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Fluctuations
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Microscopic origin of thermodynamic laws
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Systems play the same role in statistical mechanics as is played by particles in kinetic
theory. A system is any physical entity. (Obviously, this is an exceedingly general
concept!) Examples are a galaxy, the Sun, a sapphire crystal, the fundamental mode
of vibration of that crystal, an aluminum atom in that crystal, an electron from that
aluminum atom, a quantum state in which that electron could reside, . . . .

SEMICLOSED SYSTEMS

Statistical mechanics focuses special attention on systems that couple only weakly to
the rest of the universe. Stated more precisely, we are interested in systems whose
relevant internal evolution timescales, 7, are short compared with the external
timescales, 7., on which they exchange energy, entropy, particles, and so forth,
with their surroundings. Such systems are said to be semiclosed, and in the idealized
limit where one completely ignores their external interactions, they are said to be
closed. The statistical mechanics formalism for dealing with them relies on the as-
sumption /7., < 1; in this sense, it is a variant of a two-lengthscale expansion
(Box 3.3).

Systems: closed and semi-closed

Some examples will elucidate these concepts. For a galaxy of, say, 10! stars, 7,
is the time it takes a star to cross the galaxy, so 7, ~ 10% yr. The external timescale
is the time since the galaxy’s last collison with a neighboring galaxy or the time since
it was born by separating from the material that formed neighboring galaxies; both
these times are 7oy ~ 10'° YT, S0 Tjpy/Texy ~ 1/100, and the galaxy is semiclosed. For
a small volume of gas inside the Sun (say, 1 m on a side), 7y, is the timescale for the
constituent electrons, ions, and photons to interact through collisions, i, < 1070 s;
this is much smaller than the time for external heat or particles to diffuse from the
cube’s surface to its center, 7, X 10~°s, so the cube is semiclosed. An individual
atom in a crystal is so strongly coupled to its neighboring atoms by electrostatic
forces that 7, ~ 7.y, which means the atom is not semiclosed. By contrast, for a
vibrational mode of the crystal, z;,, is the mode’s vibration period, and 7. is the
time to exchange energy with other modes and thereby damp the chosen mode’s
vibrations; quite generally, the damping time is far longer than the period, so the
mode is semiclosed. (For a highly polished, cold sapphire crystal weighing several
kilograms, 7.y can be ~10° 7,..) Therefore, it is the crystal’s vibrational normal
modes and not its atoms that are amenable to the statistical mechanical tools we shall
develop.
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When a semiclosed classical system is idealized as closed, so its interactions with the
external universe are ignored, then its evolution can be described using Hamilto-
nian dynamics (see, e.g., Marion and Thornton, 1995; Landau and Lifshitz, 1976;
Goldstein, Poole, and Safko, 2002). The system’s classical state is described by gen-
eralized coordinates q = {q;} and generalized momenta p = {p;}, where the index j
runs from 1 to W = (the system’s number of degrees of freedom). The evolution of

q, p is governed by Hamiltons equations

Hamiltonian dynamics for closed systems

dq; oH

dt ~ ap;’

dH

—_— = (4.1)

qu,

where H(q, p) is the hamiltonian, and each equation is really W separate equations.

Note that, because the system is idealized as closed, there is no explicit time depen-

dence in the hamiltonian. Of course, not all physical systems (e.g., not those with

strong internal dissipation) are describable by Hamiltonian dynamics,
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Ensembles

In kinetic theory, we study statistically a collection of a huge number of particles.
Similarly, in statistical mechanics, we study statistically a collection or ensemble of
a huge number of systems. This ensemble is actually only a conceptual device, a
foundation for statistical arguments that take the form of thought experiments. As we
shall see, there are many different ways that one can imagine forming an ensemble,
and this freedom can be used to solve many different types of problems.

In some applications, we require that all the systems in the ensemble be closed and
be identical in the sense that they all have the same number of degrees of freedom, W;
are governed by hamiltonians with the same functional forms H (q, p); and have the
same volume V and total internal energy E (or &, including rest masses). However, the
values of the generalized coordinates and momenta at a specific time ¢, {q(t), p(t)},
need not be the same (i.e., the systems need not be in the same state at time ). If sucha
conceptual ensemble of identical closed systems (first studied by Boltzmann) evolves
until it reaches statistical equilibrium (Sec. 4.5), it then is called microcanonical; see
Table 4.1.

