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S U M M A R Y
This paper describes an application of artificial neural networks for the recognition of volcanic
lava flow hot spots using remote sensing data. Satellite remote sensing is a very effective
and safe way to monitor volcanic eruptions in order to safeguard the environment and the
people affected by such natural hazards. Neural networks are an effective and well-established
technique for the classification of satellite images. In addition, once well trained, they prove
to be very fast in the application stage.

In our study a back propagation neural network was used for the recognition of thermal
anomalies affecting hot lava pixels. The network was trained using the three thermal channels
of the Advanced Very High Resolution Radiometer (AVHRR) sensor as inputs and the corre-
sponding values of heat flux, estimated using a two thermal component model, as reference
outputs.

As a case study the volcano Etna (Eastern Sicily, Italy) was chosen, and in particular the
effusive eruption which took place during the month of 2006 July. The neural network was
trained with a time-series of 15 images (12 nighttime images and 3 daytime images) and
validated on three independent data sets of AVHRR images of the same eruption and on two
relative to an eruption occurred the following month.

While for both nighttime and daytime validation images the neural network identified the
image pixels affected by hot lava with a 100 per cent success rate, for the daytime images also
adjacent pixels were included, apparently not interested by lava flow. Despite these performance
differences under different illumination conditions, the proposed method can be considered
effective both in terms of classification accuracy and generalization capability. In particular
our approach proved to be robust in the rejection of false positives, often corresponding
to noisy or cloudy pixels, whose presence in multispectral images can often undermine the
performance of traditional classification algorithms. Future work shall address application of
the proposed method to data acquired with a high temporal resolution, such as those provided
by the spinning enhanced visible and infrared imager sensor on board the Meteosat second
generation geostationary satellite.
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1 I N T RO D U C T I O N

In the last 20 years, infrared (IR) remote sensing techniques for
extracting volcanologically useful information have been used to
study thermal structures of hot volcanic features such as lava flows,
lava lakes, volcanic dome, pyroclastic flows and fumaroles (Rothery
et al. 1988; Crisp & Baloga 1990b; Harris et al. 1999; Wright et al.
2000).

From the operational point of view, detection of new thermal
anomalies, or of changes in existing ones, can be of special value
for hazard assessment. Activity during effusive volcanic eruptions

can change rapidly over periods of minutes to hours as new lava
flows erupt or develop. The destructive potential of such phe-
nomena makes timely information regarding their occurrence and
development essential for hazard monitoring, assessment and re-
sponse. Thus, satellite-based radiometers providing thermal data at
high temporal resolution (>1 image per day) are suited to monitor
effusive eruptions if timely analysed. These instruments provide
data in which effusive events are easily detectable and changes in
the style and extent of activity can be identified despite the coarse
(1–25 km2 pixel) spatial resolution of the data (e.g. Harris et al.
1997a,b; Wooster & Rothery 1997). Furthermore, these data can
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be acquired directly at suitable receiving stations, processed within
a few minutes and relayed to the agencies responible for volcanic
hazard monitoring and assessment.

From the scientific point of view, remotely sensed thermal mea-
surements can shed light into the physical processes that trigger
eruptions and influence the behaviour of erupted materials, by pro-
viding estimates of the heat and mass fluxes of active lava flows.
The movement of the latter is a complex subject that has provoked
debate regarding the mechanisms that control the areal extent and
physical character of the flow (e.g. Pieri & Baloga 1986; Lipman
& Banks 1987; Oppenheimer 1991; Oppenheimer et al. 1993a,b,c;
Harris et al. 1997a,b, 1998, 1999; Lombardo & Buongiorno 2006;
Lombardo et al. 2006, 2009). Progress has been made in construct-
ing useful mathematical models (e.g. Crisp & Baloga 1990; Pieri
et al. 1990; Oppenheimer 1993b; Harris et al. 1997a,b, 1998, 1999;
Lombardo et al. 2009). Determining volumetric effusion rates for
lava flows from space is an important but challenging task. Effu-
sion rates play a major role in evaluating flow dynamics and the
potential threat posed by a lava flow. Higher effusion rates produce
channel-fed flows that are longer, more rapidly moving, volumi-
nous and more extensive than flows with low effusion rates (Walker
1973; Wadge 1977; Pieri & Baloga 1986). Flows with high effusion
rates thus have far greater potential to inflict damage on distant
communities with less advance warning. Measuring effusion rates
is therefore of great interest. Field methods for their determina-
tions are usually based on estimates of lava channel dimensions
and lava flow velocity (e.g. Lipman & Banks 1987; Barberi et al.
1993). However, errors due to uncertainties in channel dimension,
especially depth, are a major problem. Alternatively, if the eruption
duration is known, accurate post-eruption measurements of total
flow field volumes can provide reliable estimates of average effu-
sion rates (e.g. Calvari et al. 1994). However, these averages will
not reveal major variations in effusion rates which have been shown
to occur during many basaltic eruptions (Wadge 1977).

