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Abstract: Remote sensing continues to be an invaluable tool in earthquake damage assessments
and emergency response. This study evaluates the effectiveness of multilayer feedforward neural
networks, radial basis neural networks, and Random Forests in detecting earthquake damage
caused by the 2010 Port-au-Prince, Haiti 7.0 moment magnitude (Mw) event. Additionally, textural
and structural features including entropy, dissimilarity, Laplacian of Gaussian, and rectangular fit
are investigated as key variables for high spatial resolution imagery classification. Our findings
show that each of the algorithms achieved nearly a 90% kernel density match using the United
Nations Operational Satellite Applications Programme (UNITAR/UNOSAT) dataset as validation.
The multilayer feedforward network was able to achieve an error rate below 40% in detecting
damaged buildings. Spatial features of texture and structure were far more important in algorithmic
classification than spectral information, highlighting the potential for future implementation of
machine learning algorithms which use panchromatic or pansharpened imagery alone.
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1. Introduction

Earthquakes accounted for over 60% of all natural disaster-related deaths from 2001 to 2011—a
danger that will likely increase due to rapid global urbanization [1]. Immediately after an earthquake
occurs, satellite imagery is a critical component of damage mapping. Hussain et al. noted that
“information derived from remote sensing data greatly helps the authorities in rescue and relief efforts,
damage assessment, and the planning of remedial measures to safeguard such events effectively” [2].
For immediate rescue operations, rapid damage maps derived from satellite imagery must be
developed quickly. A study of the 1995 Kobe earthquake in Japan showed a drastic reduction of
the total rescued and the proportion of survivors after the third day of recovery efforts [3,4]. However,
because rapid mapping is required to balance immediacy with in-depth analysis, early mapping efforts
often yield coarse damage assessments [5].

Remote sensing has been used widely to map the effects of major disasters such as earthquakes.
Numerous studies have utilized electro-optical (EO), synthetic aperture radar (SAR), light detection and
ranging (LiDAR), ancillary data, or a combination thereof for post-earthquake damage detection [1,5,6].
One technique for damage detection involves fusion of SAR and EO data in pixel-based damage
detection. Stramondo et al. used a maximum likelihood (ML) classifier on SAR features derived
from the European Remote Sensing mission in combination with EO data provided by the Indian
Remote Sensing satellite in order to identify damaged structures following the 1999 Izmit, Turkey
earthquake [7]. A similar approach combined SAR from COSMO/SkyMed mission and very high
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resolution (VHR) EO data from the Quickbird satellite to improve damage detection at block level after
combining the two datasets in a pixel-based classification following the 2009 L’Aquila earthquake [8].

As early as 1998, object-based image analysis (OBIA) has been used to detect earthquake damage
from remote sensing [9]. More recently, OBIA has been a continual focus in earthquake detection
damage with many studies focusing on the use of unmanned aerial systems (UAS), LiDAR, and the
popular image segmentation and classification software eCognition. Hussain et al. [2] fused GeoEye-1
VHR EO data and airborne LiDAR elevation models derived from the RIT-ImageCAT UAS for image
segmentation using the Definiens (now eCognition) software suite. The data were classified using
nearest neighbor and fuzzy membership sets to detect damaged buildings and rubble following the
2010 Haiti earthquake. Similarly, Pham et al. [6] used aerial VHR RGB composite and LiDAR data (also
from the RIT-ImageCAT UAS) along with eCognition for object segmentation and damage detection.

The application of machine learning algorithms (MLAs) to earthquake damage detection is a
relatively new area of study. MLAs actively adapt and learn the problem at hand, often mimicking
natural or biological systems, instead of relying on statistical assumptions about data distribution [10].
In addition to overall improved accuracy [11,12], MLAs have several advantages compared to
traditional classification and change detection methods. MLAs work with nonlinear datasets [11,13],
learn from limited training data [12,14], and successfully solve difficult-to-distinguish classification
problems [15].

