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Low temperature is a major factor limiting the
productivity and geographical distribution of many
species, including important agricultural crops. The
formation of ice inside plant cells is devastating. Freeze-
tolerant plants have several strategies to reduce the
probability of this occurring, even when air temperature
drops below zero, including maintaining high
intracellular solute concentrations and encouraging ice
nucleation outside the cells. These plants also commonly
exhibit xerophytic adaptations to survive the reduced
water availability within the plant and the soil.
Temperatures of −5°C can kill an unhardened winter
wheat plant even though it has the genetic capacity to
acclimatize, harden and acquire tolerance of freezing
down to −20°C (Ref. 1). The cold-hardening mechanisms

conferring freeze tolerance have been described
elsewhere2–5 and include changes in lipid composition,
increases in active-oxygen-scavenging enzymes,
anthocyanin accumulation and altered growth
morphology. There is also a recent comprehensive
update on freezing stress and acclimation1.

Here, our focus is on chilling, referring to non-
freezing temperatures (0–12°C) that are common
during the growing season in temperate regions and
can substantially compromise plant productivity. Many
crops cultivated in temperate climates (e.g. maize,
tomato, cucumber and mango) come from tropical and
subtropical evolutionary backgrounds. These species
apparently lack the genetic information to be or become
freeze or even chill tolerant. These thermophilic crops
thus offer the opportunity to study the effects of chilling
on photosynthesis relatively undisguised by the gamut
of protective and other acclimatory responses observed
in chilling tolerant species.

Occasional short chilling episodes within a
generally clement temperature environment are
typical in many temperate regions where thermophilic
crops are grown (e.g. maize in the Midwest USA). This
is different to the suboptimum temperatures (e.g.
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<18°C) that persist for much of the growing season
when warm-climate crops are planted at the low-
temperature margins of their geographical range (e.g.
maize in northern Europe). The underlying effects of
these two chilling circumstances differ substantially.
Here, our focus is on short low-temperature excursions
from a normally permissive temperature range.

There are reports that chilling can disrupt
essentially all major components of photosynthesis
including thylakoid electron transport, the carbon
reduction cycle and control of stomatal conductance.
One of the important challenges to research in this field
is identifying the primary effects within this highly
interactive and regulated system that actually
underlie the in vivo dysfunction. For example, stomatal
closure following a chill could be a direct low
temperature effect on guard cell function or an indirect
response to a rising internal leaf CO2 concentration (ci)
caused by a chill-induced loss of Rubisco activity.

Studying the effects of chilling in the dark on
subsequent photosynthesis is important partly
because plants in natural and agricultural habitats
generally experience the lowest temperatures at night.
At a specific low temperature, the effects of concurrent
light are typically greater and therefore are likely to
mask those induced by chilling alone. Consequently, at
a particular low temperature, there are substantial

differences between plants chilled in the light and in
the dark in both the scale of the inhibition of
photosynthesis and the primary mechanisms involved.

Thylakoid electron transport

Photodamage (chronic photoinhibition) and repair
Its ease of measurement means that the ratio of
variable to maximal chlorophyll fluorescence (Fv/Fm)
in dark-adapted leaves is often used to identify
photosystem II (PSII) photodamage, an inhibition of
PSII photochemistry that is not rapidly reversible.
The amount of 14C-atrazine that can bind to the
plastoquinone-reductase site of PSII in isolated
thylakoids, produces a more direct and quantitative
assessment6. There are some excellent reviews of the
proposed mechanisms involved in photodamage7,8.

Photodamage is rarely observed immediately after
chilling of even the most extreme thermophilic species
if low temperatures are experienced in the dark9–11. By
contrast, the combination of low temperature with
high light has the potential to induce chronic
photoinhibition of PSII (Fig. 1). This is partly because
lowering the temperature generally reduces reaction
rates and can therefore limit the sinks for the
absorbed excitation energy (light), particularly CO2
fixation and photorespiration5. Smaller sinks for
absorbed excitation energy increases the potential for
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Fig. 1. Primary effects of a
short chill in the light and
the dark on
photosynthesis in
thermophilic plants.
Chilling effects are
apparent within the
processes of
photophosphorylation in
the thylakoid membrane,
the carbon reduction
cycle in the stroma,
carbohydrate use in the
cytosol and the CO2

