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Summary

Cold stress is amajor environmental factor that seriously affects plant growth and development,

and influences crop productivity. Plants have evolved a series of mechanisms that allow them to

adapt to cold stress at both the physiological and molecular levels. Over the past two decades,

muchprogress has beenmade in identifying crucial components involved in cold-stress tolerance

anddissecting their regulatorymechanisms. In this review,we summarize recentmajor advances

in our understanding of cold signalling and put forward open questions in the field of plant cold-

stress responses. Answering these questions should help elucidate the molecular mechanisms

underlying plant tolerance to cold stress.

I. Introduction

The average minimum temperature over most (c. 64%) of the total
land area on Earth is < 0°C (Rihan et al., 2017). However, many
crops, including rice (Oryza sativa), maize (Zea mays), tomato
(Solanum lycopersicum), soybean (Glycine max) and cotton (Gossyp-
ium hirsutum), lack the ability to acclimate to cold temperatures
and can only grow in tropical or subtropical regions (Chinnusamy
et al., 2007). Thus, cold stress adversely affects plant growth and
development, limits the geographical distribution of plant species,
and decreases crop yields worldwide (Pearce, 2001). Plants have
evolved sophisticated mechanisms to withstand cold stress. One
such mechanism is cold acclimation, a process by which plants

acquire increased freezing tolerance upon prior exposure to
nonlethal low temperature (Guy, 1990; Thomashow, 1999).

During this process, a series of comprehensive physiological and
biochemical events take place. At the physiological level, many
substances or protective proteins are synthesized in plants, such as
soluble sugars, proline and cold-resistance proteins (Kaplan &Guy,
2004; Kaplan et al., 2007). These substances are involved in
regulating osmotic potential, ice crystal formation, the stability of
cell membranes and reactive oxygen species (ROS) scavenging in
plants subjected to cold stress (Lee et al., 2002; Dong et al., 2009).
Over the past two decades, numerous components, including
messenger molecules, protein kinases and phosphatases, and
transcription factors have been identified in cold-stress signalling
pathways.The best characterizedof these is theCBF-COR signalling
pathway. C-REPEAT BINDING FACTOR/DEHYDRATION-
RESPONSIVE ELEMENT-BINDING PROTEIN1 (CBF/DREB1)*These authors contributed equally to this work.
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genes are rapidly induced under cold stress and they play crucial roles
in cold acclimation of plants (Stockinger et al., 1997; Liu et al.,
1998). COR refers to a class of genes regulated by cold stress such as
COLD REGULATED (COR), LOWTEMPERATURE INDUCED
(LTI) and COLD INDUCIBLE (KIN), some of which encode
osmolyte and cryprotective proteins to protect plant from freezing
injury (Yamaguchi-Shinozaki & Shinozaki, 1994; Shi et al., 2018).
CBF proteins can directly bind to the promoters of CORs and
induce their expression, thereby enhancing freezing tolerance
(Stockinger et al., 1997; Liu et al., 1998). CBF-COR regulatory
signalling pathway is highly complex and requires further in-depth
study.

Understanding how plants respond to cold stress will provide
valuable information and genetic resources for improving cold-
stress tolerance in crops. In this review, we summarize recent
developments in our understanding of the regulatory mechanisms
underlying cold-stress tolerance and explore open questions that
should be the focus of future work.

II. Cold stress and physiological responses in plants

Stress refers to any substance or stimulus that restricts plant
metabolism, growth, development and crop productivity,
including biotic and abiotic stresses (Lichtenthaler, 1998). Cold
stress, including chilling (0–15°C) and freezing (< 0°C), is an
abiotic stress that adversely affects the growth and agricultural
productivity of plants (Guo et al., 2018; Liu J. et al., 2018).
Chilling stress usually restricts plant growth and development,
and has several major effects on plant cells. First, chilling stress
affects membrane rigidification in plant cells, which is considered
to be the primary event that triggers downstream cold-stress
responses in plants (Orvar et al., 2000). Second, chilling stress
disturbs the stability of proteins or protein complexes and
reduces the activities of enzymes such as ROS scavenging
enzymes. These processes result in photo-inhibition and
impaired photosynthesis, as well as considerable membrane
damage (Siddiqui & Cavicchioli, 2006; Ruelland et al., 2009).
Third, chilling stress affects gene expression and protein
synthesis, as it favours the formation of secondary structures in
RNA (Rajkowitsch et al., 2007; Ruelland et al., 2009). Freezing
stress is more damaging to plants than chilling stress, and may
even cause plant death. Under natural conditions, freezing
damage begins with extracellular ice nucleation (Pearce, 2001).
Once ice nuclei form, they grow and form ice crystals, which
spread into the apoplast where they induce water efflux, leading
to cell dehydration. Irreversible damage occurs when ice crystals
spread into cells (Dowgert & Steponkus, 1984; Pearce, 2001).

Plants have evolved sophisticated mechanisms that limit cold-
induced damage. For instance, cold acclimation is a process in
which plants that are exposed to nonlethal low temperatures for a
few days develop an enhanced ability to resist subsequent freezing
stress (Guy, 1990; Thomashow, 1999). During this process, plants
increase their tolerance to cold stress by synthesizing numerous
protective substances (e.g. soluble sugars, proline) and proteins
(e.g. LEA, AFP, CSP) (Steponkus et al., 1998; Thomashow, 1999;
Kaplan & Guy, 2004, 2005; Kaplan et al., 2007).

Soluble sugars, proline and other lower-molecular-weight
solutes function as osmolytes to protect plants from damage caused
by cold stress (Ruelland et al., 2009). The accumulation of
protective proteins including LATE EMBRYOGENESIS
ABUNDANT (LEA) proteins, ANTI-FREEZING PROTEINS
(AFPs) and COLD SHOCK PROTEINS (CSPs) during cold
acclimation is important for freezing tolerance in plants (Ruelland
et al., 2009). LEA proteins have been referred to as hydrophilins,
because they have common structural features such as high
hydrophilicity. Most LEA proteins are predicted to belong to
intrinsically disordered protein (Battaglia et al., 2008). COR15A is
the best-characterized LEA protein that resides at the membrane
surface during dehydration and stabilizes cell membranes under
freezing stress (Bremer et al., 2017a,b). Several other LEA proteins
were identified in different plant species, and proved that they are
important factors in regulating plant chilling or freezing tolerance
(Houde et al., 2004; Qiu et al., 2014; Sasaki et al., 2014; Liu et al.,
2015). AFPs bind to specific surfaces of growing ice crystals and
inhibit their growth (Wen et al., 2016). AFPs have two kinds of
activities in fish and insects. One is the ability to lower the freezing
point of water (known as thermal hysteresis), the other is ice
recrystallization inhibition (IRI) (Liu et al., 2016; Wen et al.,
2016). Plant AFPs have high IRI activity, suggesting that the
activity of IRImay bemore important for AFPs in plants (Gupta&
Deswal, 2014). Some AFPs have been reported to function as
important regulators in plants freezing tolerance (Holmberg et al.,
2001; Zhang et al., 2010). CSPs are composed of a single cold
shock domain (CSD) and function as RNA chaperones in bacterial
and plants (Xia et al., 2001; Nakaminami et al., 2005). Arabidopsis
CSP2 and CSP3 are important regulators in freezing tolerance
(Kim et al., 2009; Sasaki et al., 2013).

