Saffman-Taylor instability

The Saffman-Taylor instability arises, or may arise, when two fluids of different
viscosity are pushed by a pressure gradient through a Hele Shaw cell [§6.8] or
allowed to drain through such a cell under their own weight. It would be of little
practical importance were it not for the fact that creeping flow in a Hele Shaw cell
is the two-dimensional analogue of creeping flow through a porous medium
[§6.13]. Something very like the Saffman—Taylor instability frustrates attempts to
extract, by pushing it out with pressurised water, the last traces of oil from oil
wells. Theoretically, the instability has features in common with the Rayleigh—
Taylor instability discussed in §8.2; it differs in that the equibrium state is a
dynamic one, in which the interface between the two fluids is moving rather than
stationary, but the analysis required is nevertheless distinctly similar,

Suppose the cell to be horizontal, in which case the effects of gravity may be
ignored. Suppose it to be bounded by straight edges at y = +3L. and suppose
there to be pressure gradients which are driving the fluid contents in the +x
direction with some umform velocity U. In the equilibrium state whose stability
we are to investigate, the interface between the two flmds is the straight line
x = Ur. Where x < Ut, the viscosity 1s ' where x = Ur, the viscosity is 7.
According to (6.47), the pressure gradients needed to maintain this motion are
given in the two regions by
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where d is the thickness of the cell. The pressures p' and p are not necessarily
equal at the interface, because the interface is liable to be curved in the vertical (z)
direction. Provided that this curvature 1s constant, however, it does not affect the
results of the analysis, so we may as well ignore it and write
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for the equilibrium state, where p,, does not depend upon x.
Now suppose that the interface is perturbed, in such a way that at time r it lies at
r = X, where

X = Ur + & e™.

There must be some corresponding perturbation in p’ and p, and it must have the
same periodicity in the y direction. However, p' and p obey Laplace’s equation in
two dimensions [$6.8], so any perturbing term which varies like exp(iky) must
vary like exp(+kx) [(5.12)]. Since the perturbation cannot affect the pressure at
large distances from the interface, the perturbed pressures presumably have the
form
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when k 1s positive, where the coefficients A" and A are to be determined by
reference to the boundary conditions at the interface.



These boundary conditions, applicable in each case at x = X, and linearised by
omission of terms which are of higher than first order in A or {, are as follows.
dX
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where {u) is the mean velocity described by (6.47), or
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To first order this corresponds to
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where o 18 the interfacial surface tension. To first order this corresponds to
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[t 1s a trivial exercise to eliminate A’ and A from (8.7) and (8.8). and so to obtain
the result
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Thus if y << 5" the interface is stable for all k. When 5 = ', however, i.e. when a
viscous fluid 1s being displaced by a less viscous one, it is marginally stable with
respect to a perturbation for which k = k., where
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and it 1s unstable with respect to perturbations for which 0 < & < k.. The
perturbations which grow fastest (i.e. for which s, is a maximum) have k = k/\/3,
i.e. a wavelength
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The smallest value of k which is consistent with the boundary conditions at the
sides of the cell, where y = *+3L, is /L, and if the cell is so narrow, or if U is so
small, that this exceeds k. then no instabilities can be observed. In the experi-
ments conducted by Saffman and Taylor, however, in which air was used to
displace glycerine through a cell whose thickness was about 1 mm, L was 12 cm
and the wavelength A predicted by (8.10) was normally a bit less than 2 cm. Thus
they expected to see, when the pressure gradient was first applied, six or seven
corrugations develop in the interface over the full width of the cell. and so they
did; one of their photographs is reproduced as fig. 8.4(a).

(8.10)
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When the corrugations are no longer very small they do not all grow at the same
rate, as is shown by fig. 8.4(b). One of the advancing fingers of the less viscous
fluid tends to get ahead, whereupon it expands sideways and, by doing so, slows

down the advance of its competitors. In due coursc only a single finger survives, It
continues to advance at its tip. but it appears to stop expanding sideways when its
width reaches half the width of the cell. The tip has a characteristically rounded
shape, which Saffman and Taylor were able to explain.

Are the fingers stable and, if not, how do they split up? This question has proved
in recent years to be of much greater complexity and interest than Saffman and
Taylor could have guessed when their paper on this subject was published in 1958,
A partial answer is provided by the two remarkable photographs of fingers
spreading radially from a central source which are reproduced in figs. 8.5 and 8.6.
The first one shows a number of fingers which are splitting in an irregular and
unsurprising way, and one finger which has developed side branches of astonish-
ing regularity; it differs from the others by having a defect at its tip. in the shape of
a small gas bubble which has accidentally entered the apparatus and become
entrained in the flow. The second photograph shows an even more regular pattern
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Presentations on fluid simulations

https://www.youtube.com/watch?v=

pPYXBDXJ21Y

C Ciéncias
ULisboa

Conclusions &
Outlook

* LBM was used fo simulate the
laminar flow on a porous
medium with swelling and

softmatter.pt ooven

+ Swaelling makes the pores size
converge exponentially to a

afmatias@fc.ul.pt

minimum size;

* Erosion increases the pore
size exponentially fast;

* By controlling the erosion
threshold the mass removal

efficiency can be changed.