Meteorological sensors have been increasingly employed for op-
erational monitoring of volcanic thermal features. Satellite sys-
tems include the Eumetstat Meteosat second generation (MSG)
spinning enhanced visible and infrared imager (SEVIRI; Ganci
et al. 2011), the National Oceanic and Atmospheric Administration
(NOAA) geostationary operational environmental satellites (GOES;
Harris et al. 2001), the NASA moderate resolution imaging spec-
troradiometer (MODIS; Wright et al. 2004), the European Space
Agency along track scanning radiometer (Colin et al. 2007) and
the NOAA advanced very high resolution radiometer (AVHRR
2012; Webley et al. 2008; Marchese et al. 2011). The widely used
AVHRR (2012) sensor provides a good compromise between spa-
tial resolution and measurement frequency with the possibility of
equipping volcanology institutes with a satellite receiving station
(Harris et al. 1997b).

A different approach has been adopted for the identification of
thermal activity using AVHRR data. The VAST algorithm has been
developed by Harris, Higgins and Swabey (Harris et al. 1995,
2000b, 2002), the algorithm was later developed at the Hawai’i Insti-
tute of Geophysics and Planetology (HIGP) by Garbeil and Steffke
(Steffke & Harris 2011). The algorithm is contextual, and uses the
difference in brightness temperature between the mid (3.9 µm) and
long-wave (10–12 µm) IR (�T). A region of interest (ROI) centred
on the target volcano is extracted, and a threshold is taken from a
region immediately surrounding the ROI in the same image. The
threshold is the difference between the �T of the target pixel, and
the mean of the eight pixels immediately surrounding the target. The

maximum value from the background is taken as the threshold, and
then any pixel within the ROI whose value exceeds the threshold is
flagged as hot.

The robust satellite techniques identify hot spot detection
(Pergola et al. 2004) computing a statistical index, in medium in-
frared (MIR) spectral band, using a multiyear time-series data of
the same area.

AVHotRR is a robust routine for monitoring activity of volca-
noes in the Mediterranean area (Lombardo et al. 2011). AVHotRR
allows for automatic hot spot detection and effusion rate estimate of
active lava flows using AVHRR and MODIS IR data. The AVHotRR
routine is composed of graphical user-interface procedures that are
implemented in Interactive Data Language (IDL) and takes advan-
tage of the functionality of ENvironment for Visualizing Images
(ENVI) for image managing/processing. The algorithm for ‘hot
spot detection’ builds on the widely used ‘dual-band’ technique.
Starting from the simultaneous solution of the Planck equation in
two different IR bands, only a few combination of band radiances
allow solutions of the dual-band problem. Not all of these solutions
are physically acceptable, because not all of them satisfy the con-
straints of the two thermal component model assumed for active
lava flows. The AVHotRR algorithm searches for pixels within the
image which have solutions physically acceptable. If such pixels
exist, they will be flagged as ‘hot’.

Artificial neural networks (ANN) are relatively recent compu-
tational modelling tools, which have found wide acceptance in
many disciplines due to their adaptability to complex real world
problems (Rumelhart et al. 1995). The rapid diffusion of such
neural approaches in remote sensing can be ascribed to their
proven ability to learn complex models, taking into account any
non-linear relationships between the explanatory and dependent
variables (Lek & Guegan 1999). ANN approaches are suitable
for the analysis of different data types (Civco 1993; Benedik-
tsson & Sveinsson 1997; Carpenter et al. 1997) and can be
generalized to noisy environments, which allows for robust so-
lutions even in the presence of incomplete or inaccurate data
(Hewitson & Crane 1994). Furthermore, a priori knowledge of
physical constraints as well as ancillary data are not required
(Foody 1995a,b).

ANN can be defined as a structure composed of densely in-
terconnected simple adaptive processing elements (called artificial
neurons or nodes), capable of performing calculations for massively
parallel processing of data and knowledge representation (Hecht-
Nielsen 1990; Schalkoff 1997).

ANN learning is performed iteratively as the network is presented
with training examples, similar to the way we learn from experi-
ence. An ANN-based system is said to have learnt if it can (i) handle
imprecise, fuzzy, noisy and probabilistic information without no-
ticeable adverse effect on response quality, and (ii) generalize from
the tasks it has learned to unknown ones.

An additional advantage of the ANN approach is that ANNs
can perform supervised classification using fewer training data than
those with maximum probability, because rules of recognition of a
given category are based on the attributes, not only of training data
of that particular category class, but also of other classes (Paola &
Schowengerdt 1995).

It was reported that ANNs have more accurate performance than
other techniques such as statistical classifiers, especially when the
functional space is particularly complex and the source of data
presents different statistical distributions (Benediktsson et al. 1990,
1993; Schalkoff 1992).
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Concerning applications of ANNs to natural hazard monitoring
and in particular to thermal anomalies recognition, many studies
have been carried out to map wildfires and forest damages. ANNs
were used for classifying forest damages from Landsat Thematic
Mapper data (Ardo et al. 1997). A study was conducted by Al-
Rawi et al. (2001) to build a multitemporal multispectral automatic
burned area mapping system and fire detection system. Detection
of fire smokes was carried out using AVHRR imagery (Li et al.
2001) and ANN was compared to the conventional classification
methodology in forest fire analysis (Sunar & Ozkan 2001).