Ito et al. [16] used learning vector quantization (LVQ), a type of artificial neural network (ANN)
to classify SAR features signifying damage after the 1995 Kobe earthquake. Li et al. [17] used a
two-class support vector machine (SVM) on pre- and post-earthquake Quickbird imagery along
with spatial relations derived from the local indicator of spatial association (LISA) index to detect
structures damaged by the Wenchuan earthquake of 2008. Haiyang et al. utilized a SVM approach
in combination with eCognition image segmentation on the RIT-ImageCAT RGB and LiDAR data,
as well as the textural features of contrast, dissimilarity, and variance derived from the gray level
co-occurrence matrix (GLCM) to detect urban damage in Port-Au-Prince [18]. Kaya et al. [19] used
OBIA in combination with support vector selection and adaptation (a type of SVM) on pansharpened
Quickbird imagery to conduct damage detection for specific buildings within Port-au-Prince after
the 2010 earthquake. While OBIA using SVMs have been researched extensively in the past, ANNs,
particularly radial basis function neural networks (RBFNNs), and Random Forests (RF) have shown
promise in pattern recognition and image classification [15,20] and have yet to be examined in the
application of earthquake damage detection. All three algorithms require parameter-tuning process
to achieve optimal performance and a cross-validation approach can be applied to automate the
parameter-tuning. SVM has an advantage in dealing with small sample size problems due to its sparse
characteristics. However, for applications where a large number of training samples are available,
SVM often yields a large number of support vectors, resulting in unnecessary complexity and a long
training time [21].

Evaluating structural dimensions such as the Laplacian of Gaussian (LoG) and object-based
metrics in addition to spectral and textural information could greatly increase damage detection rates.
LoG, a blob detection technique, has been used for medical applications in nuclei mapping [22] and
for the detection of buildings in bitemporal images [23]. As discussed earlier, OBIA has shown strong
results in urban scenes and earthquake damage detection. Huang and Zhang had success applying
the popular mean-shift segmentation algorithm for urban classification in hyperspectral scenes while
statistical region merging (SRM) is another segmentation approach which is robust to noise and
occlusions [24,25]. Additionally, various metrics such as rectangular fit, morphological shadow index,
and morphological building index can describe the structure of objects in the scene before or after
segmentation [26,27]. Applying structural descriptors such as a LoG filter and segmentation derived
metrics to high resolution satellite imagery as an additional input to an MLA could evince damage in
difficult to detect scenarios such as a pancake collapse [22,28]. The robustness and generalizability
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of RF and ANN along with the additional dimensions of texture and structure may provide higher
accuracies in the face of imperfect input data.

In past disasters, by the time an automated change detection scheme is ready for implementation,
a crowdsourced team of visual interpreters is already mapping damaged buildings [29]. Dong and
Shan mention that while manual digitization of damaged structures requires trained image analysts
and is unsuitable for large areas, “visual interpretation remains to be the most reliable and independent
evaluation for automated methods” [1]. Additionally, many previous studies suggest detection schema
which require ancillary data such as UAS products, LiDAR, or GIS databases. Many of these products
are unavailable in developing regions where the death toll is highest [30]. Using MLAs (RF and
ANN), a rapid damage map derived from readily available multispectral imagery could allow for a
minimal compromise between time and accuracy and allow first responders to more rapidly allocate
their resources in a crisis. RF and ANNs along with derived textural and structural features may
provide improved balance between rapid and accurate damage detection. The main purposes of this
study include:

• Assess the performance of neural networks (to include radial basis function neural networks),
and Random Forests on very high resolution satellite imagery in earthquake damage detection

• Investigate the usefulness of structural feature identifiers to include the Laplacian of Gaussian
and rectangular fit in identifying damaged regions

2. Materials and Methods

2.1. Study Area and Data

The earthquake on 12 January 2010 near Port-au-Prince, Haiti, was an exceptionally devastating
event. The initial shock of 7.0 Mw caused an astounding death toll: between 217,000 and 230,000
were reported dead by the Haitian government [2] and the official estimate has grown to 316,000 [31].
Additionally, the earthquake and its subsequent aftershocks caused extensive damage in and around
Port-au-Prince including numerous landmark buildings such as the National Palace [2]. Because of
the high density of collapsed and damaged structures available for training and validation of MLAs,
the 2010 Haiti earthquake is an ideal case study to evaluate automated damage detection methods.

