
remote sensing  

Article

Mapping Burned Areas in Tropical Forests Using
a Novel Machine Learning Framework

Varun Mithal 1,† ID , Guruprasad Nayak 1,† ID , Ankush Khandelwal 1 ID , Vipin Kumar 1,* ID ,
Ramakrishna Nemani 2 ID and Nikunj C. Oza 2 ID

1 Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall,
Minneapolis, MN 55455, USA; varunmithal@gmail.com (V.M.); nayak013@umn.edu (G.N.);
ankush.kwal@gmail.com (A.K.)

2 NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA; rama.nemani@nasa.gov (R.N.);
nikunj.c.oza@nasa.gov (N.C.O.)

* Correspondence: kumar001@umn.edu
† These authors contributed equally to this work.

Received: 21 November 2017 ; Accepted: 3 January 2018 ; Published: 6 January 2018

Abstract: This paper presents an application of a novel machine-learning framework on MODIS
(moderate-resolution imaging spectroradiometer) data to map burned areas over tropical forests
of South America and South-east Asia. The RAPT (RAre Class Prediction in the absence of True
labels) framework is able to build data adaptive classification models using noisy training labels.
It is particularly suitable when expert annotated training samples are difficult to obtain as in the
case of wild fires in the tropics. This framework has been used to build burned area maps from
MODIS surface reflectance data as features and Active Fire hotspots as training labels that are known
to have high commission and omission errors due to the prevalence of cloud cover and smoke,
especially in the tropics. Using the RAPT framework we report burned areas for 16 MODIS tiles
from 2001 to 2014. The total burned area detected in the tropical forests of South America and
South-east Asia during these years is 2,071,378 MODIS (500 m) pixels (approximately 520 K sq.
km.), which is almost three times compared to the estimates from collection 5 MODIS MCD64A1
(783,468 MODIS pixels). An evaluation using Landsat-based reference burned area maps indicates
that our product has an average user’s accuracy of 53% and producer’s accuracy of 55% while
collection 5 MCD64A1 burned area product has an average user’s accuracy of 61% and producer’s
accuracy of 27%. Our analysis also indicates that the two products can be complimentary and
a combination of the two approaches is likely to provide a more comprehensive assessment of tropical
fires. Finally, we have created a publicly accessible web-based viewer that helps the community
to visualize the burned area maps produced using RAPT and examine various validation sources
corresponding to every detected MODIS pixel.

Keywords: MODIS; burned area mapping; tropical forests; machine learning

1. Introduction

Forest fires are known to generate a significant flux of greenhouse gases and particulate matter
into the atmosphere and also contribute to several ecological effects such as the loss of animal habitat
and biodiversity [1]. In the tropical forests, fires are often associated with active deforestation fronts
and linked to illegal establishment of industrial timber, oil palm, soy, and tea and coffee plantations [2].
Forest fire mapping from satellite data offers opportunities for providing timely information on the
implementation of sustainable forest management, which is critical for making sound policy decisions
for protecting forests. Furthermore, multi-annual burned area products are also needed to improve the
understanding of the relationship between climate, vegetation and fires [3]. As a result, there has been

Remote Sens. 2018, 10, 69; doi:10.3390/rs10010069 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5720-1530
https://orcid.org/0000-0002-3923-0298
https://orcid.org/0000-0003-1023-5279
https://orcid.org/0000-0002-9040-2665
https://orcid.org/0000-0002-0883-1517
https://orcid.org/0000-0002-5987-1033
http://dx.doi.org/10.3390/rs10010069
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 69 2 of 22

an increase in demand for automated and reliable tools to monitor forest fires from earth observing
satellite data [4].

Existing satellite-based techniques for burn area assessment can be grouped into two broad
categories-active fire (hotspot) detection and post-fire burned area mapping. Hotspot detection
approaches use thermal energy associated with burning of biomass to map active (ongoing) fires with
the purpose of real-time fire management. A number of papers have used active fire data as a proxy to
report the burned area estimates [5–7]. However, hotspot detection methods are known to have a high
omission error rate because they tend to miss burned pixels due to obstruction by clouds and smoke
as well as due to limited satellite diurnal sampling (i.e., satellite overpass occurred when the fires
were not burning) [8]. Moreover, active fire often overestimates burned area in regions with a large
proportion of small, sub-pixel fires [9]. In contrast, post-fire burned area mapping techniques consider
satellite observations of the land surface over a longer temporal interval around the burn date to create
more reliable historical maps of burned areas [8,10–14]. Note that post-fire mapping techniques are
relatively more robust to issues due to cloud cover or smoke from fires because often burn scars remain
detectable in the spectral observations for several months after the burn date. This paper presents a
new post-fire burned area product that is particularly relevant for tropical forests where both of these
issues are very common.

Satellite-based post-fire burned area mapping algorithms face two key challenges. First, the relationship
between the explanatory variables (spectral features) and target variable (burned/unburned) changes with
spatial regions and land cover [8]. Therefore, training a single classification model to distinguish burned
pixels from unburned pixels and applying it across different land cover classes and geographies can result
in poor performance. To address this issue, existing approaches train separate customized models for each
land cover and spatial region. However, this requires annotated training samples in each land cover and
geographical region, which is infeasible due to the considerable human effort involved in collecting training
samples using ground and aerial surveys. To address the challenge of lack of annotated training data
for different spatial regions and land classes, previous approaches such as [8,9] have used Active Fire
hotspots for selecting training samples. However, active fire hotspots are only imperfect surrogates
for burned areas; therefore, these previous studies also used hand-crafted “cleaning” rules while
selecting training pixels from active fire hotspots to ensure that the training samples are accurate.
While such “cleaning heuristics” are helpful in improving the performance of classification models,
the spectral diversity of burned pixels can make such “cleaning heuristics” very brittle in some regions
and land classes.

The second challenge is that the unburned locations considerably outnumber the burned locations.
Hence even with a small false positive rate, a traditional classification algorithm can result in
a significant number of spurious burned areas. This issue has been addressed by previous approaches
using the concept of identifying confident burns by using co-occurrence of active fire hotspots and
burn scars in spectral observations [8]. Moreover, since landcover changes can occur due to other
reasons such as logging, requiring the presence of active fire hotspots ensure that landcover changes
other than fire are excluded.

This paper presents an application of a novel machine-learning framework to map burned areas
over tropical forests of South America and South-east Asia. This 3-stage framework RAPT (RAre Class
Prediction in the absence of True labels) [15] is able to build data adaptive classification models using
noisy training labels (See Section 3.1 for details). The RAPT framework was used to build a burned
area product derived from MODIS Surface Reflectance 8-day composite product MOD09A1 [16] and
MODIS active fire product MOD14A2 [17] for the tropical forests in Amazon and South-east Asia.
An evaluation was performed using Landsat-based reference burned area maps that were constructed
by following the procedure in [18] (see Section 3.2 for details).

Finally, we have created a publicly accessible web-based viewer for visualizing our burned
area product http://z.umn.edu/fireviewer/. The viewer shows the RAPT events corresponding to
a user-selected MODIS tile and year as event polygons. For each polygon, the Landsat composites
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before and after the date of event can be queried. Polygon-level statistics such as total number of
MODIS pixels, number of pixels with an active fire hotspot, and the number of pixels identified by
collection 5 MCD64A1 are reported. The MODIS pixels belonging to a particular event polygon can
also be viewed by selecting the polygon. In addition, relevant information about these MODIS pixels
(such as their Enhanced Vegetation index series, Normalized Burn Ratio index series, and MODIS land
cover classification labels) can be queried by selecting (clicking) one of the pixels.