To date no significant studies involving volcanic lava flow moni-
toring using ANNs have been carried out. The main objective of this
study is to verify if such a technique may be useful and give substan-
tial improvements for real time monitoring of lava flow hot spots,
overcoming the drawbacks of traditional classification algorithms,
like false alarm detection due to noisy or cloudy pixels.

From the perspective of pattern recognition, neural networks can
be regarded as an extension of the many conventional statistical
techniques which have been developed over several decades (Bishop
1995). More extensive treatments of these topics can be found in the
many text books on statistical pattern recognition, including Duda &
Hart (1973), Hand (1981), Devijver & Kittler (1982), and Fukunaga
(1990). Review articles by Ripley (1994) and Cheng & Titterington
(1994) have also emphasized the statistical underpinnings of neural
networks.

The main tasks of remote sensing data analysis in which the ap-
plication of ANNs is reported are classification, more commonly
land cover classification, namely the process in which pixels are
grouped according to the similarities of their spectral properties.
If a pixel satisfies a certain set of criteria then it is assigned to
the land cover class that corresponds to those criteria. This is the
most common task achieved with remote sensing, and applications
that involve both supervised and unsupervised ANNs are numer-
ous. Due to the absence of assumption about the data, many land
cover classifications use data from different sensors such as optical
and radar images (Benediktsson & Sveinsson 1997; Augusteijn &
Warrender 1998), texture and ancillary data. Texture is incorporated
in different ways: (i) precomputed per pixel texture information that
is fed to the ANN together with the spectral information (Lloyd et al.
2004) or (ii) incorporating neighbouring spectral information using
a sliding window (Kurnaz et al. 2005).

The most currently used ancillary information are topographic
variables derived from a digital elevation model (Bischof et al. 1992;
Dreyer 1993; Kaminsky et al. 1997; Kontoes et al. 2000; Lloyd
et al. 2004; Tatem et al. 2004; Keramitsoglou et al. 2005; Kurnaz
et al. 2005). Other variables are the coordinates (latitude/longitude;
Carpenter et al. 1999) and distance to coast and soil (Mas 2004).
Some attempts have been made to develop classifiers based on the
synergism between ANNs and knowledge-based systems (Murai &
Omatu 1997; Qiu & Jensen 2004).

2 DATA A N D M E T H O D S

The neural network must first be ‘trained’ by having it pro-
cess a large number of input patterns and their associated ref-
erence output patterns. Once trained, the neural network is able
to recognize similarities when presented with a new input pat-
tern, resulting in a predicted output pattern. Therefore, an AVHRR
data set has been chosen at first attempt, since it provides a
good compromise between high spatial resolution (e.g. ASTER,
Landast series) and high temporal resolution data (e.g. GOES and

Table 1. AVHRR spectral sensor characteristics.

AVHRR NOAA 12, 14 (µm) NOAA 15, 16, 17, 18, 19 (µm)

Channel 1 (VIS) 0.58–0.68 0.58–0.68
Channel 2 (NIR) 0.725–1.1 0.725–1.1
Channel 3A (MIR) 3.55–3.9 3.55–3.9
Channel 3B (MIR) – 1.58–1.64
Channel 4 (TIR) 10.3–11.3 10.3–11.3
Channel 5 (TIR) 11.4–12.4 11.4–12.4

MSG). AVHRR was also preferred over the MODIS sensor (simi-
lar spatial resolution but better radiometry) because of the larger
number of images available for our study case (the 2006 Etna
eruption).

2.1 AVHRR data

The AVHRR aboard the NOAA polar orbiting satellites is a
multispectral sensor that acquires radiance images in the wave-
length range from visible (VIS) to thermal infrared (TIR; 0.6–
12.5 µm). The first AVHRR, launched on Television and Infra-
Red Observation Satellite-N (TIROS-N) in October 1978, was
a four-channel radiometer. It was subsequently upgraded to a
five-channel instrument (AVHRR-2), initially carried on NOAA-7,
launched in 1981 June.

The latest instrument version is AVHRR-3, with six channels,
first carried on NOAA-15, launched in May 1998. With an orbit
altitude of about 833 km and a scanning angle of ±55.3◦, the total
swath width is about 2900 km. The spatial resolution at nadir is
1.1 km and increases to about 5 km at the most extreme off-nadir
viewing angles. The AVHRR-3 carries two visible near IR chan-
nels with bandpass wavelengths (bandwidths) of 0.58–0.68 µm and
0.725–1.1 µm, two time-shared channels, centred around 1.6 µm for
daytime images and around 3.75 µm for nighttime images, and two
channels in the TIR spectral region with bandwidths of 10.3–11.3
and 11.5–12.5 µm (Davis 2007; AVHRR 2012, see Table 1).

2.2 Hot spot detection

The procedure by Lombardo et al. (2004, 2011) allows automatic
hot spot detection and estimation of lava flow total thermal flux and
effusion rate during volcanic crisis phases.