For this research, we obtained high resolution multispectral and panchromatic remote sensing data
from the DigitalGlobe Foundation. A pre-disaster panchromatic image was acquired in December of
2009 by the WorldView-1 satellite (accessed via DigitalGlobe’s EnhancedView system) and post-disaster
multispectral and panchromatic images were acquired on 15 January 2010 by the Quickbird 2 satellite.
All datasets (see Table 1) were resampled to 0.6 meters using the nearest neighbor technique. Images
were atmospherically corrected to top of atmosphere (TOA) reflectance [32] and clipped to the study
area of central Port-Au-Prince. Pre- and post-earthquake imagery were coregistered using 15 control
points and a third order polynomial transformation with a root mean square error (RMSE) of 0.55 m.

Table 1. Data used for the analysis. Note the similar look angles between the two satellite images used
and the relatively short gap between the pre- and post-earthquake images.

Sensor Native Resolution Acquisition Date Look Angle

WorldView-1 0.5 m panchromatic 7 December 2009 27.62

QuickBird-2 2.4 m multispectral
0.6 m panchromatic 15 January 2010 20.7

Remote sensing damage assessment:
UNITAR/UNOSAT, EC JRC, World Bank Vector (point) 15 January 2010 N/A

The study area (Figure 1) was divided into training and validation regions. Training samples for
the algorithms were selected by manually digitizing polygons over damaged structures, ensuring that



Remote Sens. 2016, 8, 868 4 of 17

training data represented the input space of the entire study area. A total of 1,214,623 undamaged
and 134,327 damaged pixels were used for training. For validation purposes, over 900 buildings
were digitized and marked as damaged or undamaged according to the UNOSAT Haiti damage
assessment [33]. This dataset classifies damage as points classified according to the European
Macroseismic Scale developed in 1998 [34]. This classification schema defines five damage levels
ranging from minor/no damage to destruction [1,5,6,35]. In order to simplify the damage detection
problem, the UNOSAT points belonging to the most severe damage class (EMS grade V) were
extracted for the validation sets and used for the damaged building class. This action is required
primarily because visual distinction between classes is difficult even with sub-meter pixel resolution [1].
While these validation points have been previously used in several studies [6,36], it is important to note
that the UNOSAT/UNITAR dataset was derived through manual interpretation of satellite and aerial
imagery and very few points were ground verified. However, the assessment remains the standard for
the validation of damage that occurred in the 2010 Haiti earthquake.
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Figure 1. Study area in Port-au-Prince showing training, building test and kernel density test sites
(satellite image courtesy of the DigitalGlobe Foundation).

2.2. Texture and Structure

Because several studies have shown that classification and change detection performance can
be increased with the addition of spatial information [11,20], textural and structural information was
extracted from the pre- and post-earthquake panchromatic images. Figure 2 shows the impact of
earthquake damage on two selected textural and structural features. Entropy, energy, dissimilarity,
and homogeneity are all second order texture features derived from the GLCM that have been
correlated with damage or used as proxies for damage in previous studies [35,37–39]. In order to
reduce dimensionality and eliminate redundancy, the two consistently correlated GLCM features of
Entropy (a measure of gray level randomness) and Dissimilarity (a measure of gray level difference
(the square of contrast)) were chosen as texture inputs.

Entropy = −∑
i,j

GLCMi,j × log
(
GLCMi,j

)
(1)
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Dissimilarity = ∑
i,j

GLCMi,j × |i− j| (2)

In order to reduce noise, a Gaussian filter (σ = 1) was applied to the panchromatic images
before measuring image Entropy and Dissimilarity. A 7 × 7 sliding window was used to compute
the 0◦ GLCM and the corresponding texture values were calculated for both the before and after
panchromatic images.