103
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_—insulation
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TABLE 4.1: Statistical-equilibrium ensembles used in this chapter
Ensemble Quantities exchanged with surroundings
Microcanonical Nothing
Canonical Energy E
Gibbs Energy E and volume V
Grand canonical Energy E and number of particles N; of various species /
104
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Preliminaries

n = mean number of systems that occupy a quantum state at location
{q, p} in an ensemble’s 2W-dimensional phase space, at time t

1. This generalized 7 is proportional to the number of systems N in our
ensemble. (If we double Ny, then n will double.) Because our ensemble is
only a conceptual device, we don't really care how many systems it contains,
so we divide n by Ny to get a renormalized, Nyy-independent distribution
function, p = n/N,

sys» Whose physical interpretation is

from our ensemble, will be in a quantum state

probability that a system, drawn randomly
p(t;q,p) = (4.4
at location (q, p) in phase space at time ¢

2. If the systems of our ensemble can exchange particles with the external
universe (as is the case, for example, in the grand canonical ensemble of
Table 4.1), then their number of degrees of freedom, W, can change, so p
may depend on W as well as on location in the 2W-dimensional phase space:
p(t; W, q, p).
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Distribution function
In the sector of the system’s phase space with W degrees of freedom, denote the
number density of quantum states by
_ d Ngates _ d Ngates
Noates(W> . p) = DdV = dTy (45)
Here we have used
d% =dqdq,---dqy, d“p=dpdp,---dpy, dTy=d"gdYp. (a6
Then the sum of the occupation probability p over all quantum states, which must
(by the meaning of probability) be unity, takes the form
Z Pn = Z / p-N’stateser =1L (4.7)
n W
106
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GEOMETRICAL VIEWPOINT

Equations (4.4)-(4.7) require some discussion. Just as the events and 4-momenta
in relativistic kinetic theory are geometric, frame-independent objects, similarly lo-
cation in phase space in statistical mechanics is a geometric, coordinate-independent
concept (though our notation does not emphasize it). The quantities {q, p} =
{g1» 92> - - - » Gw> P1> Pas - - . » Py} are the coordinates of that phase-space location.
When one makes a canonical transformation from one set of generalized coordinates
and momenta to another (Ex. 4.1), the gs and ps change, but the geometric location
in phase space does not. Moreover, just as the individual spatial and momentum vol-
umes dV, and dV,, occupied by a set of relativistic particles in kinetic theory are frame
dependent, but their product dV,dV),, is frame-independent [cf. Egs. (3.7a)-(3.7¢)],
so also in statistical mechanics the volumes d%; and d%p occupied by some chosen
set of systems are dependent on the choice of canonical coordinates (they change un-
der a canonical transformation), but the product d¥gd"p = dT'y (the systems’ total
volume in phase space) is independent of the choice of canonical coordinates and is
unchanged by a canonical transformation. Correspondingly, the number density of
states in phase space Ngates = d Ngtates/d T w and the statistical mechanical distribution
function p(t; W, q, p), like their kinetic-theory counterparts, are geometric, coordinate-
independent quantities: they are unchanged by a canonical transformation. See Ex. 4.1
and references cited there.
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DENSITY OF STATES

Classical thermodynamics was one of the crowning achievements of nineteenth-
century science. However, thermodynamics was inevitably incomplete and had to
remain so until the development of quantum theory. A major difficulty, one that we
have already confronted in Chap. 3, was how to count the number of states available to
a system. As we saw in Chap. 3, the number density of quantum mechanical states in
the 6-dimensional, single-particle phase space of kinetic theory is (ignoring particle
spin) Ny es = 1/ k%, where h is Planck’s constant. Generalizing to the 2 W-dimensional
phase space of statistical mechanics, the number density of states turns out tobe 1/ A"
[one factor of 1/ h for each of the canonical pairs (g, py), (g3, P2), - - » (Gw> Pw)]-
Formally, this follows from the canonical quantization procedure of elementary quan-
tum mechanics.
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When the laws of
quantum mechanics were developed, it became clear that all identical particles are
indistinguishable, so having particle 1 at location A in phase space and an identical
particle 2 atlocation B must be counted as the same state as particle 1 at B and particle
2 at A. Correspondingly, if we attribute half the quantum state to the classical phase-
space location {1 at .4, 2 at B} and the other half to {1 at 13, 2 at A}, then the classical
number density of states per unit volume of phase space must be reduced by a factor
of 2—and more generally by some multiplicity factor M. In general, therefore, we can
write the actual number density of states in phase space as

dan, states 1

- = i (4.8a)
WS dr, T MY

N

and correspondingly, we can rewrite the normalization condition (4.7) for our prob-
abilistic distribution function as

dTy
= dly = =1 4.8b
S o= [ eNansirtu =3 [ o555 s

This equation can be regarded, in the classical domain, as defining the meaning of the
sum over states n. We shall make extensive use of such sums over states.