A first step consists of detection of cloudy pixels that will be
excluded from thermal flux computation. A determination of the
presence of global cloudiness is essential to volcanic monitoring
for two reasons: first, clouds play a critical role in hot spot detection
and must be accurately described to allow thermal anomaly iden-
tification; secondly, the presence of cloudiness must be accurately
determined to correctly retrieve the radiant contribution from po-
tential thermal anomalies. For many retrieval algorithms even thin
cirrus clouds are an issue. The cloud detection model proposed by
Chen et al. (2002) has been implemented for daytime images while
a modified version of the algorithm developed by Spangenberg et al.
(2002) has been used for nighttime images. Such algorithms have
been adapted to Mt Etna’s seasonal conditions (e.g. accounting for
snow in winter time).

The algorithm searches for pixels that satisfy the two thermal
component model using the dual-band technique. Very hot volcanic
surfaces, such as lava flows, lakes and domes, magma-filled con-
duits and fumaroles vents, often present temperature variations of
hundreds of degrees over spatial scales of only a few centimetres
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(Oppenheimer et al. 1993a). Thus, the ‘footprint’ of remote sens-
ing instruments comprising such features (from space borne or
airborne platforms) typically encompasses highly inhomogeneous
radiant temperature patterns.

Pixel dimensions of satellite data (1–3 km) often exceed the
width of lava bodies. Therefore, we consider a two thermal compo-
nent model in which a hot component refers to the lava integrated
temperature and occupies a pixel fraction flava, and a cooler compo-
nent models the contribution of the surrounding background tem-
perature (Tb), which occupies a pixel fraction fb.

An automatic ‘hot spot detection’ procedure, which uses the
mathematical and physical relationships derived by the theoretical
solution of the ‘dual band’ system of equations and a digital filter
to single out hot radiant pixels, has been proposed by Lombardo
et al. (2004), using Landsat TM short wave infrared (SWIR) bands.
The filter was initially developed for detection of volcanic hot spots
and then adapted to allow the detection of different thermal anoma-
lies including active lava flows. This algorithm has been adapted to
AVHRR band 3 (MIR) and 4 (TIR) assuming a two thermal compo-
nent model for active lava flows. The first part of the filter builds on
the assumption that fractional area flava must be greater than zero.
The second part of the filter verifies the condition that subpixel lava
Tlava temperature must be greater than 0 ◦C (Lombardo et al. 2011).

2.3 Dual-band technique using a two thermal
component model

We can solve the system using one SWIR/MIR band to characterize
the hottest component lava body (Tlava) and one TIR band (8–12 µm)
for cooler background (Tb). This is the so called dual-band tech-
nique applied to a two-thermal component model using low spatial
resolution data (Harris et al. 1997a).

Usually, this technique allows the estimation of Tlava and flava if
Tb is assumed. It is possible to estimate the background temperature
from the non-radiant pixels surrounding the lava body if the back-
ground emissivity is known. However, lava pixels that are adjacent
to cloudy or noisy pixels are likely to generate incorrect ambi-
ent temperatures leading to either positive or negative false alarms
(Oppenheimer 1991; Donegan & Flynn 2004; Blackett & Wooster
2011; Lombardo et al. 2011).

The retrieved subpixel lava temperature will be of course an
average value between crust and molten lava temperatures.

The subpixel temperature retrieval technique is pivotal in remote-
sensing of active lava flows. The algorithm uses the globally con-
vergent Broyden’s method to solve the dual-band equation system:

L(Txλ3) = ε3τ3 [ f1 L(T1λ3) + (1 − f1)L(Tbλ3)] , (1)

L(Tyλ4) = ε4τ4 [ f1 L(T1λ4) + (1 − f1)L(Tbλ4)] , (2)

where L is the Planck function for a black body radiating to tem-
perature T and wavelength λ, Tx and Ty are the pixel integrated
temperatures in AVHRR bands 3 and 4, respectively, ε is spectral
emissivity and τ is atmospheric trasmissivity (Wan & Dozier 1989).

A quite uniform surface of basaltic lavas characterize Mt Etna’s
summit area. Therefore, Tb can be estimated assuming a suitable ε

for Etnean cold basalts. Because Tb may vary widely from vent to
flow toe, the procedure retrieves the maximum (Tbmax) and minimum
temperature (Tbmin) of the background in a pixel mask surrounding
the thermal anomaly. Dual-band solutions (Tlava and flava) are then
calculated for every Tb between Tbmin and Tbmax. The dual-band
approach requires knowledge of the values of one of the three un-

knowns: lava temperature (Tlava), background temperature (Tb) and
fraction of pixel occupied by lava (flava).

AVHotRR derives Tb from non-active pixels surrounding the ther-
mal anomaly, under the assumption of known background emissiv-
ity (Lombardo et al. 2011).