To define structural features, a Laplacian of Gaussian (LoG) filter was applied as it is one of the
most commonly implemented methods of blob detection. A 2-dimensional LoG filter of size (x, y) can
be constructed using:

LoG(x,y,σ) =
x2 + y2 + 2σ2

πσ4 × e−
x2+ y2

2σ2 (3)

Because the Laplacian computes the second derivative, abruptly changing regions of an image will
be highlighted. When combined with a Gaussian smoothing filter, blobs can be detected at different
scales defined by σ = (r − 1)/3 where r is the radius of a blob of interest [22]. In order to detect
buildings of different sizes, a multiscale approach is required. A total of 50 separate convolutions of
the LoG filter were applied to the pre- and post-earthquake imagery with sigma adjusted at equal
intervals between the values of 15 and 35. Additionally, the LoG filter size was increased from 10 × 10
to a 25 × 25 window in order to accommodate the larger sigma values. The minimum response in
scale space was assigned to each pixel due to the fact that LoG filters produce negative responses for
bright areas (the majority of buildings produced high reflectance in the panchromatic images).
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Figure 2. This figure comparing building damage shows the effects of an entropy filter and a LoG
filter on pre- and post- earthquake imagery considering two different collapse scenarios: (a) a normal
structural collapse; (b) a pancake collapse. Pre-earthquake satellite images © copyright DigitalGlobe.
Post-earthquake satellite images courtesy of the DigitalGlobe Foundation.

Other structural identifiers can be derived through object-based image analysis (OBIA). While a
number of geometric indices are possible through OBIA, this study chose rectangular fit as an input



Remote Sens. 2016, 8, 868 6 of 17

feature due to its obvious possibility for correlation with building shape. The analysis of equal area
rectangles, drawn according to object moment, has been used as a more robust version of minimum
bounding rectangle comparison [26]. Rectangular fit is defined as

RectFit =
(AR − AD)

AO
(4)

where AO is the area of the original object, AR is the area of the equal rectangle (AO = AR) and AD is
the overlaid difference between the equal rectangle and the original object [26]. For this study, image
segmentation was performed on both the before and after panchromatic images using statistical region
merging (SRM) as posited by Nock and Nielsen because of its fast and simple implementation [40].
Setting the scale parameter Q = 512 enabled the many small buildings in the scene to be distinguished.
Each object’s rectangular fit was calculated and included as an input dimension.

2.3. Machine Learning Algorithms

Once all preprocessing steps were taken and textural and structural features were derived,
the training and validation datasets were transformed into 14-dimensional arrays consisting of
pre-panchromatic; pre-entropy; pre-dissimilarity pre-LoG; pre-rectangular fit; post-panchromatic;
post-entropy; post-dissimilarity; post-LoG; post-rectangular fit; blue; green; red, and near infrared
multispectral layers (see Table 2). Values in these layers were normalized to fall between the values
of −1 and 1 in order to standardize the input and validation layers. While cross-validation was
implemented for each MLA, exhaustive parameter analysis was not performed due to the large
number of training samples available. All MLA design, algorithm implementation, training and
validation were performed using MATLAB release 2015a on a 3.5 GHz quad core processor with
64 GB RAM.

Table 2. List of the input features and their corresponding data sources which were used as predictors
for earthquake damage.