III. Sensing of cold signals in plants

Unravelling themechanism by which plants perceive cold signals is
essential for understanding how plants avoid damage caused by low
temperatures. Researchers have long focused on the fundamental
issue of how plants sense cold signals. Such studies have implied
that cold is not sensed by a single protein, but is instead perceived at
different sensory levels.

1. The cell membrane fluidity hypothesis

The reduction of cell membrane fluidity following exposure to cold
stress is widely considered to be one of cold perception mecha-
nisms, as it is the first line of defence against cold stress. This
hypothesis comes from the evidence based on pharmacological
studies. Pharmacological assays demonstrated thatCOR expression
is induced by membrane rigidification at 25°C, whereas it is
inhibited by membrane fluidization at 4°C (Orvar et al., 2000;
Sangwan et al., 2001). Diacylglycerol kinase (DAGK) activity, a
very early event occurring within seconds of chilling exposure, is
associated with membrane fluidity (Miquel et al., 1993; Vaultier
et al., 2006). Moreover, the researchers invented a new method to
measure membrane fluidity and, further, provided new evidence
for the change of membrane fluidity in response to chilling
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temperatures in plant cells (Martiniere et al., 2011). Plasma
membrane fluidity is correlated with the proportion of desaturated
fatty acids. FATTY ACID DESATURATION2 (FAD2) encodes
the oleate desaturase essential for membrane fluidity. Mutation of
FAD2 impairs some physiological responses to chilling stress,
including leaf number and hypocotyl length (Martiniere et al.,
2011). These findings support the notion that reduction of cell
membrane fluidity represents an important mode of sensing cold
signals.

The plant cytoskeleton is changed upon low temperature
(Pokorna et al., 2004). Drugs that stabilize microtubules and
filaments inhibit the expression of COR gene BN115, whereas
drugs that destabilize microfilaments promote BN115 expression
(Orvar et al., 2000). Studies also showed that the change of
microfilament structure induced by cold is upstream of calcium/
Ca2+ influx into the plant cells (Mazars et al., 1997; Orvar et al.,
2000). Considering the close link of the cytoskeleton with the
plasmamembrane, it is possible that changes in the cytoskeleton are
involved in early event of cold signalling.

2. Calcium channels

Low temperatures are perceived by TRANSIENT RECEPTOR
POTENTIAL (TRP) ion channels in mammals (Bautista et al.,
2007; Dhaka et al., 2007); however, these channels are not present
in plants. Ca2+ is an important second messenger in plant response
to environmental changes. Cytosolic Ca2+ concentration is
increased very rapidly via Ca2+ channels after cold treatment in
both plants and animals, which is considered as one of the earliest
cold signalling events (Knight et al., 1996; Plieth et al., 1999;
Knight & Knight, 2012). Interestingly, cold-induced COR is
dependent on Ca2+ (Knight et al., 1996). Therefore, it is possible
that ion channels (i.e. Ca2+ channels) and electrophysiological
responses mediate low-temperature sensing in plants as well. The
cyclic nucleotide-gated channels (CNGCs) in Arabidopsis and
moss are essential for thermal sensing and thermotolerance (Finka
et al., 2012). The plasma membrane and endoplasmic reticulum-
localized G-protein regulator CHILLING TOLERANCE
DIVERGENCE1 (COLD1) coupled with RICE G-PROTEIN
a SUBUNIT1 (RGA1) was recently shown to be involved in cold
sensing by modulating calcium signals and electrophysiological
responses in rice (Oryza sativa) (Ma et al., 2015). The COLD1-
RGA1 complex mediates the cold-induced influx of intracellular
Ca2+, leading to the activation of COR genes (Ma et al., 2015)
(Fig. 1). It would be interesting to investigate whether COLD1
functions as a Ca2+-permeable channel or as a mediator facilitating
Ca2+-permeable channel activity and to determine how COLD1
transduces cold signals to the nucleus to activate the cold-induced
expression of DREB1s in rice (OsDREB1s).

3. Phytochrome

Two breakthrough studies have demonstrated that temperature-
sensitive changes in the protein state of the photoreceptor
PHYTOCHROMEB (phyB) are involved in ambient temperature
perception (10–30°C), with phyB changing from the active Pfr

state to the inactive Pr state. phyB directly binds to the promoters of
key target genes in a temperature-dependentmanner, and phyBnull
mutants exhibit a constitutive warm-temperature response (Jung
et al., 2016; Legris et al., 2016) (Fig. 1). These findings demon-
strate that phyB governs photomorphogenesis under different
temperatures by perceiving light and ambient temperatures.
Whether phyB also participates in cold sensing needs further
investigation.

IV. Messenger molecules involved in cold signal
transduction

In addition to Ca2+, emerging evidence suggests that other
messenger molecules such as ROS and nitric oxide (NO) are
involved in regulating plant response to cold stress. ROS, including
superoxide (O2˙

�), hydroxyl radicals (OH�), and hydrogen
peroxide (H2O2) are produced in plants in response to various
stresses (Tyystjarvi, 2013). ROSplay dual roles in plant cells: on the
one hand, they induce gene expression and protein synthesis to
protect cells from stress; on the other, they induce oxidative stress
(Heidarvand & Maali-Amiri, 2013; Qi et al., 2018). Upon cold
stress, plants accumulate H2O2, and excessive H2O2 has a
deleterious effect on plant cells. As a result, the H2O2 scavenging
system is activated through the conversion of GSH (reduced
glutathione) toGSSG (oxidized glutathione) in plants (Kocsy et al.,
2001). Moreover, several defence genes contain antioxidant-
responsive elements or GSSG binding sites in their promoter
regions (Kocsy et al., 2001), suggesting that the redox signalling
chain might regulate gene expression in response to cold stress.
Therefore, it will be important to identifyCOR genes that function
downstream of redox signalling. Some evidence suggests that there
is a close linkage between Ca2+ and ROS. For instance, low ROS
concentrations promote Ca2+ influx into the cytoplasm (Rihan
et al., 2017). In addition, Ca2+ regulates ROS production in plants
under various stimuli, such as drought and high relative humidity
stress (Wang et al., 2016). It is necessary to dissect the exact roles of
Ca2+ andROS, as well as their relationship, in regulating plant cold
signalling.