2.4 Estimating the energy flux radiated by
an active lava flow

The energy produced by an active lava flow is transferred to the
environment through a combination of conduction, convection and
radiation. Thermal IR remote sensing research has focused on infer-
ring information from the radiative component, as the convective
and conductive components are difficult to quantify directly. The
radiative transfer underlying an observed lava flow scene is very
complex: in the same area there are zones not yet touched by the
lava flow, burning zones and zones already burnt; in the burning
zones at least two distinct lava flow stages, flaming and smoldering,
are to be considered, characterized by different temperatures, and
emission rates.

Moreover, the atmospheric loading is very complex too, with the
presence of ash and hot smoke and increased water vapour content.

In general the retrieval of lava parameters from space is based on
a simplified RTM, often referred to as Dozier Model (Dozier 1981).

In this approach a burning pixel is seen as a ‘mesoscale’ com-
posite target made up of two ‘grey’ body targets linearly combined
through coefficients representing the fractions of the burning and
non-burning portions of the pixel. Of course this model restricts the
observation of the active lava flow to the TIR emission bands. Nev-
ertheless, according to the Wien displacement law the peak of the
surface emitted radiance shifts to shorter wavelengths as the surface
temperature increases so that temperatures of about 1000 K can give
significant signal contribution in the SWIR region, where emission
and reflection phenomena compete, so that a more complex RTM
is needed to interpret the data.

Following Oppenheimer (1991) and Harris et al. (1997a,b, 1998,
2000a) we derive the total flux Qtot assuming that heat loss can
be described by a simple model for a subaerial channel-fed flow
where:

Qtot = Qrad + Qconv + Qcond. (3)

Qrad, Qconv and Qcond are the total radiant heat flux, the convective
heat and the conducted heat fluxes, respectively. Qrad for each pixel
containing active lava (Qrad(p)) is calculated using:

Qrad(p) = ε σ Ap[ flavaTlava4 + (1 − flava)Tb4], (4)

in which ε is the emissivity, σ is the Stefan-Boltzmann constant
(5.67 × 10−8 W m−2 K−4) and Ap is the AVHRR pixel area. An
emissivity of 0.98 was chosen to be representative of Etnean lava
flows (Buongiorno et al. 1999, 2002). Total radiative heat loss is then
obtained by summing Qrad(p) for every lava pixel. Qconv is estimated
for the entire lava flow field in a similar way, where Qconv for each
pixel of the image containing active lava (Qconv(p)) is calculated
using the free convection case given by Harris et al. (1997b, 1998).
This reduces to:

Qconv(p) = hc[Tsurf − Tair], (5)

in which hc is the convective heat transfer coefficient, Tsurf is the lava
surface temperature, and Tair is the ambient air temperature, where
the values given in Harris et al. (1997b) result in values for hc of
5–12 W m−2 K−1 for free convection. This is a theoretically cal-
culated value for free convection (see Harris et al. 2005), whereas
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values for forced convection obtained from measurements (Keszthe-
lyi et al. 2003) and modelling (Patrick et al. 2005) indicate higher
values (∼50 W m−2 K−1). The heat conducted through the base of
the flow is given by (Harris et al. 1997b):

Qcond = Ap k δT/δh. (6)

where k = 2.5 – 3.2 W m−1 K−1, δT = 520 K (assuming core
temperature of 1100 ◦C and a basal contact temperature of 580 ◦C)
and δh = 0.2 m (hot model) or 3.0 m (cold model). This can
account for ∼25 per cent of the total heat loss (Qtot). In reality the
assumptions involved mean that the main variable is active lava area
(Alava), so that the above steps define the slope of a linear relationship
between effusion rate and lava flow area (Wright et al. 2001).

2.5 Neural network methodology

ANNs are based on the concept of the single artificial neuron, the
‘perceptron’ introduced by Rosenblatt in 1958 (Rosenblatt 1962) to
solve problems in the field of character recognition (Hecht-Nielsen
1990). An artificial processing neuron receives inputs as stimuli
from the environment, combines them in a special way to form a
‘net’ input, which is then filtered through a linear threshold gate. The
output signal is forwarded to another neuron or to the environment.
Only when the ‘net input’ exceeds the neuron’s threshold limit (also
called bias), will the neuron become activated. The activation at that
node is calculated using a transfer function (e.g. sigmoidal function)
to yield an output between 0 and 1 or −1 and +1. The amount of
activation obtained represents the new signal that is to be forwarded
to the subsequent layer (e.g. either hidden or output layer). The
same procedure of calculating the net effect is repeated for each
hidden node and for all hidden layers (Bishop 1995). The percep-
tron can be trained on a set of examples using a special learning rule
(Hecht-Nielsen 1990). The perceptron weights (including the
threshold) are changed according to the difference (error) between
the target (correct) output, Y, and the perceptron solution, y, for
each example.

The error is a function of all the weights and forms an irregular
multidimensional complex hyper plane with many peaks, saddle
points and minima. Using a specialized search technique, the learn-
ing process seeks to obtain the set of weights that corresponds to the
global minimum. One of these is the backpropagation algorithm,
which consists of two phases: in the feed-forward pass, an input vec-
tor is presented to the network and propagated forward to the output;
in the backpropagation phase, the network output is compared to
the desired output; network weights are then adjusted in accordance
with an error-correction rule. Hence the name ‘back-propagation’
Rumelhart et al. (1986), Bishop (1995) or Haykin (1999).