Input Feature Source

Panchromatic (450–900 nm) WV1 and QB2
Entropy WV1 and QB2

Dissimilarity WV1 and QB2
LoG WV1 and QB2

Rectangular fit WV1 and QB2
Blue (450–520 nm) QB2

Green (520–600 nm) QB2
Red (630–690 nm) QB2

Near infrared (760–900 nm) QB2

2.3.1. Neural Networks

Artificial neural networks (ANN) are of continued interest due to their ability to approximate
any function given sufficient neurons in each layer, the flexibility of data distribution, and their
reduced computational complexity compared with statistical classification methods [11,13,20,41].
A feedforward ANN (also known as multilayer perceptron) assigns small random multiplicative weights
and additive biases to input neurons and iteratively adjusts them with each additional training data
input, minimizing the surface of the performance function representing the error between the training
data and the network’s output in order to make the best classification [11,13,41]. Neural network
design is difficult due to the number of free parameters and ambiguous requirements for network
depth and complexity which depend upon the problem at hand [41]. As a result, neurons were grown
and pruned in various combinations within 1 to 3 hidden layers until the network performance was
maximized. The resulting ANN consisted of two hidden layers of 20 neurons each with sigmoid
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transfer functions, and a binary softmax output layer (see Figure 3). Training was accomplished using
backpropagation and the scaled conjugate gradient algorithm to minimize cross-entropy and two-fold
cross validation via early stopping (when decrease of cross-entropy in a validation subset ceased)
was used to prevent overfitting [41,42]. Finally, variable importance was measured by retraining the
network an additional 14 times with one of each of the input dimensions set to zero for all data points
and recording the change in cross-entropy after a set number of iterations (400).
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Figure 3. A simplified design layout of the feedforward ANN used for training and testing. For input
layer detail, see Table 2. In reality each of the twenty neurons in Hidden Layer 1 is connected to each of
the twenty neurons in Hidden Layer 2.

An additional ANN which has been used for classification is the radial basis function neural
network (RBFN). The first layer of RBFNs consists of basis functions, centered throughout the input
space and the second layer consists of a transfer function which combines the results from the basis
functions and classifies them into the categories of interest [41]. Similar to the backpropagation
network design, the number of basis functions was determined through trial and error and grown
until performance was maximized. The radial basis layer consisted of 150 Gaussian functions centered
using an unsupervised k-Means approach, which intelligently assigns cluster centers in areas of the
input space where high activity exists [43,44]. The radial basis outputs fed into the second layer,
which consisted of a softmax transfer function, trained by minimizing cross-entropy using the scaled
conjugate gradient with early stopping as before.

2.3.2. Random Forests

Random Forests, which was originally proposed by Breiman [45], is an ensemble classifier
consisting of a large number of classification and regression trees (CART), where final classification is
performed by a winner-takes-all voting system. The algorithm trains each tree on an independently
drawn subset of the original data (bootstrap aggregating or bagging) and determines the number
of features to be used at each node by the evaluation of a random vector [45,46]. Because RF is an
ensemble classifier, the Law of Strong Numbers dictates that RF will converge without overfitting
the model, so that the computationally optimal number of trees can be found through testing the
algorithm. Additional benefits include robustness to outliers and noise and built-in estimates of error
and variable importance [45,47]. Using MATLAB’s TreeBagger function, training was accomplished
using 400 (additional tree growth resulted in no further decrease in out-of-bag error) classification
trees grown by selecting three variables (at random) for each node split. Additionally, the out-of-bag
error was collected and variable importance was measured for comparison with the ANN approach.
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2.4. Testing and Accuracy Assessement

After training, validation testing was performed on two different datasets. The first dataset
consisted of an area including the National Palace just to the south of the training area where building
footprints were previously digitized. For this testing area, output from the algorithms was converted
to polygons and a building by building accuracy assessment was performed on the first dataset,
resulting in a simple confusion matrix. This approach was taken in order to ensure that our accuracy
measurements were based on actual objects in the scene rather than a pixel-by-pixel assessment.
The second validation dataset included a larger area in order to test the algorithms’ performance when
based on kernel density map rank matching. This secondary assessment followed the procedures
used by Tiede et al. [36] and Pham et al. [6] in which the centroid points of the damage polygons are
computed and kernel density raster maps are generated for both the test damage points as well as
the UNOSAT/UNITAR control data points. The damage density for each dataset was projected onto
a 20 m raster grid and the rank value of each cell was computed according to the quartile of density
that the cell belonged to. The two maps were overlaid and accuracy was assessed by subtracting the
UNOSAT/UNITAR kernel density map from the test kernel density maps, with final output values
ranging from −3 (omission error) to +3 (commission error).

3. Results

Table 3 (supplemented by the confusion matrices in Appendix A) compares overall performance
of three MLAs using building-by-building and kernel density accuracy assessment. Our findings
showed that the multilayer feedforward ANN outperformed both the RBFNN and random forests with
an omission error rate of 37.7%. Figure 4 matches the spatially explicit locations of damage detected
by the ANN algorithm with the digitized buildings marked as damaged or undamaged (please refer
to Appendix B for the other algorithms’ damage maps). Both RBFNN and RF had higher overall
accuracies, yet drastically underestimated damage. RBFNN and RF created a high user’s accuracy
for the damaged building class, but a lower producer’s accuracy. The feedforward ANN also had the
shortest runtime, an advantage that was primarily gained through the extremely fast implementation
of the ANN for testing. The kappa value for each of the algorithms indicated that the distribution of
damaged and undamaged buildings could not be accounted for by random chance, however both of
the ANNs clearly outperformed Random Forests in this measure as well.