2. Material: Study Area and Input Data

This study considers the burned areas in forests located in tropical regions in South America
and South-east Asia. We do not consider the African tropics in this study since the forest fires in that
region mainly occur at a subpixel level in forested pixels that border other landcover classes such as
grasslands and savannas, making it difficult to build a high accuracy classifier for them using 500 m
MODIS data. The burned area detection algorithm uses the 500 m MODIS Surface Reflectance 8-day
composite product MOD09A1 [16,19], MODIS active fire product MOD14A2 [17,19], and MODIS
MOD12Q1 land cover classification product [19,20]. The MODIS products are defined on global
sinusoidal grids in fixed geolocated tiles approximately 10 degree by 10 degree in size and are publicly
available from Land Processes Distributed Active Archive Center. The MODIS products used in this
study are from the MODIS 5 collection. Moreover, collection 5 MODIS MCD64A1 [8,19] is used as an
existing state-of-art burned area product for comparative study. Here we always refer to collection
5 MODIS MCD64A1 as MCD64 product.

The RAPT framework is applied to the forested locations in 16 MODIS tiles in South America and
South-east Asia from 2001 to 2014. Figure 1 shows the MODIS tiles covered in the region of study.

Figure 1. Figure shows the MODIS tiles where we report burned areas.

3. Methods: RAPT Framework and Validation Procedure

3.1. RAPT Framework

Our burned area detection framework makes use of the information in MODIS active fire hotspots
and multispectral surface reflectance data for global-scale burned area detection. There are two key
innovations used in our algorithm that distinguish it from previous approaches. First, the algorithm
uses a new training procedure [15] that is robust to presence of noise in the labels of training samples,
as a result of which our approach does not rely on “cleaning heuristics”. Second, the classifier used in
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our approach [21] takes into account the yearly context of the burn scar signature instead of just a per
time step signature. The longer temporal context helps improve the user’s accuracy of the detected
burned area while maintaining a higher coverage. The detection algorithm proceeds through the three
stages described below (Figure 2 shows flowchart of the RAPT framework).

Figure 2. Flowchart showing the steps of the RAPT framework.

3.1.1. Stage 1: Identifying Burn-Scars from Spectral Data

In this step, a classification model is trained to identify the burned pixels using the 7-dimensional
feature space consisting of all the seven bands of MODIS multispectral reflectance data. Active fire
hotspots were used as training labels to learn the classification model. Specifically, 20,000 unburned
(with no Active Fire) and 20,000 pixels with Active fire are used as training instances for the classifier
(in case 20,000 pixels with Active Fire are not available, we take however many such samples are
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available). This classifier is then applied on all pixels to produce the initial classification for each
500 m pixel annually. Burned pixels identified by this classifier are treated as candidate burned pixels,
which are then refined in the subsequent stages to give the final burned areas.

Selecting training pixels: We make use of the active fire hotspots to select the training samples for
burned and unburned classes to train the scar classifier. In particular, we select positive training
samples for burned class from pixels with an active fire hotspot, if they form a spatial cluster of size
greater than 10 pixels. This spatial pruning is done to eliminate active fire pixels belonging to sub-pixel
burns. Negative training samples (unburned class) are selected from pixels that do not have an active
fire hotspot. Pixels with an active fire observation on a given date are more likely to show a burn
scar than those without an active fire. However, active fire hotspots are only a weak surrogate for
burn-scars and a training data set created using active fire observations is often contaminated with
noise in the labels of the training samples.

Computing posterior class probabilities: We use a neural network model [21] as our classifier to
model the probability that a given pixel belongs to the burned class. The model takes the spectral
features corresponding to the 46 time steps present in a year as input and outputs a probability that
the location belongs to the burned class for the year. The design of this neural network model is
motivated by the following two characteristics of fire events. First, a burn event leads to a burn scar
that is often distinguishable in the spectral features. Second, the burn events (and hence the scars)
follow a temporal context and occur in a fire season that is specific to each geography and land cover.
Our neural network model SeqRep makes use of these characteristics of fire events to identify burned
pixels using multispectral observations.

Figure 3 shows the design of the neural network. The network assumes that the input data
is observed over T = 46 time steps and has D = 7 dimensional feature vector corresponding to
every time step. The input layer of the neural network takes has T × (D + 1) nodes in the first layer,
corresponding to the D features and a bias term for each time step. The model has a hidden layer with
T nodes {h1, · · · , hT}. Each one of these hidden nodes corresponds to a time step. Unlike a regular
neural network with one hidden layer, the hidden layer nodes ht corresponding to time step t is
connected only to input (first layer) nodes for that time step. Thus, there is a correspondence between
every hidden layer node and a time step. Moreover, the weights {β0, β1, · · · , βD} connecting the input
layer node at a time step to the corresponding hidden layer node are assumed to be shared across time
steps. Finally, there is an output node O that is a function of all the per time step predictions captured
in the T nodes in the hidden layer. Weights {w0, w1, · · ·wT} connect the T hidden layer nodes along
with a bias term to the output node O. Thus, the neural network has (T + D + 2) = 55 weights in all.
The hidden layer nodes can be viewed as outputs from a classifier that maps the features at a time
step (e.g., reflectance values) to the per time step predictions (e.g., How scarred does the location
look on this time step?). The vector of these per time step predictions are then combined to output
the prediction for the whole time series (e.g., does the location look scarred at the right time steps?).
A back propagation algorithm is used to select the model parameters of the neural network model.
The parameter update steps for training this model are provided in the Appendix A.

Note that since active fire typically precedes the date when burn scar is visible at a location,
using it as training label only informs the classifier of the presence of a burn scar at the location at
some time during the year (and not the exact date of it). SeqRep jointly learns the spectral signature of
the burn scar and the timing of the fire season for the region using the MODIS multispectral data and
the active fire label for the year provided as input. Thus, although the classifier models fire seasons,
it does not require a prior knowledge of the timing of the fire season and hence, can be easily applied
to new regions and landcovers.
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Figure 3. SeqRep model.

Fixing decision threshold: The final classifier is written in the following form:

y =

{
1 if P[y = 1|x; w] ≥ γ

0 otherwise

where x is the spectral feature vector, w is the classification model parameter and y is the target class
(burned/unburned). The threshold γ determines the trade-off between the errors of omission and
commission, which varies as γ is swept from 0 to 1. In case of burned area mapping a suitable classification
objective is to jointly maximize the user’s accuracy and producer’s accuracy of the burned class. Therefore,
in the RAPT framework we select γ to maximize the product of user’s accuracy and producer’s accuracy
of the burned class. Note that selecting the decision threshold γ by maximizing the product of the user’s
and producer’s accuracy ensures that the errors of omission and commission are relatively balanced. The
selection of decision threshold γ is a challenge in our problem setting because the training data created
using active fire hotspots is plagued with noise in training labels, therefore estimation of user’s and
producer’s accuracy corresponding to different choices of γ is tricky. In particular, if we ignore the noise in
labels of training samples, it may lead to incorrect estimation of user’s and producer’s accuracy resulting in
selection of a sub-optimal threshold value, due to which the classification model will show higher rates of
omission and commission compared to the optimal model. In our detection method, we use the algorithm
developed in [15] that addresses the problem of training classification models when training samples suffer
from label noise in the context of imbalanced class problems.