A crucial role in transducing developmental and environmental
cues in plants is played by the gaseous molecule NO (Besson-Bard
et al., 2008; Wilson et al., 2008). Cold induces NO production in
plants; this is considered to be a general response that takes place in
various plant species and organs (Zhao et al., 2009). Pharmaco-
logical and genetic studies have shown that nitric reductase (NR)-
dependent NO concentrations are positively correlated with cold
acclimation and freezing tolerance in Arabidopsis (Zhao et al.,
2009; Cantrel et al., 2011; Costa-Broseta et al., 2018); however, a
recent study showed that NO is a negative regulator of constitutive
freezing tolerance in Arabidopsis (Costa-Broseta et al., 2018).

S-nitrosylationmediated byNOrepresents a key process in plant
growth and development, as well as responses to environmental
changes (Hess et al., 2005; Kovacs & Lindermayr, 2013; Hu et al.,
2017; Zhan et al., 2018). Cold-induced modifications of
S-nitrosylation proteins have been identified in various plant
species, such as Brassica juncea and Arabidopsis (Abat & Deswal,
2009; Sehrawat et al., 2013; Puyaubert et al., 2014). Many cold-
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induced S-nitrosylated proteins identified to date are involved in
primary metabolism, especially photosynthesis (Puyaubert et al.,
2014). NO-mediated S-nitrosylation of iron-containing superox-
ide dismutase also is important for preventing chilling injury in
B. juncea (Sehrawat et al., 2013). Moreover, NO depletion dimin-
ishes the cold-induced expression of CBF1/3 and CBF regulons
such as COR15a, LTI30 and LTI78 (Cantrel et al., 2011). It
remains to be determined whether S-nitrosylation is a general
mechanism for regulating cold-stress responses and whether NO
mediates the S-nitrosylation of proteins involved in the CBF-COR
signalling pathway.

V. Cold signal transduction in plants

1. Transcriptional regulation of CBF genes

The CBF/DREB1-dependent cold signalling pathway has been
studied extensively over the past two decades. The story begins with
the important discovery of a novel cis-acting element, C-repeat/
dehydration response element (CRT/DRE), which is responsive to
drought, cold and high-salt stress (Yamaguchi-Shinozaki &
Shinozaki, 1994). Since this discovery, CBF proteins have been

isolated sequentially by screening for DNA-binding proteins that
bind to the CRT/DRE motif using yeast one-hybrid assays
(Stockinger et al., 1997; Liu et al., 1998).

Arabidopsis contains three cold-induced CBF genes, CBF1–3
(CBF1/DREB1B,CBF2/DREB1C andCBF3/DREB1A), which are
arranged in tandem on chromosome IV. In Arabidopsis, there is
another CBF gene (CBF4) that is not induced by cold; however,
overexpression of CBF4 enhances plant freezing and drought
tolerance (Haake et al., 2002). CBF1–3 are APETALA2/
ETHYLENE-RESPONSIVE (AP2/ERF1)-type transcription fac-
tors that directly bind to the conserved CRT/DRE motifs in the
promoters of COR genes (known as CBF regulons) and activate
their expression under cold conditions (Gilmour et al., 1998; Liu
et al., 1998; Medina et al., 1999). Transgenic Arabidopsis plants
overexpressing CBF1 display increased COR expression and
enhanced freezing tolerance (Jaglo-Ottosen et al., 1998). CBF
orthologues have been isolated in many plant species, including
rice, tomato, wheat (Triticum aestivum), barley (Hordeum vulgare)
and maize (Shi et al., 2018). Heterologous expression of Ara-
bidopsis CBFs enhances freezing tolerance in various species, and
heterologous expression ofCBFs from other plant species enhances
freezing tolerance in Arabidopsis (Gilmour et al., 2000; Zhang

Fig. 1 Overview of cold signal sensing and transduction in Arabidopsis and rice. Cold temperature triggers plasma membrane rigidification and Ca2+ channel
activation, leading to increased Ca2+ concentrations in the cytosol and in turn activation of Ca2+-related protein kinases (i.e. Ca2+-DEPENDENT PROTEIN
KINASEs (CDPKs), B-LIKE CALMODULIN BINDING PROTEINs (CBLs) and CBL-INTERACTING PROTEIN KINASEs (CIPKs)). In Arabidopsis, an unknown
receptor-like kinase pair might sense cold signals and phosphorylate COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1). Cold-activated CRPK1 interacts with
andphosphorylates 14-3-3proteins. Thephosphorylated14-3-3proteins shuttle from the cytosol to thenucleus,where they interactwithC-REPEATBINDING
FACTOR (CBFs) and promote their degradation via the 26S proteasome pathway. In rice, cold signals are sensed by the plasma membrane-localized protein
CHILLING TOLERANCE DIVERGENCE1 (COLD1). The COLD1/RGA1 (RICE G-PROTEIN a SUBUNIT1) protein complex activates the cold-induced influx of
intracellular Ca2+, leading to the activation of the cold signalling pathway.
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et al., 2004; Savitch et al., 2005). However, it is worth noting that
cold-sensitive tomato (Lycopersicon esculentum) has CBF genes,
only LeCBF1 is found to be cold-inducible and functional (Zhang
et al., 2004). Overexpression of LeCBF1 confers tomato freezing
tolerance; however, overexpression of cold-tolerant Arabidopsis
CBF3 in tomato plants do not exhibit freezing tolerance, because
there are differentCBF regulons in tomato andArabidopsis (Zhang
et al., 2004). These studies indicate that the biological function of
CBF1–3 in modulating freezing tolerance is not only highly
conserved among plants, but also species-specific.

As CBF1–3 loci are located adjacent to each other on the same
chromosome, it is challenging to generate cbf1,2,3 triple mutant
lines by traditional genetic crossing. Two laboratories have recently
succeeded in generating single, double and triple mutants of CBF
genes using CRISPR/Cas9 technology (Jia et al., 2016; Zhao et al.,
2016). The cbfs triple mutants are the most sensitive to freezing
stress of these different mutants under cold-acclimation treatment
(Jia et al., 2016; Zhao et al., 2016). RNA-seq analysis of the triple
mutants revealed that the expression of c. 10–20% ofCOR genes is
CBF-dependent (Jia et al., 2016; Zhao et al., 2016). These findings
support the notion that CBFs are key regulators that play
redundant roles in cold acclimation in plants.

