Experiência 0

MEDIDAS EXPERIMENTAIS

Medir e Comparar

Para descrever os fenómenos naturais temos de fazer medições.

 Cada medição está associada com uma propriedade do objeto, como o seu comprimento.

- Para fazer as medidas de forma reproduzível é preciso adotar um padrão para essa medida.
- A um padrão está associado uma unidade de medida.

Sistema SI de unidades

- Em 1960 um comité internacional estabeleceu um conjunto de unidades standard para as grandezas fundamentais (Unidade de Sistema Internacional SI)
 - Distancia metro (m)
 - Tempo segundo (s)
 - Massa quilograma (kg)
 - Temperatura Kelvin (K)
 - Corrente elétrica Ampere (A)
 - Intensidade Luminosa Candela (Cd)
 - Quantidade de uma substância mole

Prefixos de potências de 10

O elevado número de algarismos ou casas decimais necessárias para quantificar algumas grandezas com as unidades SI levou a adoção de potências de 10 e de um con-junto de prefixos.

		Fator	Prefixo	Simbole
SUBMULTÍPLOS	10-24	= 0,000 000 000 000 000 000 000 001	yocto	у
	10-21	= 0,000 000 000 000 000 000 001	zepto	z
	10-18	= 0,000 000 000 000 000 001	ato	a
	10-15	= 0,000000000 000 001	fento	f
	10-12	= 0,00000000001	pico	p
	10 ⁻⁹	= 0,000000001	nano	n
	10 ⁻⁶	= 0,000001	micro	μ
	10-3	= 0,001	mili	m
	10 ⁻²	= 0,01	centi	С
	10 ⁻¹	= 0,1	deci	d
	10 ⁰	= 1		
MULTIPLOS	10 ¹	= 10	deca	da
	10 ²	= 100	hecto	h
	10 ³	= 1 000	quilo	k
	10 ⁶	= 1 000 000	mega	M
	10 ⁹	= 1 000 000 000	giga	G
	10 ¹²	= 1 000 000 000 000	tera	T
	10 ¹⁵	= 1 000 000 000 000 000	peta	P
	1018	= 1 000 000 000 000 000 000	exa	E
	1021	= 1 000 000 000 000 000 000 000	zetta	Z
	10 ²⁴	= 1 000 000 000 000 000 000 000 000	yotta	Y

- Todas as grandezas definidas como combinações de grandezas fundamentais são chamadas grandezas derivadas.
- Alguns exemplos são:
 - a área (produto de dois comprimentos)
 - a velocidade (razão entre um comprimento e um intervalo de tempo)
 - a densidade (ρ) :

$$\rho = \frac{m}{V}$$

(unidades SI da densidade: kg/m^3)

Aparelhos de medição

- Aparelhos de medição permitem medir uma dada grandeza física usando uma escala graduada numa dada unidade de medida.
- Todas as medições têm a elas associadas uma incerteza e é necessário quantificar essa incerteza aquando da medição

Medidas e erros

Uma medida tem sempre associado um erro cujo valor não pode ser menor do que a precisão do instrumento de medida. O erro define quantos algarismos devem ser representados.

No caso do medidor de pH representado, o valor deve ser indicado como pH=7.00, e não pH=7.Supõe-se que o erro é 0.01.

• pH= $7.00 \rightarrow 3$ algarismos com significado (algarismos significativos).

Se o valor não flutua à escala do aparelho o erro de medida define o majorante do erro.

Algarismos significativos

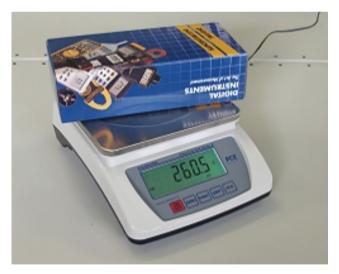
- Numa medida, o número deve ser representado com todos os algarismos até aos necessários para a contabilização do erro.
- Os zeros à direita da vírgula têm significado para o valor da grandeza a medir → são algarismos significativos.
- Algarismos significativos são os algarismos do valor da grandeza até ao primeiro afectado pelo erro – algarismos com significado.