supply to the chloroplast
through the stomata.
Abbreviations:
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ATP synthase; b6f,
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inorganic phosphate; PSI,
photosystem-I complex;
PSII, photosystem-II
complex; RuBP, ribulose
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oxidative damage to PSII, notably the D1 component
of the D1–D2 heterodimer at the core of the PSII
functional center. In addition, photodamage becomes
apparent as low temperatures interfere with the
normal replacement rate of D1 in the turnover–repair
cycle. This has been attributed to changes in the
expression of psbA, the plastid gene that encodes D1,
and direct temperature effects on membranes7. Low
temperature reduces membrane fluidity and thus is
believed to reduce the rate of D1 turnover by slowing
the diffusion of photodamaged D1 proteins marked for
degradation to non-appressed regions of the thylakoid.
Genetic manipulation of thylakoid lipids to decrease
the saturation of fatty acids can partially mitigate
high-light–low-temperature photoinhibition12,
presumably by enhancing diffusion and thereby
facilitating repair. Nevertheless, photodamage of PSII
is frequently not primarily responsible for light-chill-
induced inhibition of photosynthesis in thermophilic
plants13–15.

There are a limited number of reports that
photosystem I (PSI) has a greater chilling sensitivity
than PSII. This is frequently assessed in isolated
thylakoid membranes using artificial electron donors
or acceptors16. The use of absorption measurements
at 820 nm facilitates assessment of the redox state of
the PSI reaction center chlorophyll, P700, and hence
the quantum efficiency of PSI electron transport in
intact leaves17. The effects of growth under chilling
conditions on PSI, PSII and CO2 assimilation have
been investigated17,18. Evidence that PSI activity
declines to a greater extent than PSII19,20 is not
sufficient to identify PSI as a primary target of
chilling. This is because it does not exclude the
possibility that the downstream chill-susceptible
processes (carbon metabolism and stomatal
conductance, as described below), which were not
studied, are the primary target, with the observed
changes in PSI and/or PSII activities a secondary
response. Consequently, there is insufficient evidence
from intact leaves to classify PSI as a primary target
of a chilling episode.

Photoprotection and downregulation (dynamic
photoinhibition)
The rapidly reversible downregulation of PSII
quantum efficiency plays an indispensable
photoprotective role in leaves. This process involves
the interconversion of xanthophyll pigments and the
development of a transthylakoid proton
electrochemical potential difference, and is clearly a
crucial protective measure against the more
pernicious impact of photodamage21. Changes in the
quenching of excitation energy in the antennae of
PSII can easily be estimated using modulated
chlorophyll fluorescence. Both Fv′/Fm′ (the efficiency
of excitation energy transfer to open PSII reaction
centers) and non-photochemical quenching are
parameters widely used to quantify this
downregulation of PSII electron transport.

When chilling limits photosynthetic sinks for
electrons in the light (simultaneously with or
subsequent to the chill), valuable photoprotection is
afforded by a reduction in the efficiency of energy
transfer from the light harvesting complex to the
reaction center, thereby allowing additional absorbed
light energy to be dissipated as heat (Fig. 1). This can be
observed when thermophilic crops such as maize and
tomato are chilled in the light14,15,22. However, in warm-
climate plants such as tomato and mango, dynamic
photoinhibition is clearly not the primary cause of the
reduction in photosynthesis following a chill9,11.

Alternative electron sinks and oxidative stress
Analyses of the relative rates of PSII electron
transport with those of CO2 assimilation frequently,
but not always15, imply that chilling leads to an
increase in alternative (i.e. non-CO2) electron
sinks10,11,22. It has been argued23 that exploiting
oxygen as a terminal electron acceptor, in both
Rubisco oxygenase photorespiration (see below) and
the Mehler–ascorbate-peroxidase reaction, protects
plants from photodamage in bright light.

Thylakoid electron transport is intrinsically liable
to produce active oxygen species. To prevent
calamitous damage to component proteins and lipids,
plants have numerous antioxidant systems. It is
becoming increasingly clear that the regeneration of
these antioxidants, such as ascorbate (vitamin C), can
be an important and variable electron sink. The
Mehler–ascorbate-peroxidase (water–water) cycle has
been recently reviewed24. The absence of a method to
quantify the size of this sink means that it is currently
unclear whether ascorbate regeneration is a major
additional sink for electrons observed following a chill.