The expression ofCBF genes is induced rapidly by cold stress and
is both positively and negatively controlled by various transcription
factors (Fig. 2). INDUCER OF CBF EXPRESSION (ICE1), a
MYC-type bHLH transcription factor, is the best-characterized
transcriptional activator of CBF genes to date (Chinnusamy et al.,
2003). ICE1 activates the expression of CBF genes by directly
binding to their promoters under cold stress. Mutation of ICE1
impairs cold-induced CBF expression and decreases freezing
tolerance (Chinnusamy et al., 2003; Ding et al., 2015). ICE2, a
homologue of ICE1, also plays a positive role in regulating CBF
expression and freezing tolerance (Fursova et al., 2009).

Early studies have shown that Ca2+-responsive protein calmod-
ulins (CAMs) are induced by low temperature and CAM
activity is essential for COR gene expression (Polisensky & Braam,
1996; Tahtiharju et al., 1997). CALMODULIN-BINDING
TRANSCRIPTION ACTIVATORS (CAMTAs), which harbour
conserved CAM-binding sites, also activate CBF expression.

CAMTA3 activates CBF2 expression, whereas CAMTA1 and
CAMTA2 activate CBF1–3 expression (Doherty et al., 2009; Kim
et al., 2013). A recent study showed that CAMTA proteins
(CAMTA1–5) positively regulate CBF1 and CBF2 expression
(Kidokoro et al., 2017). Additionally, CAMTA3 and CAMTA5
regulate CBF1 expression in response to rapidly (but not slowly)
decreasing temperatures (Kidokoro et al., 2017). More impor-
tantly, an interesting result showed that the CRT/DRE motif is
regulated by Ca2+ (Whalley et al., 2011). These studies provide a
possible link between calcium and cold signalling.

A member of the R2R3 subfamily of MYB15 transcription
factors negatively regulates the expression ofCBFs through directly
binding to the conserved MYB motif in their promoters (Agarwal
et al., 2006). OsMYBS3 inhibits cold-induced expression of
OsDREB1B and negatively regulates chilling tolerance in rice (Su
et al., 2010). PHYTOCHROME-INTERACTING FACTOR3/
4/7 (PIF3/4/7) transcription factors, which function in light
signalling, also are involved in negatively regulatingCBF expression
(Franklin & Whitelam, 2007; Lee & Thomashow, 2012; Jiang
et al., 2017).

The expression of CBFs is gated by the circadian clock (Fowler
et al., 2005). CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)
and LATE ELONGATED HYPOCOTYL (LHY), two core
components of the circadian clock, are positive regulators of CBF
expression and plant freezing tolerance (Dong et al., 2011). CCA1
has two splice variants,CCA1a andCCA1b. CCA1b interacts with
CCA1a and inhibits its DNA binding activity. Low temperature
inhibits CCA1b production, thus releasing the inhibition of
CCA1a activity byCCA1b (Seo et al., 2012).Other circadian clock
components, namely PSEUDO RESPONSE REGULATORS
(PRRs), negatively modulate CBF expression and freezing toler-
ance in plants (Nakamichi et al., 2009).

Apart from the above regulators, various hormone-signalling
components also orchestrate CBF expression. ETHYLENE
INSENSITIVE3 (EIN3) is a key transcription factor involved in
ethylene signalling that is a negative regulator of CBF expression
and freezing tolerance (Shi et al., 2012). Two F-box proteins,
EIN3-BINDING F-BOX 1/2 (EBF1/2), mediate the degradation
of EIN3 and PIF3 via the 26S proteasome pathway, thereby

Fig. 2 Positive and negative regulators of the
C-REPEAT BINDING FACTOR (CBF)-
dependent pathway in Arabidopsis. The
expression of CBFs and the protein stability of
CBFs are governed by positive or negative
regulators, including transcription factors,
protein kinases, E3 ubiquitin ligases and
SUMO ligases. Additionally, COLD

REGULATED (COR) gene expression is
regulated by various CBF-independent
regulators.
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activating CBF expression under cold stress (Jiang et al., 2017).
JASMONATE ZIM-DOMAIN PROTEIN1/4 (JAZ1/4) pro-
teins, which function as repressors of the jasmonic acid (JA)
signalling pathway, interact with ICE1/2 and regulate their
transcriptional activities and CBF expression (Hu et al., 2013).
Brassinosteroids (BRs) also play a role in regulating freezing
tolerance. Mutations of BIN2 and its homologs lead to increased
freezing tolerance in plants (Li et al., 2017b). BRASSINAZOLE-
RESISTANT1 (BZR1) and BRI1-EMS-SUPPRESSOR1 (BES1)
are downstream transcription factors of BRASSINOSTEROID-
INSENSITIVE2 (BIN2) that positively regulate freezing tolerance
by partially regulating expression ofCBF1 andCBF2 via binding to
E-box binding sites in their promoters (Li et al., 2017b). The
transcription factor CESTA downstream of BIN2 binds to the
G-box motif in the promoters of CBF genes and regulates their
expression (Eremina et al., 2017). These findings suggest that
plants integrate hormone and cold signalling pathways for better
adaptation to cold stress.

Notably, overexpression ofCBFs leads to growth retardation and
reduced plant biomass (Jaglo-Ottosen et al., 1998; Gilmour et al.,
2000; Achard et al., 2008). Conversely, cbfs triple mutants are
larger than the wild-type (WT) under chilling stress (Jia et al.,
2016). Therefore, it is possible that CBFs are important regulators
in the trade-off between plant growth and cold responses. This fine-
tuned regulation by CBFs might represent an important strategy
balancing plant growth and cold tolerance.

2. Transcriptional and post-transcriptional regulation of
COR genes

The regulation ofCOR genes is important for their functions in cold
acclimation; however, only c. 10–20% of COR genes are regulated
byCBFs (Park et al., 2015; Jia et al., 2016; Zhao et al., 2016). Thus,
it is important to investigate how the remainingCORs are regulated.
The cold-induced transcription factor ZAT12 controls the expres-
sion of 24 COR genes (Vogel et al., 2005). In addition to CBF-
dependent CORs, BZR1 also modulates other COR genes uncou-
pled with CBFs, such as WRKY6, PYR1-LIKE 6 (PYL6),
SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1),
JASMONIC ACID CARBOXYL METHYLTRANSFERASE
(JMT) and SENESCENCE-ASSOCIATED GENE 12 (SAG12),
to regulate plant freezing tolerance (Li et al., 2017b). Several other
cold-induced transcription factors function in a similar manner to
CBFs to induce the expression of COR genes under cold stress,
including WRKY33, ETHYLENE RESPONSIVE ELEMENT
BINDING FACTOR5 (ERF5), CZF1, RELATED TO ABI3/
VP1 (RAV1), CZF2, MYB73, ZAT10 and HEAT SHOCK
TRANSCRIPTION FACTOR C1 (HSFC1) (Park et al., 2015).