3.1.2. Stage 2: Identifying Confident Burned Pixels

In the second stage, the predictions of the scar classifier are combined with the active fire hotspots
to assign either confident burn or unlabeled class to every pixel in each year. We use a conservative
combination step that assigns a confident burn only if both the burn-scar and active fire hotspot are present
at the pixel for the given year. This strict criterion ensures that the confident burn pixels have a smaller
number of commission errors compared to both the scar classifier and active fire hotspots individually.

3.1.3. Stage 3: Spatial Growing and Final Classification

The confident burned areas, identified in the previous step, typically cover only a small fraction
of the total burned pixels. This is especially true in the tropics where active fire hotspots have a low
coverage due to poor data quality (e.g., obstruction by clouds) and limited frequency of satellite
overpass. Therefore, in the third step of RAPT we improve the coverage of burned areas by leveraging
the spatial context of confident burned pixels and candidate burned pixels. More specifically, a spatial
growing method is used, which includes the pixels that show a burn-scar but are not detected as
confident burns as part of final burned areas if they are spatially connected to some confident burned
pixels within a spatial distance of 5 MODIS pixels. This is a manually selected threshold, but the
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performance is not very sensitive to it. In fact, our experimental results indicated that if we choose the
distance threshold between 5 to 10 pixels, the results remained unchanged for most tiles and years.
However, having this threshold as low as 5 is helpful in ensuring that large spatial regions incorrectly
classified as burned in Stage 1 do not get classified as burned at the end of Stage 3 just due to a spurious
active fire hotspot that coincides with the onset of event in Stage 1.

3.1.4. Generating Global Product: Additional Data Processing Considerations

To account for the spectral diversity of burn scars, we train multiple classification models,
each focusing on a smaller, homogeneous partition of the data, grouped according to geographical
region. Training a separate, customized classifier for each homogeneous group is known to improve the
burned area detection performance, as it allows for automated adaptation of model parameters to the
specifics of fire occurrence in the biome and spatial region of interest [8]. Specifically, in our detection
framework, we create separate groups corresponding to each MODIS tile. Moreover, burned area
results are reported for only stable forest pixels. A pixel is considered to belong to stable forest in
a particular year if it is labeled as forest by MODIS land cover in the previous year as well as in the
first 4 years (i.e., 2001–2004).

3.2. Validation Procedure

We evaluated the RAPT burned area product by comparing it against the reference validation
maps produced from Landsat images using publicly available BAMS software developed by [10].
We used Landsat 5 images obtained from (https://earthexplorer.usgs.gov/) to generate reference maps
used for validation. In this subsection, we present the sampling design used for selecting Landsat
scenes for evaluation, the procedure for generating the reference maps for the selected Landsat scene
and the accuracy measures used.

3.2.1. Sampling Design

Burned areas are only a small portion of the forested regions, and as a consequence a simple
random sampling is not effective when the focus is on validating burned areas. Therefore, we used
a proportional sampling scheme similar to the one used in [18], in which the probability of selecting
a Landsat scene is proportional to the number of active fire hotspots in the forested regions around
the date of that scene. This biases the sampling towards Landsat scenes with higher burned activity,
and therefore is helpful in obtaining sufficient fire events in the reference maps generated to robustly
estimate omission errors of the burned area products being evaluated.

Since the selection of Landsat scenes is driven by the number of active fire hotspots in the scene in
a given year, if a region has seen multiple fires across years then the corresponding Landsat scene can
get selected multiple time in our 15 year period. For example, in our set of reference maps in Table 1,
scenes 118,062 and 213,070 were selected in multiple years.

Once a Landsat scene was sampled, the date of the fire event was estimated by computing the median
of active fire hotspot dates observed in that scene for that year. Finally, pre-event and post-event images for
this scene were selected around the date of the fire event according to the following criteria:

1. The images should have low scene level cloud cover fraction according to Landsat metadata
(less than 25%).

2. Post-event image should be within 100 days of the date of burn. However, if the selected
post-event Landsat image has more than 25% total cloud cover, then the Landsat scene was
excluded for that year.

3. Pre-event image should be within 100 days of the date of burn. However, if the selected image
has more than 25% cloud cover, then we looked for a clean image in the previous year in the
same season. If a Landsat image with less than 25% cloud cover can still be not found, then we
exclude the scene for this year.

https://earthexplorer.usgs.gov/
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Note that while comparing the burned area output from the algorithms with the reference
maps, only the burned pixels reported between the dates of the pre-event and post-event images are
considered as burned. For example, if an unburned pixel according to the reference map is identified
by the algorithm outside these dates, it is not considered a commission error. Pre-event and post-event
images corresponding to all the reference maps used in study have been added in the supplementary
material. Along with these images, we also show pre-event images that are strictly within 100 days of
the post image (although cloudy and hence are not suitable for creating reference maps) to provide
visual verification that the post-images are within 100 days of the fire event.

3.2.2. Cloud Mask

We used an object based cloud detection method described in [22,23] to mask any pixels impacted
by clouds and cloud shadows. For Landsat L1T images, Digital Number (DN) values were first
converted to Top of Atmosphere (TOA) reflectance and Brightness Temperature (Celsius degree).
Then, multispectral bands, Brightness Temperature and derived indices (NDVI, NDSI) were used to
create a potential cloud layer and a potential cloud shadow layer by creating rules based on cloud and
cloud shadow physical properties. Cloud layer is then segmented and the geometric relationships are
used to match the potential cloud shadow layer, to create the final cloud and cloud shadow mask.

3.2.3. Reference Data

The pre-event and post-event images were first processed using BAMS to obtain a feature
set for all pixels. BAMS uses known indices described in literature for burn scar detection.
Specifically, BAMS code makes use of 10 spectral variables (the post-fire BAIM (Burned Area Index),
NBR (Normalized Burned Ratio), MIRBI (Mid Infrared Burned Index), GEMI (Global Environment
Monitoring Index), and NDVI (Normalized Difference Vegetation Index) indexes, plus the temporal
differences of those five indexes) [10]. Then several burned pixels were selected by a manual
annotator from the Landsat images that were used by BAMS software as training samples for building
a classification model. BAMS then applied this classification model to generate the Landsat-based
burned areas for the scene, which were used as fire polygons to serve as the reference maps.
The performance of BAMS can get impacted by presence of clouds. Hence a cloud detection method
described in Section 3.2.2 was used to remove pixels that are affected by clouds, cloud shadows
and haze. After excluding invalid pixels, a reference map was considered only if it had sufficiently
many valid pixels in order to ensure robust estimation of performance measures. In our experiment,
we excluded reference maps that had less than 1000 valid pixels at MODIS scale (each Landsat image
has approximately 130,000 MODIS pixels).