The performance of a trained ANN is generally assessed by com-
puting the root mean squared error between the expected values
and the activation values at the output nodes or, in the case of clas-
sification, the percentage of correctly classified examples of the
validation set.

In order to cope with non-linearly separable problems, additional
layer(s) of neurons placed between the input layer (containing the
input nodes) and the output neuron are needed leading to the mul-
tilayer perceptron (MLP) architecture (Hecht-Nielsen 1990).

In this work, backpropagation neural networks (BPNN) have been
used. These networks are the most widely used type for their flex-
ibility and adaptability in modelling a wide spectrum of problems
in many application areas (Rumelhart et al. 1986). A BPNN is an
MLP consisting of an input layer with nodes representing input
variables to the problem, an output layer with nodes representing

the dependent variables (i.e. what is being modelled), and one or
more hidden layers containing nodes to capture the non-linearity
in the data. Using supervised learning, with the error-correction
learning rule for network weights adjustments, these networks can
learn the mapping from one data space to another using examples.
The term backpropagation refers to the way the error computed at
the output side is propagated backward from the output layer, to
the hidden layer, and finally to the input layer. In BPNNs, the data
are fed forward into the network without feedback (i.e. all links
are unidirectional and there are no same layer neuron-to-neuron
connections). The neurons in BPNNs can be fully or partially in-
terconnected. These networks are so versatile and can be used for
data modelling, classification, forecasting, control, data and image
compression, and pattern recognition (Hassoun 1995).

A neural network for lava flow hot spot detection was imple-
mented using a training set of 15 AVHRR images, of which 12
nighttime and 3 daytime images, respectively, spanning the 2006
July Mt Etna eruption (Sicily, Italy). Estimation of thermal flux us-
ing the methods by Lombardo et al. (2004, 2011) was carried out
on these images to flag pixels affected by lava flow and generate a
target output data set.

The total training samples were 14 415 of which 149 were clas-
sified as hot spots, based on thermal flux estimation. The network
topology consists of three inputs, namely the brightness tempera-
tures in the AVHRR thermal channels, centred around 3.9, 11 and
12 µm, comprising the range of wavelengths containing informa-
tion used for thermal flux estimation. Ten neurons were used in a
single hidden layer. Finally, two network outputs correspond to the
two possible classification results, namely ‘hot spot’ and ‘non-hot
spot’.

When training a neural network, it is of interest to obtain a net-
work with an optimal generalization performance, that is the net-
work performance should not degrade significantly when data sets
other than the training one are analysed.

Standard neural network architectures, like the fully connected
multi layer perceptron, have almost always a too large parameter
space, and are prone to over-fitting (Geman et al. 1992). During the
training phase, although the network performance appears to con-
stantly improve on the training sets, at some point it actually begins
to worsen in terms of errors on unseen data sets. Cross validation
can be used to detect when over-fitting starts, during supervised
training of the neural network; training can then stopped before
convergence to avoid over-fitting, a process called early stopping
(Prechelt 1998).

In this study, early stopping was carried out by splitting the train-
ing data into three sets: a training one, a cross-validation one and a
test one. These consisted, respectively, of 60 , 30 and 10 per cent of
the total number of training samples. The first set was used for net-
work training. The cross-validation set was analysed at a predefined
number of epochs, to assess performance on a data set other than
the training one. The training was stopped after the error calculated
on the cross-validation set was greater than that of the training one
for six consecutive iterations. Finally, the test set was used during
the training phase as an independent data source to assess network
performance.

After completion of the training process, validation of the net-
work was carried out on an independent data set, not used during the
training, consisting of three AVHRR images acquired in 2006 July
and two in 2006 August. Concerning the hidden layer’s size, typi-
cally a single hidden layer is sufficient to approximate continuous
functions (Hecht-Nielsen 1990; Basheer 2000). Two hidden layers
may be necessary for functions with discontinuities (Masters 1994).
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The determination of the appropriate number of hidden layers and
number of hidden nodes (NHN) in each layer is one of the most
critical tasks in ANN design. Unlike the input and output layers,
one starts with no prior knowledge as to the number and size of
hidden layers. As the NHN increases, training becomes excessively
time-consuming.

The optimal NHN essential for network generalization is in gen-
eral a function of the input/output vector sizes, the size of the training
and test subsets and, more importantly, the underlying non-linearity
of the observed phenomena. Several rules of thumb are available
in the literature, which relate hidden layer size to the number of
input nodes (NINP) and output layers (NOUT). Jadid & Fairbairn
(1996) called for an upper bound on NHN equal to NTRN/[R +
(NINP + NOUT)], where NTRN is the number of training patterns
and R = 10. Using this equation we obtain an NHN of 961. Instead
Masters (1994) suggested that the NN architecture should resemble
a pyramid with NHN circa (NINP ∗ NOUT)1/2, providing in our case
an NHN of 2.5. Given this huge range of variation, we decided not
to rely on theory alone, and to begin with a number of three hidden
nodes, building on as needed to meet the model accuracy demand.
Our final choice of a single hidden layer of ten nodes was found to
provide the best accuracy.