Pl /) 1332 /1493

Mass extraction efficiency in a porous medium with swelling and erosion - A.F.V Matias

https://www.youtube.com/watch?v
=1iIAIBWrM8 c&list=PLWIV|90xdDE
-67K1K-CR5bybhlIHUAUfYg

] "
Collective motion of soft particles in a channel .l

Effect of forcing and wetting
* Vary force

* Neutral contact angle

\

Relative effective viscosity pt, = %‘3

Q, Flow rate for pure continuous phase

Q Flow rate for emulsions

y=H
Flow rate Q= I " u(y)dy
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Discontinuous shear thinning of soft particles in a 3D
microchannel - Danilo Silva
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https://www.youtube.com/watch?v=pPYXBDXJ21Y
https://www.youtube.com/watch?v=1iAl8WrM8_c&list=PLWIVj90xdDE-67K1K-CR5bybhlHuAUfYq

Liquid crystals

Active liquid crystals

~ & * The particles transform energy from
2 @ the environment in directed motion;
e )

4 * Examples: mixtures of microtubule-

oy kinesin, dense suspensions of bacteria
5. J and shoals of fish,
Sanches o, AL Natwre 491, 433434 (20}
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The active interfaces of swarming bacteria (Rodrigo Coelho)

https://www.youtube.com/watch?v=U
hQpb3iQOtM&t=84s

Passive liquid crystal with “activated” solitons

~»Local conversion of energy
~sRotational dynamics alone can lcad to skyrmion translation;
kvomion motion docs not relv on flows.

CFTC seminar: Topological carnival

https://www.youtube.com/watch?v
=rSL7NVvFCAR8&t=2084s
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Kinematics

Material derivative

A material derivative is the

2_(_\: c) (\ 4 ‘/7/(7. V (.. ) time derivative of a property
D*, N following a fluid particle.
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Acceleration <1 =y

Steady state does not mean
necessarily a=0. Ex.:




Streamline: is a curve that is everywhere tangent to the instantaneous local
velocity vector.
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Streamline

])’ Point (x, y)

X NASCAR surface pressure
contours and streamlines

Other ways to visualize the flow:

A Pathline is the actual path traveled by an individual fluid particle over some
time period.

A Streakline is the locus of fluid particles that have passed sequentially through a
prescribed point in the flow.

For steady flow, streamlines, pathlines, and streaklines are identical.
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Continuity equation
X 4 (04
It
>~ 7
RN
Ve LO

Vorticity
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Boundary layer:

Fluid particles not rotating
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Irrotational outer flow region

Velocity profile
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Rotational boundary layer region
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Wall Fluid particles rotating
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Euler equation: for incompressive and inviscid fluids.

2 Vg,
D=, tE
)y
d
—u+(VAH)AH=—V(E+%HZ+/{)
o P
= NV K—’—\/“—J
= C7e NC




Potential flow. For irrotational flows in Euler fluids.
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In this case, the pressure is given by the Bernoulli equation.

Kelvin circulation theorem: An ideal fluid that is vorticity free at a given instant is
vorticity free at all times.

Flow around a sphere: the drag and lift forces are zero for an ideal fluid.
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Navier-Stokes: incompressible viscous fluids.

Newtonian fluids, defined as fluids for which the shear stress is linearly proportional to
the shear strain rate.
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Boundary conditions. 1) no-slip: at the surface, the velocity of the liquid and solid are
the same. 2) Interface BC: at the interface, the velocity and the shear-stress of the two

fluid are the same. 3) Frecsurface BC: at the free surface, the shear stress is zero.
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Nondimensionalized Navier-5Stokes: Prototype

—

d —, ==, —=,

+ (VYW =—[Eu]V' P + 1 7+ i?‘ff?‘
at” = —[Eu] Fr? g Re

[St]

Since there are four dimensionless parameters, dynamic
similarity between a model and a prototype requires all four

of these to be the same for the model and the prototype

(Stmodel = Stprototype' Eumodel = Euprototype' I:rmodel = I:rprototype' and

Re = Re

model —

Model
Sinoger Elmoger: Fromodel: Bemodel

prototype) :

Approximate Navier—Stokes eguation for creeping flow: VP = ;ﬁ'i‘.—f

Dirag force on a sphere in creeping flow: Fp = 3muVD
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Boundary layer. Separates viscous and inviscid flows close to a solid surface.

Diffusion of vorticity
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Instabilities

a) simulation b) experiment
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