Dallas, USA in August
2015 showing no dominant residential area in the highlighted
area. The right image was acquired in the same area in
March 2017. The system classified the area as residential
showing that a residential area has been built up.

Figure 12: Change detection application 1c: The left im-
age was acquired near Villamontes, Bolivia in October 2015.
The right image was acquired in the same area in September
2016 showing that a large land area has been deforested.

6. CONCLUSIONS
In this paper, we have addressed the challenge of land use

and land cover classification. For this task, we presented
a novel dataset based on remote sensing satellite images.
To obtain this dataset, we have used the openly and freely
accessible Sentinel-2 images provided within the scope of
the Earth observation program Copernicus. The proposed
dataset consists of 10 classes covering 13 different spectral
bands with in total 27,000 labeled images. We evaluated
state-of-the-art deep CNNs on this novel dataset. We also
evaluated deep CNNs on existing remote sensing datasets
and compared the obtained results. For the novel dataset,
we investigated the performance based on different spectral
bands. As a result of this evaluation, the RGB band com-
bination outperformed all single-band images as well as the
shortwave-infrared and the color-infrared band combination
with an overall classification accuracy of 98.57%. For the
existing datasets, we achieved state-of-the-art and outper-
forming results. Overall, the available free Sentinel-2 satel-
lite images offer a broad choice of possible applications. The
proposed research is a first important step to make use of
the vast available satellite data in machine learning allow-
ing classification and monitoring of Earth’s land surfaces
in future on a large scale. The proposed research can be



Figure 13: Application 2: A patch-based classification system can verify already tagged areas, identify mistagged areas
or bring large area tagging as shown in the above images and maps. The left Sentinel-2 satellite image was acquired in
Australia in March 2017. The right satellite image was acquired in the surroundings of Shanghai, China in March 2017. The
corresponding up-to-date mapping images from OpenStreetMap show that the industrial areas in the left satellite image are
almost completely covered (colored gray). However, the industrial areas in the right satellite image are not properly covered.

leveraged for multiple real-world Earth observation applica-
tions. Possible applications in the area of land use and land
cover change detection and improving geographical maps
have been shown.
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