Recently, HEAT SHOCK TRANSCRIPTION FACTOR1
(HSFA1) was found to positively regulate cold acclimation by
inducing expression of heat stress-responsive genes, which are also
one type ofCOR genes, in aCBF-independentmanner (Olate et al.,
2018). HSFA1 transcription activity is activated by NON-
EXPRESSER OF PATHOGENESIS-RELATED GENES 1
(NPR1), an SA receptor (Ding et al., 2018b; Olate et al., 2018).
Low temperatures induce cytosolic NPR1 monomerization and

nuclear import, as does SA during the pathogen response (Tada,
2009; Olate et al., 2018). However, unlike the plant pathogen
resistance mechanism, NPR1 interacts with HSFA1 in the nucleus
to modulate the expression of HSFA1-regulated genes indepen-
dently of SA or TGA transcription factors (Olate et al., 2018).

Post-transcriptional regulation also is important for COR
gene function. REGULATOR OF CBF GENE EXPRESSION1
(RCF1), encoding a DEAD-box RNA helicase, helps ensure the
proper pre-mRNA splicing of many COR genes under cold
stress (Guan et al., 2013). STABILIZED1 (STA1) encodes a
pre-mRNA splicing factor that controls the pre-mRNA splicing
and mRNA turnover of COR genes (Lee et al., 2006).
Nevertheless, our knowledge of the mechanisms regulating
COR gene expression is limited, and future work should aim to
identify novel regulators of COR genes.

Alternative splicing (AS) is an important post-transcriptional
regulation that is required for reprogramming gene expression
under stress conditions. Previous study showed an extensive AS in
core clock genes in Arabidopsis. AS of these genes such as LHY and
CCA1 is temperature-dependent (James et al., 2012). A recent
study of genome-wide AS profiling analysis showed a massive and
rapid wave of AS coincident with the transcriptional response and
identified hundreds of genes such as RCF1 and STA1 that have
dramatically altered AS in the first few hours of cold treatment
(‘early AS’ genes) (Calixto et al., 2018). This study demonstrates
that plants may fine-tune gene expression via AS pathway in
response to temperature change (Calixto et al., 2018).

3. Epigenetic regulation of the CBF–COR pathway

Aside from the roles of transcriptional and post-transcriptional
regulation in the CBF signalling pathway, epigenetic regulation
also plays a role in modulating gene expression under cold stress.
MicroRNAs (miRNAs) are involved in cold-stress responses (de
Lima et al., 2012; Megha et al., 2018). Analysis of the first small
RNA libraries showed that miR393 expression is upregulated, and
miR319c and miR398a expression is downregulated under cold
stress (Sunkar & Zhu, 2004). Since this initial study, some cold-
regulated miRNAs in Arabidopsis have been identified. For
instance, Arabidopsis harbours two isoforms of miR397
(micR397a and micR397b) (Sunkar & Zhu, 2004). Arabidopsis
plants overexpressingmiR397a show increased tolerance to chilling
and freezing stress (Dong & Pei, 2014). The expression levels of
CBFs and their target COR genes are higher in miR397a-
overexpressing plants than in theWT. Although the cold tolerance
conferred by miR397a is at least partially dependent on the CBF-
COR module, it remains unknown whether CBFs and CORs are
direct targets of miRNAs (Dong & Pei, 2014). A proline-rich
protein SICKLE (SIC) co-localizes with the miRNA biogenesis
component HYL1 and regulates the biogenesis of some miRNAs
and degradation of some spliced introns (Zhan et al., 2012). The
sic-1 mutant shows increased sensitivity to chilling and salt stress
(Zhan et al., 2012).

A recent study reported a cold-responsive long noncoding RNA,
named SVALKA, plays a role in regulating CBF1 expression.
Interestingly, the expression of SVALKA is increased after 4 h of
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cold treatmentwhenCBF1 expression is decreased (Kindgren et al.,
2018). RNA Polymerase II read-through transcription of SVALKA
results in the production of asCBF1, a cryptic antisense transcript
overlapping CBF1 to repress cold-induction of CBF1 gene
(Kindgren et al., 2018). This study provides a new regulatory
mechanism of CBF1 expression under cold stress.

Post-translational histone modifications, along with DNA
methylation, are associated with gene expression levels in response
to cold stress (Kim et al., 2015). Histone acetylation/deacetylation
catalyzed by histone acetyltransferases (HATs) and histone
deacetylases (HDAs) plays a role in cold responses in plants (Kim
et al., 2015). ArabidopsisHISTONEDEACETYLASE6 (HDA6) is
upregulated by cold stress and positively regulates freezing
tolerance (To et al., 2011). HDAs also are upregulated by cold
stress in maize, leading to global deacetylation at H3 and H4 (Hu
et al., 2011). Under cold stress, HDAs appear to directly activate
maize DREB1 (ZmDREB1) expression and histone hyperacetyla-
tion. DNA demethylation occurs in the ZmICE1 binding region
(Hu et al., 2011). Interestingly, ICE1 demethylation may have
been responsible for the expansion of crofton weed (Ageratina
adenophora) northward into China (Xie et al., 2015). GENERAL
CONTROL NON-DEREPRESSIBLE5 (GCN5) is a HAT that
positively regulates freezing tolerance in Arabidopsis (Vlachonasios
et al., 2003). The induction time ofCOR genes is delayed and their
expression levels are reduced in the gcn5 mutant compared to the
WT, indicating that GCN5 positively regulates freezing tolerance
bymodulating the histone acetylation ofCOR genes (Vlachonasios
et al., 2003) (Fig. 3). Indeed, cold-induced COR expression is
associated with histone modification levels. In Arabidopsis,
H3K27me3 levels in two COR genes, COR15A and GOLS3,
decrease gradually upon cold treatment (Choi, 2010). Histone
acetylation ofOsDREB1b in rice andZmDREB1A andZmCOR413
inmaize is induced by cold stress (Hu et al., 2011; Roy et al., 2014).
RNA-DIRECTED METHYLATION4 (RDM4) protein was

reported to function in RNA-directed DNAmethylation (RdDM)
by working with RNA polymerases Pol V and Pol II in Arabidopsis
(He et al., 2009). Under cold stress, RDM4 is important for Pol II
occupancy at the promoters of CBF2 and CBF3 genes (Chan et al.,
2016).