For N identical and indistinguishable particles with zero spin, it is not hard to see
that M= N1 Ifwei quantum ical spin (and the sp
can be regarded as degenerate), then there are g, [Eq. (3.16)] more states present in
the phase space of each particle than we thought, so an individual state’s multiplicity
M (the number of different phase-space locations to be attributed to the state) is
reduced to

N!
= forasystem of N identical particles with spins. | (450
&5

Thisistheq inth inator of th

states [Eq. (4.8b)].
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ENSEMBLE AVERAGE

Each system in an ensemble is endowed with a total energy that is equal to its hamilto-

nian, E = H(q, p) [or relativistically, £ = H(q, p)]. Because different systems reside

at different locations (q, p) in phase space, they typically will have different energies.
A quantity of much interest is the ensemble-averaged energy, which is the average value

of E over all systems in the ensemble:

dr
B =Y =3 [0 ENaedrw =3 [ BT @i
n w w

For any other function A(q, p) defined on the phase space of a system (e.g., the linear
momentum or the angular momentum), one can compute an ensemble average by

the obvious analog of Eq. (4.10a):

(A)=Y" paA,.

(4.10b)

Our probabilistic distribution function p, = p(t; W, q, p) has deeper connections
to quantum theory than the above discussion reveals. In the quantum domain, even
if we start with a system whose wave function v is in a pure state (ordinary, everyday
type of quantum state), the system may evolve into a mixed state as a result of (i) inter-
action with the rest of the universe and (ii) our choice not to keep track of correlations
between the universe and the system (Box 4.2 and Sec. 4.7.2). The system’s initial, pure
state can be described in geometric, basis-independent quantum language by a state
vector (“ket”) [y); but its final, mixed state requires a different kind of quantum de-
scription: a density operator p. In the classical limit, the quantum mechanical density
operator p becomes our classical probabilistic distribution function p(t, W, q, p); see

Box 4.2 for some details.
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Conservation law for systems & Liouville equation

) a ( dq; a ( dp;
», 2 (p—’) +— (p—’) =0. (“.13)
at g dt ap; dt

Equation (4.13) has an implicit sum, from 1 to W, over the repeated index j (recall
the Einstein summation convention, Sec. 1.5). Using Hamilton's equations, we can

rewrite this as
) a dH a dH
0="L4 " (po=) - = (p=
at  dq; ap; ap; dq;

) ap O0H  dp d0H 9,
=% _"___'o_=_p+[p,l-1](l P (4.14)
at  dq;dp; dp;dq; ot :

where [p, H],N, is the Poisson bracket (e.g., Landau and Lifshitz, 1976; Marion and
Thornton, 1995; Goldstein, Poole, and Safko, 2002). By using Hamilton’s equations
once again in the second expression, we discover that this is the time derivative of p
moving with a fiducial system through the 2W-dimensional phase space:

dj ap  daj ap  dp; g, L)
(_P) 2% T4i0p TR0 DRy, H)gp=0.
dt ) movingwitha — gy dt dq; dt ap; dt

fiducial system

Therefore, the probability p is constant along the system’s phase space trajectory, as
was to be proved.

‘We call Eq. (4.15), which embodies this Liouville theorem, the statistical mechan-
ical Liouville equation or collisionless Boltzmann equation.
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Liouville’s theorem

Pi Pi

q; qi
(a) (b)

FIGURE 41 Liouville’s theorem. (a) The region in the g;-p; part of phase space
(with i fixed) occupied by a set S of identical, closed systems at time ¢ = 0.
(b) The region occupied by the same set of systems a short time later, r > 0.
The hamiltonian-generated evolution of the individual systems has moved
them in such a manner as to skew the region they occupy, but the volume
[ dp;dg; is unchanged.
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Boltzmann transport equation

What happens if the systems being studied interact weakly with their surround-

ings? We must then include an interaction term on the rieht-hand side of Ea. (4.15).

thereby converting it into the statistical mechanical version of the Boltzmann trans-

port equation:

() s = (%)
dt moving with a B dt interactions'

fiducial system

(4.16)