As MODIS and Landsat data are at different scales, a mapping between MODIS and Landsat pixels
was derived, and then used to assign a fraction burned to each MODIS pixel based on the number of
Landsat pixels in it that are reported as burned in the reference maps. The error matrix is completed
using these fractions. In particular, for every MODIS pixel flagged as burned by our algorithm, we add
the fraction of Landsat pixels belonging to this pixel that are assigned to burn class by BAMS to the true
positives and the remaining fraction to the false positives. Similarly, for every MODIS pixel flagged
as unburned by our algorithm, we add the fraction of Landsat pixels belonging to this pixel that are
assigned to burn class by BAMS to the false negatives and the remaining fraction to the true negatives.

3.2.4. Accuracy Measures

Several measures have been used in previous studies to quantify accuracy of burned area products.
The choice of the evaluation measure is guided by the objectives of the end user. In our study,
we followed the commonly used approach that uses reference maps to generate pixel-level error
matrices for the burned area product. A number of accuracy measures can be derived from error
matrix. For skewed class problems such as burned area mapping, it is common to assess the quality
of a classification product in terms of the user’s accuracy and producer’s accuracy. User’s accuracy
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indicates the probability that a pixel reported as burned is actually burned. Producer’s accuracy
indicates the probability that an actually burned pixel is reported by the detection algorithm. Note that
there is a trade-off between user’s and producer’s accuracy, as one measure can be made extremely high
at the cost of the other. Therefore, often combined measures are used to combine information in user’s
and producer’s accuracy into a single measure for comparing multiple burned area products. One of
the commonly used measure is the Dice coefficient (DC). DC is defined as 2∗TP

(2∗TP+FP+FN)
, where TP is

number of true positives, FP is number of false positives and FN is number of false negatives in the
error matrix. In this study, we report the user’s accuracy, producer’s accuracy and Dice coefficient for
RAPT and MCD64 computed over the study region using the Landsat-generated reference maps.

4. Results: Validation Using Landsat-Based Reference Maps and Comparison with
MCD64 Product

In this section we validate the burned area maps generated using the RAPT algorithm.
For reference, we also compare our detection with the MODIS product MCD64. The MCD64 product is
the primary source of the Global Fire Emissions Database (GFED) Version 4 [24]. In [25], the authors did
a comparative evaluation of 6 burned area products including MCD64 [8], MCD45 [26], Geoland2 [27]
and 3 products from the European Space Agency’s (ESA) Climate Change Initiative (CCI) program [28].
They concluded that MCD64 was the most accurate burned area product. Hence, in this study,
we provide a comparison against MCD64 product to establish the utility of our product.

For the ease of comparison we scaled RAPT and MCD64 to annual products, i.e., every year each
500 m pixel in the product was assigned to either burned or unburned class depending on whether
it is flagged as burned in at least one of the dates in the corresponding year. On comparing the two
products for a given year, each pixel belongs to one of the following categories-reported as burned by
both products, reported as burned only by RAPT and unburned by MCD64, reported as burned only by
MCD64 and unburned by RAPT, or reported as unburned by both products. Table 2 reports the number
of burned pixels belonging to each of the three categories- RAPT (only), Common (i.e., both RAPT and
MCD64), and MCD64 (only) aggregated over the 14 years. We observe that RAPT identifies about 60%
of burned areas reported by MCD64. However, more importantly, RAPT identifies 2,071,378 MODIS
pixels (approximately 520 K sq. km.), which is about three times as many burned areas compared
to MCD64. We present the annual burned area reported by RAPT, MCD64 and Active fire for each
MODIS tile in the supplementary section.

Results

Table 1 shows the user’s accuracy, producer’s accuracy and Dice coefficient for RAPT and MCD64
burned area products computed using the Landsat reference maps for 19 Landsat scenes. The average
user’s accuracy for both RAPT and MCD64 product is greater than 50% (average for RAPT is 53%
and for MCD64 is 61%). However, the average producer’s accuracy for RAPT is about 55%, while for
MCD64 it is 27%. It is clear that RAPT has significantly higher producer’s accuracy compared with
MCD64 for these scenes. A somewhat higher user’s accuracy for MCD64 suggests that MCD64
identifies strong burns while RAPT identifies weaker burn events as well. Note that both RAPT and
MCD64 products have a producer’s accuracy of 0 for two scenes (ID 11 and ID 18), i.e., they did not
identify any burned pixels in these scenes. This is because the aforementioned scenes have only a small
number of burned pixels according to the Landsat reference maps. Also note that for these scenes,
user’s accuracy is undefined because when a method does not detect any burned pixel, it has both 0
true positives as well as 0 false positives. In the following section, we examine the Landsat images and
reference maps in context of the errors of omission and commission to understand the nature of errors
made by RAPT algorithm.
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Table 1. Landsat validation results for 19 Landsat-based reference maps. The number of burned and unburned pixels are at 500 m MODIS scale.

ID Tile Landsat Pre-Date Post-Date Cloud User’s Prod’s Dice Overall User’s Prod’s Dice Overall Number of Number of
Scene Cover Acc. Acc. Co-ef. Acc. Acc. Acc. Co-ef. Acc. Burned Unburned

RAPT RAPT RAPT RAPT MCD MCD MCD MCD Pixels Pixels

1 h11v09 230066 18 June 2010 8 October 2010 2 0.63 0.63 0.63 0.99 0.86 0.37 0.52 0.99 359 34,408
2 h12v09 230066 18 June 2010 8 October 2010 2 0.63 0.44 0.52 0.99 0.77 0.02 0.03 0.99 855 103,964
3 h11v10 233068 7 June 2010 27 September 2010 28 0.61 0.29 0.4 0.93 0.91 0.16 0.27 0.93 5941 69,437
4 h12v09 227065 12 June 2004 2 October 2004 28 0.79 0.6 0.68 0.98 0.87 0 0.01 0.96 3646 92,248
5 h12v10 229070 26 June 2004 16 October 2004 12 0.78 0.26 0.39 0.95 0.83 0.35 0.49 0.95 3534 52,315
6 h11v10 232070 16 June 2010 6 October 2010 9 0.29 0.74 0.42 0.85 0.34 0.33 0.33 0.90 3606 46,017
7 h29v09 118062 17 June 2004 21 September 2004 26 0.35 0.57 0.44 0.97 0.41 0.63 0.5 0.97 1110 53,239
8 h29v09 118062 14 May 2009 18 August 2009 41 0.32 0.3 0.31 0.99 0.24 0.26 0.25 0.99 329 35,745
9 h11v10 231070 13 July 2005 1 October 2005 74 0.88 0.61 0.72 0.99 0.87 0.42 0.56 0.99 652 29,259

10 h11v10 231070 25 June 2010 2 December 2010 83 0.18 0.99 0.31 0.94 0.18 0.46 0.26 0.96 198 14,056
11 h12v09 228066 6 June 2005 12 October 2005 85 NaN 0 NaN 1 NaN 0 NaN 1 4 17,616
12 h11v10 002067 8 September 2004 13 October 2005 29 0.7 0.31 0.43 0.92 0.79 0.04 0.07 0.90 4391 38,524
13 h11v09 002067 8 September 2004 13 October 2005 4 0.58 0.41 0.48 0.89 0.78 0.12 0.2 0.88 5445 37,084
14 h11v10 232068 4 July 2005 9 November 2005 31 0.28 0.84 0.42 0.97 0.21 0.09 0.13 0.99 854 76,257
15 h11v09 002066 9 July 2005 13 October 2005 4 0.43 0.57 0.49 0.97 0.59 0.15 0.24 0.98 3368 129,531
16 h12v09 225066 28 April 2010 21 October 2010 20 0.56 0.68 0.62 0.98 0.54 0.49 0.52 0.98 2441 101,855
17 h30v09 110062 11 July 2001 18 October 2002 40 0.42 0.67 0.51 0.91 0.5 0.61 0.55 0.93 1245 16,808
18 h10v09 006066 31 May 2004 23 September 2005 74 NaN 0 NaN 1 NaN 0 NaN 1 93 31,097
19 h11v08 232058 4 April 2006 20 March 2007 13 0.49 0.41 0.45 0.95 0.62 0.06 0.1 0.95 2046 37,003
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Table 2. Table reports the number of burned pixels (at 500 m. spatial resolution) corresponding to
RAPT (only), Common and MCD64 (only) for each tile in the region of study.