In maize, the activities of the enzymes involved
have been reported to rise when grown under cool
conditions in the field22 but to decline following a
short chill under controlled conditions25. Interference
with this process of antioxidant regeneration in
response to a light chill might be a major cause of the
observed inhibition of photosynthesis. In addition to
the direct effects of this oxidative potential, light-
chill-induced oxidative stress can lead to a change in
the redox state of the stroma. This can interfere with
the normal light activation of several enzymes
involved in CO2 assimilation including fructose 1,6-
bisphosphatase (FBPase) and sedoheptulose 1,7-
bisphosphatase (SBPase)26.

A further possible candidate for a chill-induced
alternative electron sink is cyclic electron transport.
It has been argued that such a cycle operates around
PSI and the cytochrome b6 f complex using a
ferredoxin–plastoquinone oxidoreductase to
regenerate reduced plastoquinone (plastoquinol) from
ferredoxin27, and contributes to the ∆pH required to
engage photoprotection28. A chill-induced increase in
non-linear electron transport should be visible as a
relative stimulation of the quantum efficiency of PSI
versus PSII electron transport. The absence of a
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substantial shift in this relationship at low
temperatures17 suggests that chilling does not induce
a significant increase in cyclic electron transport.

Carbohydrate metabolism

End-product inhibition
As leaf temperature is reduced, there is a smaller
stimulation of CO2 assimilation in response to a
switch from ambient to non-photorespiratory
conditions (1–2% O2). The temperature at which no
stimulation is observed was between 6°C and 22°C for
a range of six field-grown species29. This lack of
response to the removal of photorespiration has been
attributed to limitation of thylakoid ATP synthase
activity arising from insufficient return of inorganic
phosphate (Pi) to the chloroplast caused by the
accumulation of triose phosphates (Fig. 1).

Carbohydrate metabolism has been reported to
have a greater instantaneous low temperature
sensitivity than other components of
photosynthesis30. The low-light chill-induced delay in
the circadian rhythm in sucrose phosphate synthase
activity31 (Box I; Fig. I) could affect photosynthesis
after the chill through end-product inhibition.
Furthermore, soluble carbohydrates can accumulate
because of low-temperature inhibition of night-time
mobilization of leaf starch32. However, when the

oxygen sensitivity of CO2 assimilation is examined
after return to permissive temperatures, the
persistent inhibition of photosynthesis following a
dark chill seems not to be directly attributable to end-
product inhibition11.

Stromal bisphosphatases
The widely used models of photosynthesis33 imply
that the activities of the regenerative enzymes of the
carbon-reduction cycle do not limit CO2 uptake.
Ribulose 1,5-bisphosphate  regeneration is described
only in terms of the maximum rate of electron
transport, which provides the energy (ATP) and
reducing power (NADPH) for these reactions (Fig. 1).
Over the past decade, it has become increasingly
apparent not only that several of these stromal
enzymes are regulated in a sophisticated manner but
also that, under certain conditions, they can be a
primary limitation to photosynthesis.

In particular, the role of the stromal
bisphosphatases SBPase and FBPase in moderating
photosynthesis under stress needs to be appreciated.
Both of these stromal bisphosphatases are activated
by the ferredoxin–thioredoxin system and so, under
optimum conditions, their activity is tightly coupled
to the redox state of the chloroplast. It is clear that, in
tomato, the primary restriction on photosynthesis
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Rhythms in many cellular processes are maintained with a period of ~24 h,
even when plants are held under constant (free running) conditions. These
circadian rhythms, by definition, have temperature compensation to
maintain the same cycle period over a range of temperaturesa. However,
circadian rhythms in chlorophyll a/b binding protein and Rubisco activase
mRNA expression in tomato are stalled by chilling in the darkb. Both of
these proteins are so abundant that transient changes in transcription do
not have a significant impact on photosynthesis.