Table 3. Results from the test datasets.

Algorithm Train + Test
Runtime (s)

Overall
Accuracy (%)

Building Class
Omission Error (%)

Cohen’s
Kappa

Kernel Density
Match (%)

ANN 623 74.14 37.69 0.402 87.41
RBFNN 1532 77.26 55.97 0.3951 90.25

RF 8692 76.14 71.27 0.3057 88.77

For the kernel density accuracy assessment, a good result was measured as a value in the
comparison map that ranged between −1 and 1 in accordance with the Tiede et al. [36] approach.
RBFNN reached a 90% kernel density map match (shown in Figure 5), outperforming the standard
ANN and RF, which were not far behind. This indicates that the radial basis function ANN may be able
to generalize to a larger area with greater success than either a feedforward network or Random Forests.
Even so, each of the algorithms performed at higher accuracies when generalizing the distribution of
damage over a wide area instead of detecting individual, building level damage.
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Figure 5. Results of the RBFNN algorithm on the kernel density test dataset. Each 20 m cell is marked
from −3 to 3, where an adequate density match falls between −1 and 1 (satellite image courtesy of the
DigitalGlobe Foundation).

As well as examining an algorithm’s wide area generalizability, kernel density accuracy
assessment also allowed for investigation into areas of common error of both omission and commission.
One of the more interesting results was that these areas were common in all three algorithms.
A common error of commission occurred in the north-center of the test area and coincided with
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the development of an internally displaced persons (IDP) camp (see Figure 6). According to the
algorithms, this camp broke up the “structure” of the underlying field and increased the randomness
of the texture, which led it to misclassifying the area as a damaged building. Figure 7 shows a common
area of omission error contained within the map in the central region of the testing area. The underlying
cause of error in this region is the scene complexity and high density of small structures before the
earthquake occurred. This preexisting randomness and highly variable structure and texture were
difficult for the algorithm to interpret, leading to an error of omission. Even so, with kernel density
matching occurring in nearly 90% of cells for each algorithm, a wide area damage density classification
was successful for both of the algorithms tested.Remote Sens. 2016, 8, 868 10 of 17 
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Finally, variable importance shows similar trends for ANN and RF algorithms. There were a few
variables that showed rather different utilization between the algorithms. Figure 8 shows the change
in error between each variable and was developed by averaging the assigned variable importance
between the pre- and post-earthquake datasets. Overall, the multispectral variables had lower changes
in out-of-bag error and cross entropy in comparison to the textural and structural values, however
the panchromatic images and the near infrared band was useful to each of the algorithms. Of the
two texture measures, entropy was utilized more than dissimilarity in all three algorithms. Rectangular
fit was marked as important for both the ANN and RF however the Laplacian of Gaussian filter was
more impactful on the RBFNN assessment and also had a moderately high impact on RF performance.Remote Sens. 2016, 8, 868 11 of 17 
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Figure 8. Chart of variable importance for both ANNs and RF. Overall, structure and texture played a
larger role in classification than spectral information. Random Forests use the ∆OOB Error measure
while ANN and RBFNN use ∆Cross Entropy.

4. Discussion

It is difficult to determine outright which algorithm is better. While the multilayer ANN outperformed
RF in building by building assessments and required slightly less overall training time, it required
a large number of training samples in order to perform well. This is not necessarily the case for the
RF algorithm. Also, it is rather easy to overfit an ANN to the training data, which can be avoided
using RF due to its nature as an ensemble classifier [41,45]. Finally, ANNs can also become stuck at
local minima in the performance surface without reaching the global solution, yielding an insufficient
result [41]. However, in our study, the multilayer ANN had the lowest rates of error in detecting
damaged buildings, without sacrificing much performance in wide area generalization or overall
accuracy. SVMs, while not examined here, have shown promise in earthquake detection in previous
studies [17–19]. While our study focused on ANNs and RF, as little research has been done on their
applicability to earthquake detection problems, future studies may investigate the performance of
these algorithms (to include SVM) with respect to training sample size.