MODIS Tile RAPT Only Common MCD64 Only

h10v08 13,040 326 3344
h11v08 51,858 7744 6011
h10v09 23,686 695 1299
h11v09 194,456 40,055 16,976
h12v09 266,621 107,571 35,199
h13v09 85,442 11,139 5405
h11v10 342,575 109,382 50,166
h12v10 254,563 116,862 97,935
h13v10 6738 4607 2514
h27v08 12,170 1373 3256
h28v08 121,498 20,450 11,927
h29v08 38,930 1749 10,859
h28v09 76,559 13,479 22,401
h29v09 94,143 39,015 32,004
h30v09 11,532 1493 1155
h31v09 1469 158 6919
Total 1,595,280 476,098 307,370

5. Discussion of Results

5.1. Reasons for Higher Producer’s Accuracy of RAPT Compared to MCD64

The higher producer’s accuracy of RAPT relative to MCD64 can be due to the following differences
between the two products in their algorithm characteristics-

1. MCD64 requires manual selection of parameters-MCD64 uses a number of hand-crafted rules
and parameters during pre-processing to select good quality training samples (for example,
an active fire hotspot is included as burned training sample only if the loss in vegetation exceeds
a manually fixed threshold), and during classification to detect high quality (precise) burned area
(for example, a manually fixed threshold on posterior probability is used to identify confident
burned locations). Since the values of these thresholds are not selected in a data-adaptive fashion,
the choice of these parameters can be too conservative for the tropics.

2. RAPT balances omission and commission errors-The RAPT framework does a principled selection of
decision threshold on the class probability to maximize the product of producer’s and user’s accuracy
of the burned area product. This improves the detection performance compared to the previous
approaches that relied on a manually fixed threshold that (i) requires human effort and (ii) may not
jointly optimize user’s and producer’s accuracy, i.e., increase one at the expense of the other.

3. RAPT makes use of a seasonality-aware classifier-The classifier used in RAPT approach takes
into account the yearly context of the burn scar signature instead of just a per time step signature.
The longer temporal context helps improve the precision of the detected burned area while
maintaining a higher coverage. Moreover, use of a longer temporal context to identify fire scars
makes RAPT more robust to poor data quality, as scars often remain detectable for multiple
months. On the other hand, MCD64 misses burned locations due to lack of good quality
reflectance data around the time of burn event. This problem is particularly relevant for tropical
areas with high average percent cloud cover and where burning results in the release of large
quantities of particulate matter into the atmosphere. MCD64 product declares some pixels on
certain dates to be unburned because the data quality on those pixels in a 20 day neighborhood
was too poor to make predictions. The product includes 5 bits of quality flags at monthly scale for
each pixel in the MODIS scene. Specifically, when bit 1 takes a value of 1, it indicates that there
was sufficient valid data in the reflectance time series for the grid cell to be processed by MCD64.
We consider this bit in MCD64 for 3 time steps- the time step corresponding to the only RAPT
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burned event for the pixel and the next two time steps. In Table 3 we report the fraction of only
RAPT burned pixels that have 0, 1, 2 or 3 time steps with good quality flags according to the bit 1
in MCD64 product in each MODIS tile. We observe that about 19% of only RAPT burned pixels
have 0 good quality time step around the burn date, and about 20% of only RAPT burned pixels
have only 1 good quality time step. Similarly, in Table 4 we report the fraction of MCD64 burned
pixels that have 0, 1, 2 or 3 time steps with good quality flags according to the bit 1 in MCD64
product in each MODIS tile. We observe that about 88% of MCD64 burned pixels have 2 or more
good quality time step around the burn date. Thus, overall, 39% of all locations detected by only
the RAPT algorithm have poor quality data (0 or only 1 good quality time step). On the other
hand, only 12% all the locations detected by MCD64 have poor quality data, which suggests that
quality plays a role in the performance of MCD64.

Table 3. Table shows the fraction of Only RAPT burned pixels with 0, 1, 2 or 3 good quality time steps
out of the 3 time steps from date of burn event set.

Tile RAPT Only
Fraction of Locations Fraction of Locations Fraction of Locations Fraction of Locations

with 0 Good with 1 Good with 2 Good with 3 Good
Quality Timesteps Quality Timesteps Quality Timesteps Quality Timesteps

h10v08 13,040 0.46 0.26 0.10 0.18
h11v08 51,858 0.06 0.25 0.13 0.57
h10v09 23,686 0.21 0.23 0.17 0.39
h11v09 194,456 0.07 0.12 0.23 0.58
h12v09 266,621 0.26 0.34 0.22 0.19
h13v09 85,442 0.51 0.20 0.13 0.15
h11v10 342,575 0.19 0.25 0.15 0.41
h12v10 254,563 0.06 0.08 0.15 0.71
h13v10 6738 0.07 0.20 0.17 0.57
h27v08 12,170 0.06 0.08 0.13 0.73
h28v08 121,498 0.23 0.17 0.20 0.41
h29v08 38,930 0.11 0.12 0.18 0.59
h28v09 76,559 0.25 0.21 0.20 0.33
h29v09 94,143 0.31 0.25 0.17 0.27
h30v09 11,532 0.00 0.03 0.07 0.90
h31v09 1469 0.28 0.16 0.20 0.36

Total 1,595,280 0.1876 0.2045 0.1789 0.4290

Table 4. Table shows the fraction of MCD64 burned pixels with 0, 1, 2 or 3 good quality time steps out
of the 3 time steps from date of burn event set.