Arabidopsis HIGH EXPRESSION OF OSMOTICALLY
RESPONSIVE GENE15 (HOS15) encodes a WD40-repeat pro-
tein involved in histone deacetylation and cold tolerance (Zhu
et al., 2008). However, little is known about howHOS15 regulates
COR expression and freezing tolerance. A recent study showed that
HOS15 interacts with and works together with HISTONE
DEACETYLASE 2C (HD2C) to regulate the expression of COR
genes, includingCOR47 andCOR15A, by directly binding to their
promoters (Park et al., 2018) (Fig. 3). Under warm temperatures,
theHOS15-HD2C complex occupies the promoters ofCOR genes
and induces the hypoacetylation of COR chromatin, leading to the
inhibition of COR gene expression. Upon cold stress, HOS15
functions as an E3 ubiquitin ligase by recruiting CUL4
(CULLIN4) to degrade HD2C. This process results in the
hyperacetylation of H3 on COR chromatin, which consequently
enhances the ability of CBFs to bind toCOR promoters (Park et al.,
2018) (Fig. 3). These findings suggest that epigenetic regulation is
an important mechanism for plant responses to cold stress.

4. Post-translational regulation in cold signalling pathway

Besides transcriptional and post-transcriptional regulation, emerg-
ing evidence has been shown that post-translational modifications
also are important for plant cold responses, including protein
phosphorylation/desphosphorylation, ubiquitination, sumoyla-
tion and mryistoylation.

Protein kinases and phosphatases have been reported to be key
regulators of cold-stress responses in prokaryotes and eukaryotes. In
the unicellular cyanobacterium Synechocystis, the histidine kinase

Fig. 3 Epigenetic regulation of COLD REGULATED (COR) genes in Arabidopsis. Under warm temperatures, HIGH EXPRESSION OF OSMOTICALLY
RESPONSIVE GENE15 (HOS15) forms a complex with HD2C that represses COR expression via hypoacetylation of COR chromatin. Under cold conditions,
HOS15 acts as an E3 ubiquitin ligase in association with DNA DAMAGED BINDING PROTEIN1 (DDB1) and CULLIN4 (CUL4) that degrades HISTONE
DEACETYLASE 2C (HD2C), thereby leading to the hyperacetylation of histoneH3 onCOR chromatin. This renders CBF proteins to bind to theCOR promoters
viaHOS15 and activatesCOR expression.Moreover, GENERALCONTROLNON-DEREPRESSIBLE5 (GCN5)modulates the histone acetylation ofCOR genes.
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Hik33 acts as a cold sensor (Suzuki et al., 2000a,b). In Bacillus
subtilis, the histidine kinase DesK functions in cold signal
perception (Aguilar et al., 2001; Albanesi et al., 2004, 2009).
Interestingly, DesK can have both protein kinase and phosphatase
activities under different temperature conditions (Aguilar et al.,
2001; Albanesi et al., 2004, 2009). At warm temperatures, DesK
acts as a phosphatase that removes the phosphoryl group from
DesR. With the decrease in temperature, the protein structure of
DesK changes and it acquires histidine kinase activity. Activated
DesK phosphorylates the downstream regulator DesR, thereby
activating its target gene,Des, tomaintainmembrane fluidity under
cold stress (Albanesi et al., 2009; Cybulski et al., 2015). There is
currently no evidence that a protein with both kinase and
phosphatase activity functions in plant responses to cold stress. In
Arabidopsis, receptors of the plant hormone cytokinin that
function as histidine kinases are negative regulators of freezing
tolerance (Jeon et al., 2010). It will be interesting to explore
whether the mechanism of thermo-sensing by histidine kinases is
conserved in the plant kingdom, and whether there is a kinase +
phosphatase pair responsible for cold perception.

Pharmacological experiments have demonstrated that protein
kinases and phosphatases are involved in plant responses to cold
stress. In alfalfa (Medicago sativa), the protein phosphatase
inhibitor induces the expression of CAS15, a COR gene, at warm
temperatures; however, the protein kinase inhibitor suppresses its
induction under cold stress (Monroy et al., 1998). Furthermore,
cold stress inhibits the activity of phosphatase 2A in alfalfa
(Monroy et al., 1998).

Several key protein kinases and phosphatases have been
shown to be involved in cold signal transduction in plants
(Fig. 4). We demonstrated previously that OPEN
STOMATA1 (OST1), a member of the SNF1-related protein
kinase family, positively regulates freezing tolerance in Ara-
bidopsis. The kinase activity of OST1 is activated by cold
stress. Cold-activated OST1 interacts with and phosphorylates
ICE1 to promote its protein stability and binding activity to
the CBF3 promoter, thereby enhancing freezing tolerance
(Ding et al., 2015). Our further study demonstrated that
OST1 also interacts with and phosphorylates BASIC
TRANSCRIPTION FACTOR3s (BTF3s), b-subunits of a
nascent polypeptide-associated complex (NAC) proteins, and
facilitates their interaction with CBF proteins, and thus
stabilize CBF proteins under cold stress (Ding et al., 2018a).
The type 2C phosphatase, ABA INSENSITIVE1 (ABI1),
partially inhibits OST1 activity under both abscisic acid (ABA)
treatment and cold stress (Ding et al., 2015). The gain-of-
function mutant abi1-1 (in the Col-0 background) shows
reduced freezing tolerance, whereas loss-of-function abi1 abi2
hab1 triple mutants show enhanced tolerance to freezing stress
(Ding et al., 2015). Recently, we found that protein phos-
phatase CLADE E GROWTH-REGULATING2 (EGR2) is a
crucial component regulating the activity of OST1 in response
to cold stress (Ding et al., 2019). Myristoylation of EGR2
catalyzed by NMT1, an N-myristoyltransferase, under warm
conditions is important for its interaction with and inhibition
of OST1. Under cold stress, the interaction of EGR2 and

NMT1 is attenuated, leading to the accumulation of newly
synthesized unmryistoylated EGR2 (u-EGR2). The u-EGR2
shows decreased binding ability to OST1, and it also
interrupts the interaction of EGR2 and OST1, thereby
releasing OST1 inhibition from EGR2 and increasing freezing
tolerance (Ding et al., 2019).