Beyond damage detection performance, practical considerations require an investigation into
time complexity, particularly when considering any kind of operationalization of an algorithm in
automatic damage detection. RF took much longer than either of the ANNs to train and test the
datasets. The time complexity of a single classification and regression tree is O(mn·logn) where m is
the total number of variables and n is the number of samples [48]. Because RF is an ensemble classifier,
the overall time complexity of Random Forests can be summarized as O(M(mn·logn)) where M is the
number of trees grown. For a large number of samples with moderate dimensionality, this can be quite
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time consuming. In contrast, neural network complexity is highly dependent on network architecture.
Time complexity for the scaled conjugate descent algorithm is often polynomial, overall complexity is
determined by the problem and the number of free parameters (weights, biases, or basis functions
(in the case of RBFNN)) required to describe that problem [49]. As such, testing showed that the ANNs
trained faster and tested faster, which is important to consider given the requirement to process a
potentially large amount of imagery in an operational context.

As previously discussed, a number of preprocessing steps are required to develop each of the
textural and structural dimensions. Also, a k-means unsupervised clustering was used as part of
the RBFNN algorithm to intelligently center the basis functions before training. Each of these steps
adds time and complexity to the final product. For future studies, the parallelization of many of
these processes is one way to greatly reduce computational time. Our data were gathered using serial
processing (primarily because a parallel implementation of k-means was not immediately available)
in order to establish a baseline and fairly assess each algorithm, however parallel implementations
(which include graphics processing units [GPUs]) of both ANN and RF training are readily available
for use and will greatly speed up training and implementation of these machine learning algorithms.

The actual results from this study mirrored what was expected quite well; the areas of imagery
where texture and structure were broken up were often identified as damage, as one would expect.
As mentioned in the results section, one interesting finding was that each of the algorithms erroneously
identified IDP camp areas as building damage. These IDP camps are ad hoc structures (tents, tarps,
and shanties) built primarily on open spaces. As these IDP camps were erected, they broke up the
coherent texture and structure of the underlying terrain, causing the algorithm to mark them as
damage. While this is technically an error of commission, it is nevertheless a useful result in showing
the power of MLAs in seeking out patterns as well as their ability to simultaneously detect damage and
displaced persons. In an operational context, the MLA results in combination with a priori knowledge
of building distribution via a GIS database would allow first responders and emergency planners to
easily distinguish damaged structures from these IDP camps.

As the experiment on variable importance showed, the textural and structural features were some
of the most important factors which allowed both ANNs and RF to detect damage and IDP camps.
Stramondo et al. [7] also used important textural features for earthquake damage detection although
in their study a maximum likelihood classifier was used. This line of thinking, paramount to computer
vision applications, is expanded here by using more intelligent algorithms and readily available data.
The importance of the panchromatic features along with the texture and structure products derived
exclusively from that panchromatic imagery presupposes that future implementations of machine
learning may be able to perform earthquake damage detection from panchromatic imagery alone.
One reason that the multispectral imagery was not a driving variable is simply due to resolution;
the native 2.4 m is too coarse to detect many of the features associated with earthquake damage.
Interestingly, the only multispectral product which was found to be an important variable for each
of the algorithms was the near infrared band, which may have resulted from a correlation between
exposed rubble and a higher near infrared reflectance. These findings may guide future research in
determining which variables to focus on in earthquake damage studies.