 $V = 150.0 \pm 0.1 V$ 4 algarismos significativos

Erros experimentais

- Aparelhos analógicos: Em geral, num instrumento analógico o erro máximo é considerado igual a metade da menor divisão da escala.
- Aparelhos digitais: Em geral, num instrumento digital o erro máximo é considerado igual ao valor que corresponde a 1 no dígito menos significativo acessível.

 3.00 ± 0.05 cm



 $260.5 \pm 0.1 \text{ g}$

Regras para cálculos com algarismos significativos

Adições e subtrações:

• O número de algarismos significativos do resultado corresponde ao número com o mesmo número de casas decimais que o que tem o menor número de casas decimais:

$$4.573 + 0.\underline{6} = 5.173 = 5.2$$

 $4.573 - 0.\underline{60} = 3.973 = 3.97$

Produtos e divisões:

• O número de algarismos significativos do resultado corresponde ao número com o mesmo número de algarismo significativos que o número interveniente com menos algarismos significativos:

$$4.573 \times 0.\underline{6} = 2.74 = 3$$

 $4.573/0.\underline{60} = 7.62 = 7.6$
 $1.7^3 = 4.913 = 4.9$

As constantes matemáticas (fatores multiplicativos, π , potências,...) são sempre consideradas exatas e como tal funcionam como se tivessem infinitos algarismos significativos.

Arredondamentos

- A regra para arredondamentos que vamos adotar é a seguinte:
 - 15.6 é arredondado para 16
 - 15.4 é arredondado para 15
 - 15.51 é arredondado para 16
 - 15.49 é arredondado para 15
- Se o algarismo final é exactamente 5, o arredondamento é feito para o algarismo par mais próximo:
 - 15.5 é arredondado para 16
 - 16.5 é arredondado para 16
- Em cálculos, os valores intermédios devem sempre manter mais um, ou mesmo dois, algarismos do que o número de algarismos significativos para que os arredondamentos não se propaguem nos cálculos.

 2.6 11.70

$$4.50 \times \frac{2.6}{4.50} = \frac{11.70}{4.50} = 2.60 = 2.6$$

mas não
$$4.50 \times \frac{2.6}{4.50} = \frac{12}{4.50} = 2.67 = 2.7$$

Apresentação de resultados

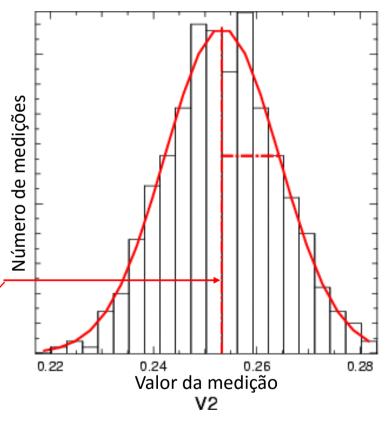
• Dados recolhidos no ambito de medições experimentais devem ser sempre apresentados com o erro a ele associado:

$$x = x_0 \pm |\Delta x| \ (unidade) \leftrightarrow x \in]x_0 - |\Delta x|, x_0 + |\Delta x| \ [\ (unidade) \]$$

- Erro absoluto: $|\Delta x| = |x x_0|$
- Erro relativo: $\left| \frac{\Delta x}{x_0} \right| = |x x_0|$
- Mas o valor exato x_0 da grandeza x não é conhecido.

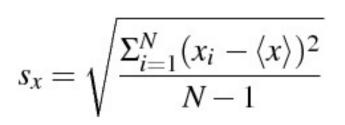
- Se o valor flutua variações maiores que o erro de leitura do aparelho, o erro é superior ao erro de leitura e deve fazer-se um tratamento estatístico.
- Imagine-se que se fez N medidas da grandeza x obtendo-se N valores x_i. Podemos assumir que o valor mais próximo da grandeza é o valor médio:

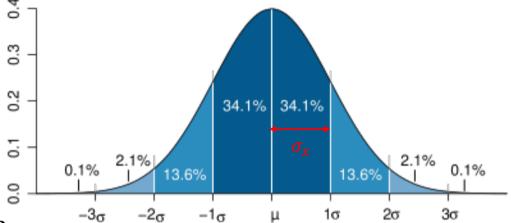
$$\langle x \rangle = \frac{\sum_{i=1}^{N} x_i}{N}$$



Dispersão dos dados: desvio padrão

 O desvio padrão de uma amostra é dado pela seguinte expressão:





- Quanto maior o tamanho da amostra, mais s_x se aproxima do desvio padrão da população (σ_x) .
- O desvio padrão é, assim, uma medida da dispersão dos valores.