Upon cold stress, cytosolic Ca2+ concentrations are dramatically
and rapidly increased (Knight et al., 1996). Ca2+-DEPENDENT
PROTEIN KINASES (CDPKs), Calcineurin B-like proteins
(CBLs), and CBL-INTERACTING PROTEIN KINASES
(CIPKs) are shown to modulate freezing or chilling tolerance in
Arabidopsis, rice and wheat (Kim et al., 2003; Abbasi et al., 2004;
Komatsu et al., 2007; Li et al., 2008; Boudsocq & Sheen, 2012). A
recent study reported that in rice, Ca2+-DEPENDENT
KINASE24 (OsCPK24) may regulate glutathione concentrations
by phosphorylating a glutathione-dependent thioltransferase
Grx10 (GLUTAREDOXIN4), and therefore confers chilling
tolerance (Liu Y. et al., 2018). However, it is not clear whether or
not Ca2+ transduces cold signals in plant cells by acting in concert
with these protein kinases.

CRLK1 and CRLK2, two calcium/calmodulin-regulated recep-
tor-like kinases, positively regulate freezing tolerance by inhibiting
the cold-induced activity ofMAPKINASE3/6 (MPK3/6) (YangH.
et al., 2010; Yang T. et al., 2010a; Zhao et al., 2017). In Arabidop-
sis, MPK6 phosphorylates MYB15 and reduces its binding to the
CBF promoters to release its inhibitory effect on CBF expression
(Kim S. H. et al., 2017). However, two recent back-to-back reports
provide strong genetic and biochemical evidence showing that
Arabidopsis MPK3/6 are negative regulators of the CBF signalling
pathway (Li et al., 2017a; Zhao et al., 2017). In Arabidopsis, cold-
activatedMPK3/6 interact with and phosphorylate ICE1 to reduce
its stability and its binding activity to theCBF3promoter, leading to
reduced freezing tolerance (Li et al., 2017a; Zhao et al., 2017).
Moreover, the MAPK/ERK KINASE KINASE1-MAP KINASE
KINASE2-MAP KINASE KINASE4 (MEKK1-MEK2-MPK4)
cascade positively regulates CBF gene expression and freezing
tolerance by antagonizing the MKK4/5-MPK3/6 pathway (Zhao
et al., 2017). In rice, OsMPK3 phosphorylates OsICE1 and
disrupts its interaction with the E3 ubiquitin ligase OsHOS1.
This, in turn, enhances OsICE1 protein stability and its ability to
bind to TREHALOSE-6-PHOSPHATE PHOSPHATASE1
(OsTPP1), which encodes a key enzyme catalyzing the biosynthesis
of the sugar trehalose, thereby enhancing chilling tolerance (Zhang
et al., 2017). These findings indicate that MAPK3 plays diverse
roles in cold tolerance in different species and that Ca2+ and the
MAPK cascade are important transducers of cold signals.

Direct evidence for the transduction of cold signals from the
plasma membrane to the nucleus was obtained through the
discovery of COLD-RESPONSIVE PROTEIN KINASE1
(CRPK1). This cytoplasmic receptor-like kinase is localized at
the plasma membrane (Liu et al., 2017). After CRPK1 is activated
by cold, it phosphorylates 14-3-3 proteins, which causes their
translocation from the cytosol to the nucleus, where they interact
with CBF proteins and promote their degradation (Liu et al.,
2017). Several important aspects of CRPK1 merit further inves-
tigation. For example, how is CRPK1 activated by cold stress? Is
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there a receptor-like protein kinase pair as a partner working
together with CRPK1? Is calcium signal involved in CRPK1-
mediating cold signalling?

In addition to phosphorylation, the role of protein degradation
mediated by the ubiquitination pathway in cold signalling has been
extensively studied (Fig. 4). To date, the best-characterized E3
ubiquitin ligase in the CBF signalling pathway is HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1
(HOS1) (Ishitani et al., 1998; Dong et al., 2006). TheHOS1 locus
was first identified using a forward genetic screen in Arabidopsis
(Ishitani et al., 1998). HOS1 interacts with ICE1 in the nucleus
and promotes its degradation under cold stress (Dong et al., 2006).
Transgenic plants overexpressing HOS1 show increased freezing
sensitivity (Dong et al., 2006). Intriguingly, OST1-mediated
phosphorylation of ICE1 interferes with its interaction withHOS1
(Ding et al., 2015). Like ICE1 in Arabidopsis, OsICE1 in rice also
is degraded by OsHOS1 (Zhang et al., 2017). However, the
degradation of OsICE1 is inhibited rather than promoted by
phosphorylation mediated by OsMPK3 (Zhang et al., 2017).

Sumoylation mediated by SUMO E3 ligases usually protects
proteins from degradation. In Arabidopsis, SIZ1 (SAP and Miz)

encodes a SUMO E3 ligase that is required for freezing tolerance
(Miura et al., 2007). SIZ1 sumoylates and stabilizes ICE1, thereby
promoting CBF expression (Miura et al., 2007). The siz1 null
mutant exhibits impaired cold-induced CBF expression and
freezing tolerance (Miura et al., 2007). CBF proteins were recently
found to be degraded by the 26S proteasome pathway (Liu et al.,
2017; Ding et al., 2018a); however, the E3 ligase remains
unknown. Future study will identify the E3 ubiquitin ligase(s)
that mediate CBF degradation.

Autophagy is another important protein degradation
system that removes damaged or toxic components from
cells (Liu & Bassham, 2012). ATG proteins are key
components of autophagy (Liu & Bassham, 2012; Michaeli
et al., 2016). Some ATGs are regulated by cold stress in
various plant species. For instance, CaATGs are upregulated
by low temperatures in bell pepper (Capsicum annuum), and
many NtATGs are downregulated in tobacco (Nicotiana
tabacum) (Zhou et al., 2015; Zhai et al., 2016). ATG8 family
genes contain cold-responsive elements and are induced more
rapidly by cold than by other abiotic stresses in wheat (Pei
et al., 2014). These findings point to a tight link between