Tile MCD64
Fraction of Locations Fraction of Locations Fraction of Locations Fraction of Locations

with 0 Good with 1 Good with 2 Good with 3 Good
Quality Timesteps Quality Timesteps Quality Timesteps Quality Timesteps

h10v08 3670 0.00 0.20 0.25 0.55
h11v08 13,755 0.00 0.14 0.16 0.71
h10v09 1994 0.00 0.07 0.33 0.60
h11v09 57,031 0.00 0.07 0.24 0.69
h12v09 142,770 0.00 0.16 0.41 0.43
h13v09 16,544 0.00 0.18 0.29 0.54
h11v10 159,548 0.00 0.10 0.21 0.68
h12v10 214,797 0.00 0.07 0.17 0.76
h13v10 7121 0.00 0.23 0.12 0.66
h27v08 4629 0.00 0.10 0.17 0.74
h28v08 32,377 0.00 0.13 0.21 0.66
h29v08 12,608 0.00 0.05 0.11 0.84
h28v09 35,880 0.00 0.27 0.30 0.42
h29v09 71,019 0.00 0.20 0.23 0.56
h30v09 2648 0.00 0.05 0.12 0.82
h31v09 7077 0.00 0.05 0.14 0.81

Total 783,468 0 0.12 0.24 0.64
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To illustrate this further, Figure 4 shows a region in Indonesia where MCD64 missed several burned
pixels due to poor data quality around burn date. Figure 4d shows a burned area map with only RAPT,
common and only MCD64 detection. We notice that this small region has mostly only RAPT burned pixels
(i.e., MCD64 has very little detection here). The burn scar corresponding to the region detected by RAPT
can be seen from Landsat images in Figure 4b,c, thus suggesting presence of a burn event. Figure 4e shows
a color coded map for quality bit according to MCD64 over these RAPT events, and it is clear from this
figure that MCD64 considered the data quality to be bad around the date of these RAPT events.

(a) (b)

(c) (d)

(e)

Figure 4. Figure shows a region in Indonesia where RAPT identified several burned pixels missing in
MCD64. Figure also shows the data quality as provided by MCD64 product around the burn date for
the identified burned pixels. (a) Burned area (in yellow) in a region of SE Asia. The red rectangle is the
focus area for this figure; (b) Before burn Landsat 5 image on 10 March 2006; (c) After burn Landsat
5 image on 5 November 2006; (d) Burned area comparison map (blue is only RAPT, red is common,
yellow is only MCD64); (e) Color coded quality map according to MCD64 bit 1 flag (red is 0/3 time steps
with good quality, purple is 1/3 time steps with good quality, yellow is 2/3 time steps with good quality,
green is 3/3 time steps with good quality).
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5.2. Sources of Errors in the RAPT Product

5.2.1. Errors of Omission

1. For regions where RAPT is missing large patches of burned events that are present in the reference
maps, the Landsat image composites often show a burn scar that is quite diffused and lighter in
intensity (see Figures 5 and 6). These lighter intensity burn scars are most likely due to burns for
which the vegetation quickly recovered in a few months. The RAPT algorithm tends to miss fires
that have a fast vegetation recovery, and therefore quick recovering fire events correspond to the
major source of omission errors in the RAPT product.

2. The RAPT algorithm trains a separate classification model for each MODIS tile to account
for the geographical variations in the spectral characteristics of burned and unburned pixels.
However, for some MODIS tiles there may be considerable variability within a tile itself. In such
cases, RAPT classifier in Stage 1 often learns to identify the dominant type of burn spectral
signature, and as a consequence has a high omission error rate on the burned pixels of other
non-dominant burn spectral signatures.

Before 742

5000 5200 5400 5600 5800 6000 6200 6400 6600

2800

3000

3200

3400

3600

3800

(a) Before burn false color composite image on 16 June 2010

After 742

5000 5200 5400 5600 5800 6000 6200 6400 6600

2800

3000

3200

3400

3600

3800

(b) After burn false color composite image on 6 October 2010

Figure 5. Cont.
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RAPT comparison
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(c) Comparison map: RAPT

BA comparison
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(d) Comparison map: MCD64

Figure 5. Figure shows an example of errors of commission based on Landsat-based validation maps.
The top row shows before and after false color composites (using bands 7,4,2) of a region with detected
burned area (WRS path-232, WRS row-070, MODIS tile name-h11v10, year 2010). The bottom row
shows the burned area detected by RAPT and MCD64 relative to Landsat-based ground truth generated
using the BAMS scheme. Each comparative image is color coded as yellow for true positives, orange for
false positives, green for false negatives and light blue for true negatives. Masked regions (due to
detectable cloud cover or non-forest landcovers) are colored dark blue in the comparative images.
Note that the region shown has 1000 × 1600 Landsat pixels.

3. Another source of omission errors in RAPT is the dependence on Active Fire signal to identify
confident burned pixels. We observe that some burn events, which are identified by Stage 1
classifier, get incorrectly eliminated by RAPT algorithm in Stage 2 because of complete absence of
Active fire in the pixels of the burn event. Since none of the pixels belonging to these events have
an Active fire presence, there are no confident burned pixels identified in Stage 2. As a result,
the event cannot be recovered back in Stage 3 (spatial growing) and gets completely missed in
RAPT output. This type of error typically impacts burn events of small spatial extent, as the
probability of complete absence of Active fire signal is very small for large burn events.
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(a) Before burn false color composite image on 7 June 2010

(b) After burn false color composite image on 27 September 2010

(c) Comparison map: RAPT

Figure 6. Cont.
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(d) Comparison map: MCD64

Figure 6. Figure shows an example of errors of omission based on Landsat-based validation maps.
The top row shows before and after false color composites (using bands 7,4,2) of a region with detected
burned area (WRS path-233, WRS row-068, MODIS tile name-h11v10, year 2010). The bottom row
shows the burned area detected by RAPT and MCD64 relative to Landsat-based ground truth generated
using the BAMS scheme. Each comparative image is color coded as yellow for true positives, orange for
false positives, green for false negatives and light blue for true negatives. Masked regions (due to
detectable cloud cover or non-forest landcovers) are colored dark blue in the comparative images.
Note that the region shown has 900 × 1200 Landsat pixels.

5.2.2. Errors of Commission:

1. RAPT algorithm trains a classification model to distinguish between burned and unburned pixels
in the forest land class. Therefore, when it is applied to MODIS pixels that are only partially forest
and partially some other land class such as cropland, then it may spuriously detect the pixel as
burned. We notice that some of the commission errors were present in such pixels of mixed land
cover types.

2. The RAPT product is based on the ability of a statistical model to distinguish between burned
and unburned pixels based on their spectral data. Soil, smoke and other atmospheric conditions
add considerable variability to the spectral characteristics of burned pixels, and sometime result
in spurious burn events if there is presence of Active Fire signal in the spatial vicinity.

5.3. Complementarity of RAPT and MCD64 Products

Although Dice coefficient (a widely used metric that takes into account both user’s and producer’s
accuracy) is much higher for RAPT relative to MCD64 for most reference maps in Table 1, these two
products should be considered complementary and used together to understand the complete picture.
In particular, RAPT and MCD64 operate on different input data and use different algorithms as a result
of which some kind of fires might be easier for one algorithm to detect in comparison to the other.
For example, short lasting fires that recover in a few weeks might be hard for RAPT to detect (as it
uses 8-day MODIS composites), but could still be detected by MCD64 since it relies on daily data.
However, long lasting fires (occluded by smoke in the short run) can be difficult to detect for MCD64 as
it needs to observe on high quality data in the vicinity of the fire date. Another major issue with MCD64
is that it uses a single set of parameters for the entire globe. Although these parameter choices work
well for in areas like North America, they are not necessarily optimal for the tropics where the spectral
characteristics of fires are significantly different and noise issues are more prevalent. Hence, a data
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adaptive scheme like RAPT could be used to compensate for the large number of such omissions of
MCD64 in these regions.