- Se recolhermos muitas amostras de uma dada população todas com o mesmo tamanho (N), a média dessas amostras segue uma distribuição que tem uma média e um desvio padrão.
- O erro padrão da média é o desvio padrão dessa população:

$$\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{N}} \approx \frac{s_x}{\sqrt{N}} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \langle x \rangle)^2}{N(N-1)}}$$

Regra prática: Quanto temos muitas medições ($N \ge 20$), o erro padrão da média é uma boa medida do erro:

$$x = \langle x \rangle \pm \frac{s_X}{\sqrt{N}} \quad (unidades)$$

- Quando temos poucas medições (N < 20), o desvio padrão da amostra já não é uma boa aproximação do desvio padrão da população e portanto:
- 10<*N*<20

$$x = \langle x \rangle \pm s_x$$
 (unidades)

• N < 10

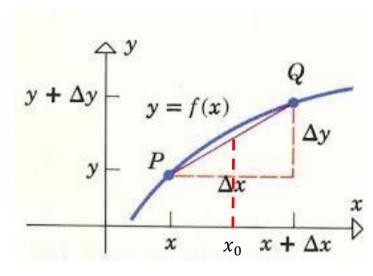
$$x = \langle x \rangle \pm max | x_i - \langle x \rangle |$$
 (unidades)

Propagação de erros

- O que fazer quando queremos calcular o erro de grandezas derivadas ou de parametros que são obtidos através de expressões matemáticas?
- Admita-se que tem uma função *f* que depende de duas grandezas que mediu no laboratório

$$x = \langle x \rangle \pm \varepsilon_x$$
 e $y = \langle y \rangle \pm \varepsilon_y$

o erro associado a $f(\Delta f)$ é dado por:



$$\Delta y \approx \frac{dy}{dx}\bigg|_{x_0} \cdot \Delta x$$

$$\Delta f = \left| \frac{\partial f}{\partial x} \right|_{\substack{x = \langle x \rangle \\ y = \langle y \rangle}} \varepsilon_X + \left| \frac{\partial f}{\partial y} \right|_{\substack{x = \langle x \rangle \\ y = \langle y \rangle}} \varepsilon_y$$

Propagação dos erros com estatística

• Quando temos medições múltiplas para as grandezas x e y (ver exemplo anterior), devemos usar a seguinte expressão:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x}\bigg|_{\substack{x = \langle x \rangle \\ y = \langle y \rangle}} \mathcal{E}_x\right)^2 + \left(\frac{\partial f}{\partial y}\bigg|_{\substack{x = \langle x \rangle \\ y = \langle y \rangle}} \mathcal{E}_y\right)^2}$$

onde os erros ε_x e ε_y são dados pelas regras discutidas atrás.

Com estatística

(medições múltiplas)

•
$$f(x,y) = x + y$$

$$|\Delta f| = \sqrt{s_x^2 + s_y^2}$$

•
$$f(x,y) = x \times y$$

$$|\Delta f| = \sqrt{y^2 s_x^2 + x^2 s_y^2}$$

•
$$f(x,y) = x/y$$

 $|\Delta f| = \sqrt{(1/y^2)s_x^2 + x^2/y^4s_y^2}$

•
$$f(x) = x^n$$

 $|\Delta f| = nx^{n-1}s_x$

•
$$f(x,y,z) = ax + by + cz$$

 $|\Delta f| = \sqrt{a^2 s_x^2 + b^2 s_y^2 + c^2 s_z^2}$

Sem estatística

(sem medições múltiplas)