Fig. 4 Regulatory network of protein kinases in cold signalling in Arabidopsis and rice. In Arabidopsis, OPEN STOMATA1 (OST1) activity is inhibited by
phosphatasesCLADEEGROWTH-REGULATING2(EGR2)andABA INSENSITIVE1 (ABI1)undernormal temperatures.Uponcold stress, EGR2myristoylation is
suppressed, the resulting unmyristoylated EGR2 shows decreased affinity to OST1, and it also interrupts the EGR2–OST1 interaction, thus releasing OST1
activity.Cold-activatedOST1 interactswithandphosphorylates INDUCEROFCBFEXPRESSION1 (ICE1),whichprevents ICE1degradationmediatedbyHIGH
EXPRESSIONOFOSMOTICALLY RESPONSIVE GENE15 (HOS1), thus promotes its stability and binding ability to CBF promoters. OST1 also phosphorylates
BTF3s and promotes their interaction with C-REPEAT BINDING FACTORs (CBFs), which enhances CBF stability under cold stress. Cold stress also can activate
MPK3/6,whichare inhibitedbycold-activatedCALCIUM/CALMODULIN-REGULATEDRECEPTOR-LIKEKINASE1/2 (CRLK1/2) and theMAPK/ERKKINASE
KINASE1-MAP KINASE KINASE2-MAP KINASE KINASE4 (MEKK1-MKK2-MPK4) cascade. MAP KINASE KINASE3/6 (MPK3/6) phosphorylate ICE1 and
promote its degradation, thereby inhibiting its binding toCBFpromoters. Conversely,MPK6phosphorylatesMYB15 todecrease its binding to the promoters of
CBFs. Plasma membrane-localized COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1) is activated by cold stress via an unknown mechanism. Cold-activated
CRPK1 phosphorylates 14-3-3 proteins and promotes their accumulation in the nucleus, thus facilitating CBF protein degradation by the 26S proteasome
pathway. In rice, OsMPK3 phosphorylates OsICE1, suppressing its degradation and thereby increasing trehalose production and enhancing chilling tolerance.
OsCPK24 (Ca2+-DEPENDENT PROTEIN KINASE24) phosphorylates glutathione-dependent thioltransferase OsGrx10 (GLUTAREDOXIN4) and positively
regulates chilling tolerance in rice.
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cold responses and autophagy. It would be interesting to
investigate the role of autophagy in cold tolerance in more
detail.

VI. Conclusions and perspectives

Although the cold signalling pathway in plants has been extensively
studied during the past two decades, we are still far away from
understanding the molecular mechanism underlying cold signal
perception and transduction in plants.

Cold-induced membrane rigidification is thought to represent a
primary cold-sensing event (Orvar et al., 2000). However, the
protein(s) involved in sensing membrane rigidification are
unknown. Calcium channels might be involved in low-
temperature sensing in plants. Ca2+-mediated signal transduction
within plant cells is relayed to downstream protein kinases and
transcription factors (Kudla et al., 2018). Moreover, cold-induced
inactivation of the protein phosphatase, PP2A, is mediated by Ca2+

influx (Monroy et al., 1998). Thus, future study will identify
downstream regulators of Ca2+ in the cold signalling pathway,
especially protein kinases and protein phosphatases.

Another important issue is how specific plant tissues or
organelles respond to cold stress. A recent breakthrough study
showed that chilling stress induces the death of columella stem cell
daughters and in turn inducesDNAdamage in root stem cells (their
early descendants), which prevents the further division of columella
stem cells. This protectivemechanism improves the root’s ability to
overcome cold stress (Jing et al., 2017). In roots, vascular tissue
might be an important site for plant responses to cold stress, because
the crucial cold-signalling regulators such as OST1 and BTF3s are
localized to the vasculature in roots and leaves (Mustilli et al., 2002;
Ding et al., 2018a). Stomata also are regarded as important tissues
in cold stress responses. Chilling-tolerant species have a higher
stomatal index and stomatal frequency than nontolerant species
(Palta & Li, 1979), and low temperature induces stomatal closure
in the cold-tolerant speciesCommelina communis (Wilkinson et al.,
2001). Moreover, oscillations of Ca2+ concentrations in Arabidop-
sis guard cells are induced by cold stress, resulting in stomatal
closure (Allen et al., 2000). Intriguingly, the protein kinase OST1
and the transcription factor ICE1 are predominantly localized to
stomata (Mustilli et al., 2002; Kanaoka et al., 2008). OST1 is a key
regulator of stomatalmovement in response to ABA (Mustilli et al.,
2002). Further study will focus on the following questions: (1)
which organs or tissues predominantly perceive and transduce the
cold signal? (2) Is cold-induced stomatal closure regulated by
OST1?

Epigenetic regulation is important for plant responses to cold
stress. Previous interesting results indicate that chromatin remod-
elling mediated by H2A.Z is responsible for thermomorphogensis
and the thermosensory activation of flowering (Kumar & Wigge,
2010; Kumar et al., 2012; Tasset et al., 2018). The cold-induced
expression of CBFs is rapid and transient, peaking at 2–3 h after
cold treatment (Thomashow, 1999).Moreover,CBFproteins peak
at 6 h (Liu et al., 2017; Ding et al., 2018a); however, the expression
of CORs peaks at 24 h after cold treatment (Thomashow, 1999).
Therefore, there might be an epigenetic switch on the promoters of

CBFs andCORs, whichmight be identified by chromatin structural
analysis of these genes and ChIP-seq assays of the whole genome.

Emerging evidence indicates that cold response is tightly
associated with defence responses. In Arabidopsis, R proteins
confer low-temperature-induced cell death in Arabidopsis (Huang
et al., 2010; Yang T. et al., 2010b; Wang et al., 2013; Bao et al.,
2014). Cold-regulated transcription factors such as NAC WITH
TRANSMEMBRANE MOTIF1 (NTM1)-LIKE6 (NTL6) and
ZAT6 are positive regulators of PR expression and pathogen
resistance (Seo et al., 2010; Shi et al., 2014). Moreover, the
transcription factor CAMTA3 directly modulates expression of
CBF2 and genes involved in salicylic acid, a key plant hormone in
pathogen resistance (Du et al., 2009; Kim Y. S. et al., 2017).
However, the regulation of CAMTA3 during cold stress and
pathogen infection is quite different (Zhang et al., 2014; Kim Y. S.
et al., 2017). A recent study reported that the SA receptor NPR1
plays an important role in freezing tolerance in plants indepen-
dently of SA (Olate et al., 2018). These findings suggest that the
pathogen and cold responses share many common components. It
will be interesting to explore the evolutionary link between these
two pathways, whether the same protein (e.g. NPR1) senses both
cold and pathogen signals by changing its own conformation, and
how the same protein is differentially regulated under different
stress conditions.

Although global temperature is increasing, cold extremes and
abnormal weather have been observed to increase all over the world
(Gupta & Deswal, 2014; Horton et al., 2015). Meanwhile, to
extend planting area to high latitude and high altitude, there is an
urgent need to develop and cultivate cold-resistant crop varieties.
Genetic modification of previously reported cold-stress regulators
is an important strategy for enhancing cold tolerance in crops. In
addition, identifying quantitative trait loci using high-density
mapping populations and genome-wide association studies is a
worthwhile approach for exploring novel genes involved in plant
resistance to low temperatures.
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