The time derivative on the left is now taken moving through phase space with a fiducial

system that does not interact with the external universe.
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REVIE

review ¢

STATISTICAL EQUILIBRIUM AND JEANS' THEOREM
Consider an ensemble of identical systems, all of which have the same huge number of
degrees of freedom (dimensionality W >> 1). Put all the systems initially in the same
state, and then let them exchange heat (but not particles, volume, or anything else)
with an external thermal bath that has a huge heat capacity and is in thermodynamic
equilibrium at some temperature 7. (For example, the systems might be impermeable
cubes of gas 1 km on a side near the center of the Sun, and the thermal bath might
be all the surrounding gas near the Sun’s center; or the systems might be identical
sapphire crystals inside a huge cryostat, and the thermal bath might be the cryostat’s
huge store of liquid helium.) After a sufficiently long time, 7 >> ., the ensemble
will settle down into equilibrium with the bath (i.e., it will become the canonical
ensemble mentioned in Table 4.1 above). In this final, canonical equilibrium state,
the probability p(z, q, p) is independent of time 7, and it no longer is affected by
interactions with the external environment. In other words, the interaction terms in
the evolution equation (4.16) have ceased to have any net effect: on average, for each
interaction event that feeds energy into a system, there is an interaction event that
takes away an equal amount of energy. The distribution function, therefore, satisfies
the interaction-free, collisionless Boltzmann equation (4.15) with the time derivative
dp/dt removed:

[ps Hlg,p= ;—p?— ;—pyzo. (4.17)

qjopj  9P;94;

We use the phrase statistical equilibrium to refer to any ensemble whose distribution
function has attained such a state and thus satisfies Eq. (4.17).
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Canonical distribution

position x

position x
Y To summarize, an ensemble of identical systems with many degrees of freedom
- W >> 1, which have reached statistical equilibrium by exchanging energy but nothing
g =~ else with a huge thermal bath, has the following canonical distribution function:
S E
§ 2 Peanonical = C exp(—=&/kpT), | Peanonical = C’ exp(—E /kgT) nonrelativistically.
o
g cE) (4.20)
£ E Here £(q, p) is the energy of a system at location {q, p} in phase space, kp is Boltz-
mann’s constant, 7" is the temperature of the heat bath, and C is whatever normaliza-
: L N tion constant is required to guarantee that ), p,, = 1. The nonrelativistic expression
is obtained by removing all the particle rest masses from the total energy £ and then
taking the low-temperature, low-thermal-velocities limit.
>
o >
st - &
c v
v c
v
ition states *
position position « states
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GENERAL EQUILIBRIUM ENSEMBLE
We can easily generalize the canonical distribution to an ensemble of systems that
exchange other additive conserved quantities (extensive variables) Ky, K5, ..., in
addition to energy &, with a huge, thermalized bath. By an obvious generalization of
the argument in Sec. 4.4.1, the resulting statistical equilibrium distribution function
must have the form
p=Cexp (—ﬁE—ZﬁAKA) @21)
A
When the extensive variables K 4 that are exchanged with the bath (and thus appear
explicitly in the distribution function p) are energy £, momentum P, angular mo-
mentum J, the number N; of the species I of conserved particles, volume V, or any
combination of these quantities, it is conventional to rename the multiplicative factors
B and B, so that p takes on the form
—-£+U-P+ Q-]+ iy Ny — PV
p=C exp RSN, . (422)
kpT
Here T, U, €, 17, and P are constants (called intensive variables) that are the same
for all systems and subsystems (i.e., that characterize the full ensemble and all its
subensembles and therefore must have been acquired from the bath); any extensive
variable that is not exchanged with the bath must be omitted from the exponential and
be replaced by an implicit delta function.
116
116
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SPECIAL EQUILIBRIUM ENSEMBLES

Henceforth (except in Sec. 4.10.2, when discussing black-hole atmospheres), we re-
strict our baths always to be at rest in our chosen reference frame and to be nonrotating
with respect to inertial frames, so that U = £ = 0. The distribution function p can
then either be a delta function in the system momentum P and angular momentum
J (if momentum and angular momentum are not exchanged with the bath), or it can
involve no explicit dependence on P and J (if momentum and angular momentum
are exchanged with the bath; cf. Eq. (4.22) with U = = 0). In either case, if energy
is the only other quantity exchanged with the bath, then the distribution function is
the canonical one [Eq. (4.20)]:

-£ —E
Peanonical = C €xp I:kB_T] =Cexp [kB_T]’ (4.252)

where (obviously) the constants C and C’ are related by

C'=Cexp [— > N,m,/kBT] )
1
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ibbs = C €x
PGibbs p [ kg T kg T

(with an implicit delta function in N; and possibly in J and P). The combination
€+ PV is known as the enthalpy H. If the exchanged quantities are energy and
particles but not volume (e.g., if the systems are 1-m cubes inside the Sun with totally
imaginary walls through which particles and heat can flow), then the equilibrium is
the grand canonical ensemble, with