Our focus on simple panchromatic imagery is a departure from many previous earthquake
studies. The state-of-the-art focuses on LiDAR, SAR, unmanned aerial vehicles, and the software suite
eCognition [1]. However, the access and availability of these additional data requirements may be
limited in the aftermath of a destructive earthquake in a less developed region such as Haiti. A return
to easily accessible data products such as multispectral or even panchromatic imagery alone could
allow a MLA (potentially even one that is pre-trained) to detect imagery without the requirement
of ancillary data. One potential disadvantage of the reliance on bitemporal VHR imagery is the
requirement for precise coregistration. Different look angles can cause problems in classification and
change detection. While image registration is still important to our study, a small look angle difference
may not be critical due to our use of textural and structural features rather than the VHR imagery
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alone. Additionally, registration errors can be seen as a source of noise in the system; each of the MLAs
used has been shown to be robust to noise [41,45]. The difference in our look angles (~7◦) did not
appear to cause any damage detection errors in a visual survey of our results. Future research may
investigate the limits of acceptable look angle differences or use a complex coregistration approach to
eliminate the issue altogether [50].

The future of earthquake damage detection may lie in deep convolutional neural networks
(DCNN) coupled with high performance computing and GPUs. DCNNs have already pushed
the boundaries of artificial intelligence and image recognition; rather than being told which
textural, structural, or spectral inputs should be used, these networks automatically learn and
identify the defining features (convolutions) of the problem at hand in order to classify future
samples [51,52]. Initial results are promising. Using MatConvNet (a deep learning library for
Matlab), we experimented with training a DCNN with the VGG-F architecture following the
approach and using the hyperparameters described by Chatfield et al. [52,53]. We segmented the
post-earthquake pansharpened image using SRM and trained the DCNN on each labeled, extracted
object. The DCNN was not only able to detect buildings at a comparable rate (>55% detection
rate), it was able to distinguish between damage and IDP camps (>65% detection rate) and did so
using an after-only pansharpened image, reducing data requirements and eliminating the need for
coregistration. A pre-trained DCNN optimized specifically for earthquake detection may offer a robust
and operationally implementable solution to the much studied topic of earthquake damage detection.

5. Conclusions

This study analyzed the use of machine learning algorithms to include feedforward neural
networks, radial basis function neural networks, and Random Forests in detecting earthquake damage
caused by the 12 January 2010 event near Port-au-Prince, Haiti. The algorithms’ efficacy was improved
by providing coregistered 0.6 m multitemporal imagery, texture features (dissimilarity and entropy),
and structure features (Laplacian of Gaussian and rectangular fit) as inputs. Detection results were
assessed on a structure specific basis by digitizing more than 900 buildings and comparing each MLA’s
response to the UNITAR/UNOSAT validation set. For a wide area generalization, a kernel density
map comparison was performed between each of the algorithms’ classification results and the UN
damage validation points.

The feedforward ANN consisting of two hidden layers had the lowest error rate (<40%) without
sacrificing much performance in overall accuracy or generalization to wider area damage estimates.
Additionally, textural and structural features derived from panchromatic imagery were shown to be
more important than spectral variables in the algorithms’ classification process. Each algorithm had
common errors of commission occurring around ad hoc IDP camps that were spontaneously formed
in open spaces following the earthquake; this technically incorrect result can be easily integrated with
a GIS layer containing building footprints.

The results of this study show that not only do MLAs have potential for use in earthquake
damage detection, but that panchromatic or pansharpened imagery can be the exclusive data source
for training and testing. Measures of variable importance found that the panchromatic derived
texture and structure products are the main drivers behind the success of these “shallow” machine
learning algorithms. Future research into an operationally implementable machine learning method
is warranted. An attractive next step is to transition into deep learning where convolutional neural
networks move beyond pixel-based or object-based paradigms and begin to detect remotely sensed
features in ways akin to natural image recognition.
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Appendix A

Table A1. Confusion matrices for each of the algorithms, including user’s accuracy (UA) and producer’s
accuracy (PA).

Undamaged UNOSAT Damaged UNOSAT ANN UA

Undamaged ANN 498 101 83.14
Damaged ANN 131 167 56.04

ANN PA 79.17 62.31
RBFNN UA

Undamaged RBFNN 575 150 79.31
Damaged RBFNN 54 118 68.60

RBFNN PA 91.41 44.03
RF UA

Undamaged RF 606 191 76.04
Damaged RF 23 77 77.00

RF PA 96.34 28.73

Appendix B

Appendix B.1. Algorithmic Damage Map for the RBFNN Algorithm
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