3 T H E T E S T C A S E A N D S T U DY
R E S U LT S

3.1 Test case description: Etna eruptions 2006
July–September

On 2006 July 14, a fissure opened on the East flank of the South East
Crater of Etna and produced a lava flow that travelled East to the
Valle del Bove. Moderate Strombolian activity from the East flank
of the South East Crater produced a small amount of ash fall on
Catania (∼25 km South South East of the volcano). The lava flow
reached a maximum distance of 3 km within the Valle del Bove and
ceased on July 24. On July 26, strong explosions were heard from
the rim of the North East crater.

On August 31, Strombolian activity from the summit of the SE
Crater produced lapilli and bombs that fell mainly in the crater. The
ejecta filled the crater and overflowed on the E side on September
5, forming lava falls that accumulated in a steep-sided circular
depression on the middle part of the E flank. On September 7, the
sluggish ‘A’ ā flow breached the E rim and spread out on the E flank
of the SE Crater and towards the Valle del Bove rim. Explosive
activity at the SE Crater summit produced lava blocks that fell to
the base of the cone.

On September 10, a rockfall from a wall that divided the SE Crater
and the depression on the middle part of the E flank produced an ash
plume that drifted W. Lava flows and Strombolian activity from the
summit of the SE Crater continued on September 11 (Smithsonian
Institution, Global Volcanism Program 2013).

3.2 Results and discussion

In order to evaluate the performance of neural networks in terms
of their generalization capability and accuracy in detecting lava
flow hot spots, we applied the trained neural network classifier to
a validation set consisting of three independent AVHRR images
belonging to the 2006 July Etna eruption and to two independent
AVHRR images belonging to the following event, occurred on 2006
August.

Table 2. Confusion matrix assessing the classification accuracy on a test
of 10 per cent of the AVHRR training samples.

Test Set 10 per cent Hot spot User acc.

Accuracy: 100 per cent Yes No (per cent)

NN Yes 15 0 100
No 0 1427 100

Table 3. Confusion matrix assessing the classification accuracy on the
AVHRR validation set of 2006 July 20, 16:05 UTC.

2006 July 20, 16:05 UTC. Hot spot User acc.

Accuracy: 99.8 per cent Yes No (per cent)

NN Yes 3 2 60
No 0 956 100

Performance was assessed in terms of overall accuracy and user
accuracy. The former represents the percentage of correct classifica-
tions, with respect to the total number of pixels analysed, considering
all classes (i.e. ‘hot spot’ and ‘non-hot spot’). The user accuracy
instead represents the percentage of correct classifications for each
network output class.

Table 2 shows the result obtained processing the training test
data set (10 per cent of the total training samples). The overall and
user accuracy are 100 per cent, without omission (false negatives)
or commission (false positive) errors.

Tables 3–7 describe the confusion matrices obtained applying the
NN classifier to the five images constituting the validation data set.
Figs 1–5 show comparisons between classification maps obtained
from the NN classifier and from the hot spot detection algorithm
for all validation data sets.

In Tables 4 and 5, which summarize the results related, respec-
tively, to the 2006 July 24, 04:31 UTC and 2006 July 28, 04:53 UTC
images, the neural network classifier once again achieves an accu-
racy level of 100 per cent. This is a very good result, considering
that the latter image contains many noisy pixels as shown on Fig. 6
(bottom-left).

Table 6 shows the confusion matrix computed applying the NN
classifier to the 2006 August 14, 20:30 UTC AVHRR image. Despite
the presence of false alarms (noise) in some image pixels clearly
evident in the MIR and TIR images depicted in Fig. 4 (top, left and

Table 4. Confusion matrix assessing the classification accuracy on the
AVHRR validation set of 2006 July 24, 04:31 UTC.

2006 July 24, 4:31 UTC. Hot spot User acc.

Accuracy: 100 per cent Yes No (per cent)

NN Yes 4 0 100
No 0 957 100

Table 5. Confusion matrix assessing the classification accuracy on the
AVHRR validation set of 2006 July 28, 04:53 UTC.

2006 July 28 4:53 UTC. Hot spot User acc.

Accuracy: 100 per cent Yes No (per cent)

NN Yes 1 0 100
No 0 960 100
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Table 6. Confusion matrix assessing the classification accuracy on the
AVHRR validation set of 2006 August 14, 20:30 UTC.

2006 August 14, 20:30 UTC. Hot spot User acc.

Accuracy: 100 per cent Yes No (per cent)

NN Yes 1 0 100
No 0 960 100

Table 7. Confusion matrix assessing the classification accuracy on the
AVHRR validation set of 2006 August 31, 20:39 UTC.

2006 August 31, 20:39 UTC. Hot spot User acc.

Accuracy: 99.9 per cent Yes No (per cent)

NN Yes 1 1 50
No 0 959 100

right), the pixels classified as hot spots are indeed such, that is there
are no false detections.