•
$$f(x,y) = x + y$$

 $|\Delta f| = \varepsilon_x + \varepsilon_y$

•
$$f(x,y) = x \times y$$

 $|\Delta f| = y\varepsilon_x + x\varepsilon_y$

•
$$f(x,y) = x/y$$

$$|\Delta f| = \frac{1}{y} \varepsilon_x + \frac{x}{y^2} \varepsilon_y$$

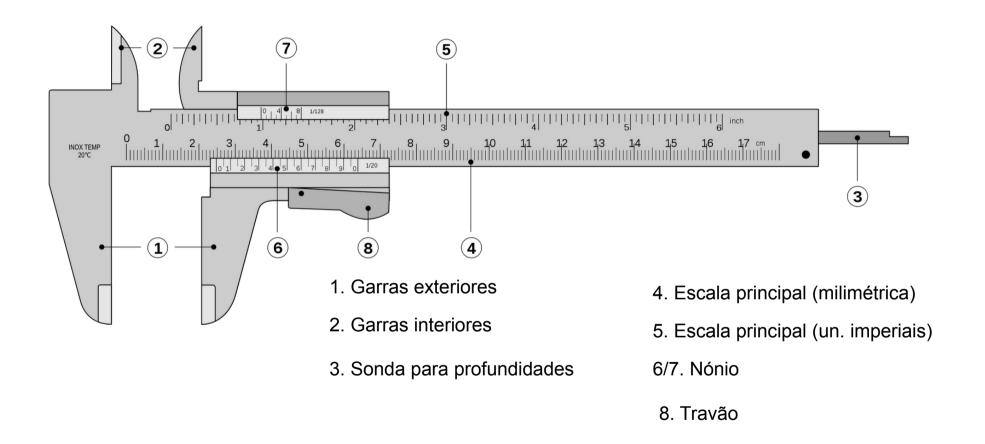
•
$$f(x) = x^n$$

 $|\Delta f| = nx^{n-1}\varepsilon_x$

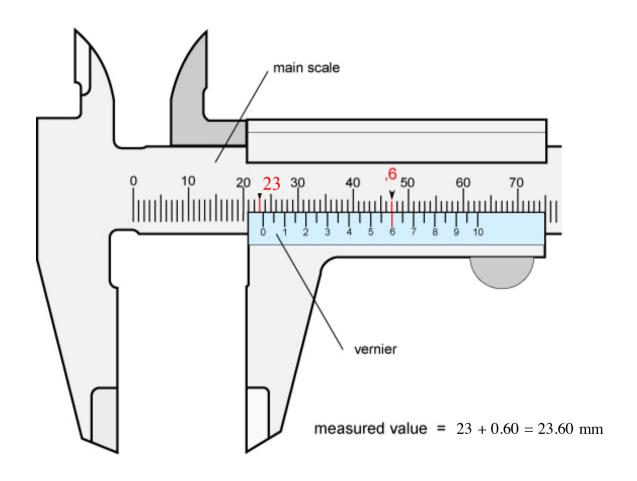
•
$$f(x, y, z) = ax + by + cz$$

 $|\Delta f| = a\varepsilon_x + b\varepsilon_y + c\varepsilon_z$

Instrumentos de medida: Craveira



Medições na craveira



Ajuste a curvas lineares

- Muitas vezes vamos querer fazer o ajuste de uma distribuição de pontos a uma curva linear.
- Imagine-se que temos N pontos y_i que foram obtidos quando um parâmetro x_i foi alterado. pore
 Nós queremos fazer um ajuste de uma curva do pressure
- género:

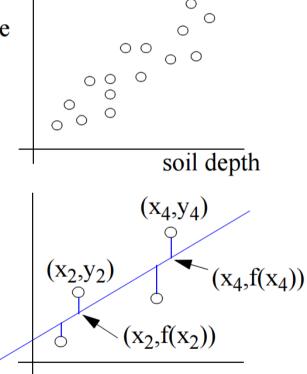
$$y = mx + b$$

Ao conjunto de pontos.

• Podemos fazer isso minimizando a distância (quadrada) entre a linha e os pontos, ou seja minimizando a função:

$$D = \sum_{i=1}^{N} [y_i - (mx_i + b)]^2$$

• Existem programas que obtém os valores de m e *b* do ajuste, bem como os desvios padrões para esses parâmetros (Excel, Datastudio,...).



Ajuste a curvas não-lineares

- O mesmo processo pode ser aplicado a polinómios de qualquer ordem (os parametros do ajuste são mais e, portanto, são necessários mais pontos).
- Para outro tipo de funções pode ser necessário proceder a uma linearização:

$$y = ae^{bx}$$

Aplicando o logaritmo dos dois lados:

$$\ln(y) = \ln(a) + bx$$