6. Concluding Remarks

We presented results on a new MODIS-based burned area product that has comparable user’s
accuracy but considerably better producer’s accuracy compared to the state-of-art MCD64 in the
tropical forests in South America and South-east Asia. Though there is considerable uncertainty in
translating burned area into carbon emissions, the significantly larger burned area identified by RAPT
will help addressing the current uncertainties in tropical carbon budgets. Moreover, this product can
be used to identify and mitigate practices such as slash-and-burn that are often used to illegally clear
forested locations for plantations and other commercial activity.

Even though this paper presented the RAPT results only for the tropical forests of Amazon and
South-east Asia, the algorithm offers opportunities for global-scale fire mapping. Since, the presented
algorithm does not rely on hand-crafted rules or parameters, and automatically adjusts its model
parameters to the specifics of different spatial regions and land cover classes, it can be adapted to
identify burned areas in other land classes and geographical regions.

In the RAPT framework, the predictive model is trained on homogeneous land cover and
geographical regions. The presented implementation of RAPT uses MODIS tile boundaries to address
geographical heterogeneity and relies on the MODIS land classification for a good quality forest mask.
However, there may be considerable variability within a MODIS tile, and the MODIS land cover labels
are coarse (many sub-classes) and may also be incorrect. The ability of the RAPT framework to identify
fires with high accuracy is impacted by these issues. Hence, further extensions of this framework
are needed that can perform automated data-driven grouping of pixels, instead of relying on land
classification products and MODIS tile boundaries.

Supplementary Materials: In the supplementary document, we present the annual burned area reported by
RAPT, MCD64 and Active fire for each MODIS tile in our study area. In addition, composite images for Landsat
scenes used for generating the reference maps are also provided.
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Appendix A. Details of the Classification Procedure

Appendix A.1. Data Pre-Processing

1. Level-2 multispectral data from MODIS (MOD09A1) along with Active Fire hotspot
data (MOD14A2) and landcover data (MCD12Q1) is obtained for each MODIS tile from
http://earthexplorer.usgs.gov/.

2. The multispectral reflectance data and Active Fire are available at a temporal resolution of per
8 day (46 time steps in a year). Landcover data is available as a yearly product from 2001 to 2012.
Landcover map is used to determine the forested pixels each year. Since, burning might alter
the signature of a pixel, we use the landcover map from the previous year to determine forested
pixels. Landcover classes from 1 to 5 correspond to different kinds of forests, but we train a single

http://earthexplorer.usgs.gov/
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model for all of them. Also, since the landcover maps are only available until 2012, for 2013 and
2014, landcover map from 2012 is used.

3. The multispectral reflectance data and landcover data are available at a spatial resolution of 500 m,
while Active Fire data is available at a spatial resolution of 1 km. In our algorithm, since Active
Fire is used as labels to train the classifier over features at 500 m resolution, we downscale Active
Fire data from 1 km resolution to 500 m resolution i.e., at each of the 46 time steps in the year,
a 500 m pixel gets an Active Fire if the corresponding 1 km pixel had an Active Fire at that
time step.

4. To handle the errors of MODIS landcover product, we only consider pixels that the product has
consistently masked forests for multiple years. We define a confident forest mask consisting of
pixels that have been marked as forests in all of the first 4 years (2001-04). All maps are produced
on the set of pixels that belong to this set of confident forests and were also marked forests in the
year before the year of consideration.

5. Each of the 7 bands in the reflectance data are z-normalized i.e the mean and the standard
deviation for each of the 7 bands is computed across all pixels (and time steps) in the tile and the
reflectance values are transformed as r = (r−m)/s, where r is the reflectance value in a certain
band and m and s are the mean and the standard deviation in the reflectance values in that band
for all pixels in the scene across time.

Appendix A.2. Training the Classification Model

1. One model is trained for each MODIS tile. The classifier operates on the set of features
corresponding to all 46 time steps of a year for a given pixel and outputs the probability that the
pixel experienced a burn activity in that year.

2. The training set consists of equal number of samples of both kinds-Burned (positive class) and
unburned (negative class). Every sample corresponds to data for a 500 m pixel for some year
in the 14 year time window (2001-14). For each sample I in the training set, we provide the
collection of reflectance data for all 46 time steps X I

1, · · · , X I
46 and a label YI which is 1 if an Active

Fire hotspot was observed at the pixel during that year and 0 otherwise.
3. To limit the effect of confusion from boundary pixels, while constructing the training set, we mask

out pixels that are either at the boundary of a spatially coherent Active fire occurrence or that
belong to an Active Fire patch that is too small (<10,500 m pixels in size).

4. The classification model has 2 parameters-β and w. Given the training set, we learn the parameters
using the following procedure

(a) Initialize β to a 8 (7 dimensional feature space + bias term) dimensional vector drawn from
a standard Gaussian distribution (mean = 0, std. deviation = 1). Similarly, initialize w
to a 47 (46 time steps + bias term) dimensional vector drawn from a standard Gaussian
distribution (mean = 0, std. deviation = 1).

(b) Until the change in the magnitude of β and w from the previous iteration is at less than
1%, repeat the following

i. β = β + learning_rate× gradient1
ii. w = w + learning_rate× gradient2

gradient1 is the gradient of the objective function O with respect to β ≤ β0, β1, · · · , β7 >

and is computed as,

∂O
∂βd

=
N

∑
I=1

(FI −YI)

(
46

∑
t=1

(wt f I
t (1− f I

t )X I
t (d))

)
− λTβd
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gradient2 is the gradient of the objective function O with respect to w ≤ w0, w1, · · · , w46 >

and is computed as,

∂O
∂wt

=
N

∑
I=1

(FI −YI)( f I
t )− λwt

In the above update equations, FI is the probability of the Ith location in the training set being
burned in the given year and f I

t is the per time step score for the Ith location at time step t.
Given the values of β and w from the previous iteration, these can be computed as,

f I
t =

1

1 + e(−∑7
d=1 βdX I

t (d)+β0)

FI=
1

1 + e(−∑46
t=1 wt f I

t +w0)

learning_rate is a parameter and is fixed using cross-validation. For our analysis, we found 0.01
to work well. Similarly the regularization parameter λ is fixed using cross validation. For our
analysis, we found 0.01 to work well.

Appendix A.3. Prediction

1. Once the model parameters have been learned, the probability that a pixel burned in a given year
is given by FI .

2. For each forested pixel, we now have the probability that it burned during each of the 14 years
from 2001-14.

Appendix A.4. Fixing the Threshold

1. The stage 1 classification maps for each year are a binary output obtained by thresholding the
probability values at each pixel for that year. This threshold is chosen so as to optimize the
product of user’s and producer’s accuracy on the training set.

2. For each threshold γ from a set of threshold choices 0.01, 0.02, . . . , 0.99, the product (scaled up to
a constant) of user’s and producer’s accuracy is estimated to be,

[Pr(Y I = 1|FI > γ)− noise_rate]2 Pr(FI > γ)

where, the three quantities Pr(Y I = 1|FI > γ), noise_rate and Pr(FI > γ) are estimated as,

Pr(Y I = 1|FI > γ) =
|{I|I ∈ {1, · · · , N} ∧Y I = 1∧ FI > γ}|
|{I|I ∈ {1, · · · , N} ∧ FI > γ}|

Pr(FI > γ) =
|{I|I ∈ {1, · · · , N} ∧ FI > γ}|

|{I|I ∈ {1, · · · , N}|

noise_rate =
∑

YI∈S
Y I

|S|

where S is the set of all instances that lie in the bottom 5% in the training set in terms of their
predictions FI .