Table 7 shows the confusion matrix of the NN classifier applied
to the 2006 August 31, 20:39 UTC AVHRR image. The classifier
detects pixels affected by lava, despite the clouds affecting many
image pixels (see Fig. 6, bottom-right). User accuracy is 50 per cent
because the classifier detects one more pixel. For the latter, a ther-
mal flux estimate could not be produced, that is the thermal flux
model output is a NaN, meaning that validation is lacking for this
pixel. Another reason might be due illumination conditions, be-
cause nighttime images were not well represented by training data
sets (only 20 per cent).

The last two cases are very significant concerning network per-
formance in the presence of cloudy or noisy image pixels.

The most interesting case is represented by the 2006 July 20,
16:05 UTC daytime image. Table 3 shows the confusion matrix
obtained and indicates an overall accuracy of 99.8 per cent. This is
due to the presence of a commission error, which determines the

Figure 1. 2006 July 20, 16:05 UTC validation set. Top: AVHRR image in
MIR band (left), TIR band (right). Bottom: Lava hot spot (left), hot spot
detected by neural network classifier (right).

Figure 2. 2006 July 24, 4:31 UTC validation set. Top: AVHRR image in
MIR band (left), TIR band (right). Bottom: Lava hot spot (left), hot spot
detected by neural network classifier (right).

Figure 3. 2006 July 28, 4:53 UTC validation set. Top: AVHRR image in
MIR band (left), TIR band (right). Bottom: Lava hot spot (left), hot spot
detected by neural network classifier (right).

user accuracy value of 60 per cent. The neural network classifier
did not make any omission error, correctly classifying all hot lava
pixels, but detected two spurious pixels (commission errors). Fig. 1
(bottom-right), shows that these two pixels are close to other three
correctly classified hot spot pixels.

Analysis of AVHRR data highlighted the presence of cloudy
pixels in the proximity of lava hot spots (Fig. 6, top-left). In fact,
temperatures of two pixel detected in MIR are similar to the middle
pixel, while temperature in channel 4 (TIR) is lower than 30 ◦C, a
significant difference from the middle pixel, showing a temperature
in channel 4 of 62 ◦C. Using background temperatures derived from
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Figure 4. 2006 August 14, 20:30 UTC validation set. Top: AVHRR image
in MIR band (left), TIR band (right). Bottom: Lava hot spot (left), hot spot
detected by neural network classifier (right).

these pixels in the system of eq. (1) non-acceptable solutions are
obtained. The AVHotRR algorithm was then implemented to verify
the accuracy of dual-band results and to reject pixels associated
with unacceptable solutions.

Figure 5. 2006 August 31, 20:39 UTC validation set. Top: AVHRR image
in MIR band (left), TIR band (right). Bottom: Lava hot spot (left), hot spot
detected by neural network classifier (right).

This latter case reveals a false negative because the pixel is af-
fected by lava but it is not considered in the thermal flux computing,
and the neural network classifier reveals its effectiveness in hot spot
detection with high accuracy.

Figure 6. Classification of AVHRR images. Top left: 2006 July 20, 16:05 UTC. Top right: 2006 July 24, 4:31 UTC. Bottom left: 2006 July 28, 4:53 UTC.
Bottom right: 2006 August 31, 20:39 UTC. In red, lava pixels. In yellow, colour saturated pixels.
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4 C O N C LU S I O N S

This work proves the detection capability of lava hot spots by means
of a neural network classifier, applied to the thermal channels of the
AVHRR sensor. Lava flow thermal flux estimations were used as
training target outputs. The classifier works well both on daytime
and nighttime images.

The resulting confusion matrices associated with the classifier’s
application to independent data sets spanning two Etna volcanic
eruptions revealed an accuracy of 100 per cent on 60 per cent of
tested images. On the remaining 40 per cent, detection accuracy
was slightly lower, but these cases included:

(1) The validation data set was a daytime image that represented
only 20 per cent of the AVHRR time-series training samples.

(2) Likelihood of the presence of false negatives, that is pixels
affected by hot lava flow but not included in thermal flux estimations.
In this case thermal analysis is needed in order to establish if the
classifier generated false negatives or false positives.

Nevertheless the neural network classifier successfully overcame
the detection of false positives present in the validation data set im-
ages, like noisy or cloudy pixels, whose presence in multispectral
images can often undermine the performance of traditional classi-
fication algorithms. Therefore, the proposed method represents a
reliable new approach for volcanic hot spot detection and due to
its fast application in the operational stage it demonstrates also its
usefulness in near real time volcanic monitoring activities.

Future activities include the construction of a classifier able to
exploit the fine timing resolution provided by other sensors, such
as SEVIRI on board MSG geostationary satellite or NASA-USGS
Landsat 8. We also plan to apply the ANN approach to detect
volcanic hot spots from MODIS data. To better assess the opera-
tional performance, our results will be discussed in comparison with
those obtained by MODVOLC, a well-established, MODIS-based
algorithm for hot spot detection that is used worldwide.
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