However, this work raised the intriguing idea that some of the
depression of photosynthesis in thermophilic plants following a chill is the
result of the mistiming of multiple circadian processes. This hypothesis
was supported by the observation that a low-light chill of tomato disrupts
the endogenous rhythm in activity of two key enzymes of the carbohydrate
and nitrogen metabolism pathways: sucrose phosphate synthase and
nitrate reductasec. Incongruity between sucrose phosphate synthase and
carbon reduction cycle activities could lead to a transient inorganic
phosphate limitation of photosynthesis. However, chilling does not delay
all circadian rhythms in all chill-sensitive species, because the endogenous
oscillation in mango leaf stomatal conductance was unaffected by a chill
that substantially compromised photosynthesisd.
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Box 1. Disruption of circadian regulation by a chill

Fig. I. Chilling delays the circadian rhythm in sucrose phosphate
synthase (SPS) activity. Control (red square) tomato plants were
maintained under constant conditions of low-light [50 µmol photons
m−2 s−1] at 26°C for 3 days, and exhibit a robust endogenous rhythm in
SPS activity.  This rhythm was held in abeyance during a 4°C 
(blue circle) treatment under the same low-light conditions for 12 h
(pale-blue shaded area).  When returned to permissive temperatures,
the circadian rhythm resumed but with a ~12 h phase shift.  The
light and dark bars at the top of the figure reflect the subjective day 
and night during this constant illumination.  
Reproduced, with permission, from Ref. c.



imposed by a light chill is a decrease in the activity of
these two enzymes caused by an impairment in their
reductive activation26,34 (Fig. 1). In maize, chilling at
4°C and 350 µmol photons m−2 s−1 for 24 h reduces
the maximum FBPase activity (measured by
incubation with the artificial reductant dithiothreitol)
by half after rewarming, indicating an actual loss of
the enzyme15.

Rubisco
Declines in photosynthesis after a chill in both the
dark and the light have been attributed in various
studies to a loss of Rubisco activity11,15 (Fig. 1). It has
been suggested that chilling damages the Rubisco
protein itself15. However, recent work with mango
shows that the loss of Rubisco activity observed at
midday of a warm photoperiod following an overnight
chill is not an instantaneous low-temperature effect
but rather that Rubisco activity declined throughout
the morning11. This suggests that it is some aspect of
Rubisco activation that is disrupted by the chill. It is
tempting to speculate that the recently discovered
redox regulation of the larger Rubisco activase
isoform35 can be affected by chilling, as is observed for
SBPase and FBPase (Ref. 26).

The argument that Rubisco oxygenase
photorespiration is a photoprotective mechanism,
acting as an electron sink23,36,37, does not appear to be
plausible for chill-induced photoinhibition. This is
because the frequently reported concurrent loss of
Rubisco carboxylase activity11,15 must by necessity be
mirrored by a decline in oxygenase activity and
therefore a reduction in the photorespiratory sink for
electrons. For photorespiration to provide protective
energy dissipation, the primary response to a chill has
to be a reduction in stomatal conductance. An
increase in stomatal limitation of photosynthesis
could reduce ci and hence increase the rate of
photorespiration relative to CO2 assimilation (see
below). In addition, reducing the oxygen partial
pressure from ambient (21%) to 2%, protected the
maximum quantum yield of CO2 fixation of bean
(Phaseolus vulgaris) leaves from a high-light-level
low-temperature chill38, suggesting that
photorespiration does not defend photosynthesis
under these conditions.

Stomatal responses

Chill-induced water loss
Reduced air and leaf temperature will usually reduce
evaporative demand. However, cool roots reduce
hydraulic conductivity and substantially inhibit
water uptake from the soil. Owing to the high specific
heat capacity of the soil, transient root chills are far
less common in the field than low shoot temperatures.
As well as not reflecting a natural chill, experiments
that chill whole potted plants have to be interpreted
with caution because of the ease with which
unrealistic drought stress can be induced. This is
because the soil warms up after a chill much more

slowly than do leaves and the surrounding air, and
therefore, unless humidity is maintained close to
saturation, the evaporative demand will increase
faster than the water supply.

Direct effects of chilling on stomata
In many chilling-sensitive species, such as cucumber,
tomato, bean, cotton and soybean, low temperatures
can cause stomata to appear locked open and unable
to respond normally to leaf water deficit9,39–41. Such
species will quickly wilt if not warmed under
extremely high humidity, especially if their roots are
still cool. By contrast, when more realistic, near-
saturation conditions with warm roots are used,
stomatal closure following a chill can be observed in
these and other species.