3. The threshold that maximizes the product is used to binarize the probability maps to produce the
stage 1 classification output.
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Appendix A.5. Stage 2

The stage 2 maps is obtained by taking a logical AND of the stage 1 output and the Active Fire
map for that year i.e., for each pixel, it is marked burned in stage 2 map only if it was marked burned
in stage 1 and it had an Active Fire hotspot sometime in that year. If any of these two conditions is not
met, the pixel is marked unburned.

Appendix A.6. Stage 3

The stage 2 output identifies the ‘seeds’ of the burn activity across the tile. Stage 3 uses these
seeds to gather other burned pixels in their spatial proximity that have strong enough burned scar
signature in the spectral space. For a given year, if stage 1 marked a pixel as burned as it was less than
5 pixel distance away from a seed pixel, it is marked burned in stage 3.

References

1. Tanimoto, H.; Kajii, Y.; Hirokawa, J.; Akimoto, H.; Minko, N.P. The atmospheric impact of boreal forest fires
in far eastern Siberia on the seasonal variation of carbon monoxide: Observations at Rishiri, a northern
remote island in Japan. Geophys. Res. Lett. 2000, 27, 4073–4076.

2. Fuller, D.O.; Fulk, M. Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM
imagery. Int. J. Remote Sens. 2001, 22, 691–697.

3. Chen, Y.; Randerson, J.T.; Morton, D.C.; DeFries, R.S.; Collatz, G.J.; Kasibhatla, P.S.; Giglio, L.; Jin, Y.;
Marlier, M.E. Forecasting fire season severity in South America using sea surface temperature anomalies.
Science 2011, 334, 787–791.

4. Randerson, J.T.; Chen, Y.; Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning
emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, doi:10.1029/2012JG002128.

5. Schultz, M.G. On the use of ATSR fire count data to estimate the seasonal and interannual variability of
vegetation fire emissions. Atmos. Chem. Phys. 2002, 2, 387–395.

6. Smith, A.M.S.; Lentile, L.B.; Hudak, A.T.; Morgan, P. Evaluation of linear spectral unmixing and DNBR
for predicting post-fire recovery in a North American ponderosa pine forest. Int. J. Remote Sens. 2007,
28, 5159–5166.

7. Sukhinin, A.I.; French, N.H.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.J.; Loboda, T.;
Conrad, S.G.; Romasko, V.I.; et al. AVHRR-based mapping of fires in Russia: New products for fire
management and carbon cycle studies. Remote Sens. Environ. 2004, 93, 546–564.

8. Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm
for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420.

9. Fraser, R.H.; Li, Z.; Cihlar, J. Hotspot and NDVI differencing synergy (HANDS): A new technique for burned
area mapping over boreal forest. Remote Sens. Environ. 2000, 74, 362–376.

10. Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.P.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E.
BAMS: A tool for supervised burned area mapping using Landsat data. Remote Sens. 2014, 6, 12360–12380.

11. Loboda, T.V.; Csiszar, I.A. Reconstruction of fire spread within wildland fire events in Northern Eurasia from
the MODIS active fire product. Glob. Planet. Chang. 2007, 56, 258–273.

12. Pu, R.; Gong, P. Determination of burnt scars using logistic regression and neural network techniques from
a single post-fire Landsat 7 ETM+ image. Photogramm. Eng. Remote Sens. 2004, 70, 841–850.

13. Pu, R.; Gong, P.; Li, Z.; Scarborough, J. A dynamic algorithm for wildfire mapping with NOAA/AVHRR
data. Int. J. Wildl. Fire 2004, 13, 275–285.

14. Roy, D.P. Multi-temporal active-fire based burn scar detection algorithm. Int. J. Remote Sens. 1999,
20, 1031–1038.

15. Mithal, V.; Nayak, G.; Khandelwal, A.; Kumar, V.; Oza, N.C.; Nemani, R. Rapt: Rare class prediction in
absence of true labels. IEEE Trans. Knowl. Data Eng. 2017, 29, 2484–2497.

16. Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide. MODIS Land Surface
Reflectance Science Computing Facility, version 1; 2011. Available online: http://modis-sr.ltdri.org/guide/
MOD09_UserGuide_v1_3.pdf (accessed on 4 January 2018)

http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1_3.pdf
http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1_3.pdf


Remote Sens. 2018, 10, 69 22 of 22

17. Giglio, L.; Van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area
using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974.

18. Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product
using stratified random sampling. Remote Sens. Environ. 2014, 144, 187–196.

19. MOD09A1, MOD14A2, MOD12Q1, MCD64A1 Data Products Were Retrieved from the Online Data Pool,
Courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth
Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available online:
https://lpdaac.usgs.gov/data_access/data_pool (accessed on 4 January 2018).

20. Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.;
Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results.
Remote Sens. Environ. 2002, 83, 287–302.

21. Nayak, G.; Mithal, V.; Jia, X.; Kumar, V. Classifying multivariate time series by learning sequence-level
discriminative patterns. In Proceedings of the 2018 Society for Industrial and Applied Mathematics (SIAM)
International Conference on Data Mining, San Diego, CA, USA, 3–5 May 2018.

22. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery.
Remote Sens. Environ. 2012, 118, 83–94.

23. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015,
159, 269–277.

24. Giglio, L.; Randerson, J.T.; Werf, G.R. Analysis of daily, monthly, and annual burned area using the
fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328.

25. Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.;
Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using
stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121.

26. Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area
mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162.

27. Tansey, K.; Bradley, A.; Smets, B.; van Best, C.; Lacaze, R. The Geoland2 BioPar burned area product.
In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012;
Volume 14.

28. Chuvieco, E. ESA CCI ECV Fire Disturbance—Product Specification Document. ESA Fire-CCI project 2013.
Available online: https://www.esa-fire-cci.org/webfm_send/932 (accessed on 4 January 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://lpdaac.usgs.gov/data_access/data_pool
https://www.esa-fire-cci.org/webfm_send/932
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material: Study Area and Input Data
	Methods: RAPT Framework and Validation Procedure
	RAPT Framework
	Stage 1: Identifying Burn-Scars from Spectral Data
	Stage 2: Identifying Confident Burned Pixels
	Stage 3: Spatial Growing and Final Classification
	Generating Global Product: Additional Data Processing Considerations

	Validation Procedure
	Sampling Design
	Cloud Mask
	Reference Data
	Accuracy Measures


	Results: Validation Using Landsat-Based Reference Maps and Comparison with MCD64 Product
	Discussion of Results
	Reasons for Higher Producer's Accuracy of RAPT Compared to MCD64
	Sources of Errors in the RAPT Product
	Errors of Omission
	Errors of Commission:

	Complementarity of RAPT and MCD64 Products

	Concluding Remarks
	Details of the Classification Procedure
	Data Pre-Processing
	Training the Classification Model
	Prediction
	Fixing the Threshold
	Stage 2
	Stage 3

	References