There are two potential causes of chill-induced
stomatal closure. First, a direct inhibition of
mesophyll photosynthesis (as discussed above) could
lead to a rise in ci, which in turn induces stomatal
closure. Alternatively, stomata themselves might be
the primary target of the chill and their closure could
lead to a reduction in ci, precipitating a decline in
photosynthesis. Approaches that distinguish between
these two different mechanisms primarily involve the
determination of the dependence of CO2 uptake on ci.
Such assessments of stomatal limitation of
photosynthesis frequently attribute the chill-induced
inhibition of CO2 fixation to a combination of stomatal
and non-stomatal effects9–11,42 (Fig. 1). However,
because interactions between components of
photosynthesis appear to be mediated by ci,
identification of the extent to which stomata limit
photosynthesis remains problematic.

Effects on photosynthetic productivity

The effect of the chill-induced inhibition of
photosynthesis on plant productivity has been
reviewed previously43 and is in general beyond the
scope of this article. However, there are a couple of
issues that are useful to keep in mind when
considering the effect of chilling on photosynthesis
and its effect on plant productivity. When integrated
over the whole canopy, day and season,
photosynthesis is primarily light limited not light
saturated44. Therefore, chill effects on the quantum
yield of CO2 assimilation are likely to have a much
greater deleterious impact on crop productivity than a
similar sized decline in light-saturated
photosynthesis.

It is also important to recognize that plant growth
and productivity are usually correlated with total leaf
area and the time of canopy closure rather than with
instantaneous photosynthetic rates. However,
photosynthesis during early leaf and plant
development is crucially important in determining
such performance. Therefore, the effects of longer-
term low-temperature exposure on the development
of photosynthesis, particularly early in the growing
season, are crucial17,22,45–47.
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Conclusions

The major components of photosynthesis that are
typically affected by short-term light or dark chills in
thermophilic species are shown in Figure 1.
Photosynthesis following a dark chill is primarily
compromised by interference with carbohydrate
metabolism, inhibition of Rubisco activity and
stomatal closure, with a concurrent increase in
energy dissipation as heat in the thylakoid antennae.
The possibility that some of the effects of chilling on
photosynthesis are mediated through mistiming of
multiple circadian rhythms is intriguing and might
underlie the effects of chilling on carbohydrate
metabolism. Although these factors can also be
observed when chilling concurrently with incident
light, the potential for photodamage to PSII is more
apparent, as are disruption of the redox control of the

stromal bisphosphatases SBPase and FBPase, and
possibly Rubisco activase.

Dissection of the relative importance of the seeming
multitude of potential chill effects on photosynthesis
has frequently relied on a top-down approach. With the
development of molecular array and other technologies,
it is becoming possible to approach this complex of
damage, repair, protection and acclimation processes
from a bottom-up perspective. However, chill-induced
changes in gene expression could be misinterpreted if,
for example, the direct low-temperature effects are not
separated from those of cool-root-induced water stress.
Therefore, understanding the molecular mechanisms
behind the chill-induced effects on photosynthesis by
examining the myriad changes in gene expression will
be achieved most efficiently by careful reference to the
physiological responses outlined here.
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42 Review

Book reviews in Trends
in Plant Science

Recently
published
books and
CD-ROMs
featured in
Trends in
Plant Science
are assessed
by experts in
the field,
providing an
open peer-
review

service to potential purchasers.
Authors are encouraged to give
background information about the topic
being discussed, and to assess the
quality of the publication in this context.
We also encourage our authors to
express their personal viewpoint – as
illustrated by the following examples:

‘... conveys a brilliant, up-to-date
vision.’

‘In spite of many shortcomings,
this volume contains some gems’

‘... a refreshing and useful book
that can be used either in the

classroom or as a reference text’

‘Neither authors nor editors seem
clear about the knowledge expected of

their readership’

‘... plant developmental
researchers and molecular
biologists, read this book!’

If there is a book or CD-ROM that you
think should be reviewed then please
contact the Assistant Editor
(plants@current-trends.co.uk).
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