£+, ﬁlNl] —Cexp [—E +2 MINI]
kT kT

Pgrand canonical = Cexp [

(4.25¢)
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SINGLE-PARTICLE QUANTUM STATES (MODES)

As an important example, let each system be a single-particle quantum state of
some field. These quantum states can exchange particles (quanta) with one an-
other. As we shall see, in this case the above considerations imply that, in sta-

tistical equilibrium at temperature T, the mean number of particles in a state,
whose individual particle energies are &, is given by the Fermi-Dirac formula (for
fermions) n = 1/(e©~A/*sT) 1 1) and Bose-Einstein formula (for “osons) n =
1/(e©~M/&eT) _ 1), which we used in our kinetic-theory studies in tne last chap-
ter [Egs. (3.22a), (3.22b)]. Our derivation of these mean occupation numbers will

Choose one specific mode S [e.g., a nonrelativistic electron plane-wave mode in

a box of side L with spin up and momentum p = (5, 3, 17)h/L]. There is one such

mode S in each of the systems in our ensemble, and these modes (all identical in their

b bl bl

Our derivation focuses on

properties) form a of our original
this subensemble of identical modes S. Because each of these modes can exchange

energy and particles with all the other modes in its system, the subensemble is grand

canonically distributed.

The (many-particle) quantum states allowed for mode S are states in which S
contains a finite number n of particles (quanta). Denote by Eg the energy of one
particle residing in mode S. Then the mode’s total energy when it is in the state |n)
(when it contains n quanta) is &, = n&g. [For a freely traveling, relativistic electron
mode, £ = y/m? + p?, Eq. (1.40), where p is the mode’s momentum, p, = jh/L

for some integer j and similarly for p, and p;; for a phonon mode with angular
eigenfrequency of vibration w, £g = hw.] Since the distribution of the ensemble’s
modes among the allowed quantum states is grand canonical, the probability p, of
being in state |n) is [Eq. (4.25¢)]

=& i i — &,
pn=C exp ( = Jrl"') =C exp (n(y, S)). (4.26)
ksT ksT

where i and T are the chemical potential and temperature of the bath of other modes,
with which the mode S interacts.®
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FERMION MODES: FERMI-DIRAC DISTRIBUTION

Suppose that S is a fermion mode (i.e., its particles have half-integral spin). Then
the Pauli exclusion principle dictates that S cannot contain more than one particle:
n can take on only the values 0 and 1. In this case, the normalization constant in the

distribution function (4.26) is determined by p, + p; = 1, which implies that

- 1 expl(i — Es)/(kpT)]
1+ exp[(in — Es)/(kpT)]

fo Tt expl(i — E9)/ ks

This is the explicit form of the grand canonical distribution for a fermion mode. For
many purposes (including all those in Chap. 3), this full probability distribution is
more than one needs. Quite sufficient instead is the mode’s mean occupation number

= (427a)

1 1

1
s == §, " expl(Es — )/ Ueg T+ 1 expl(Es — /(gD + 1

(4.27b)

Here Eg5 = £g — misthe energy of a particle in the mode with rest mass removed, and

= ju — m is the chemical potential with rest mass removed—the quantities used in

the nonrelativistic (Newtonian) regime.

Equation (4.27b) is the Fermi-Dirac mean occupation number asserted in Chap. 3
[Eq. (3.22a)] and studied there for the special case of a gas of freely moving, non-
interacting fermions. Because our derivation is completely general, we conclude
that this mean occupation number and the underlying grand canonical distribu-
tion (4.27a) are valid for any mode of a fermion field—for example, the modes for an
electron trapped in an external potential well or a magnetic bottle, and the (single-

particle) quantum states of an electron in a hydrogen atom.
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BOSON MODES: BOSE-EINSTEIN DISTRIBUTION

Suppose that S is a boson mode (i.e., its particles have integral spin), so it can contain
any nonnegative number of quanta; that is, » can assume the values 0, 1,2,3, . . .. Then
the normalization condition Z:c’ _o Pn = 1 fixes the constant in the grand canonical
distribution (4.26), resulting in

r=¢ n(i = &s)
Pn= [1 — exp (Tﬁ)] exp(TTs) . (4.282)

From this grand canonical distribution we can deduce the mean number of bosons
in mode S:

1 1
expl(€s — 1)/ (kpT)]— 1 exp[(Es — p)/(kpT)]— 1"

ns=(n)=y np,=

n=1

(4.28b)
in accord with Eq. (3.22b). As for fermions, this Bose-Einstein mean occupation num-
ber and underlying grand canonical distribution (4.28a) are valid generally, and not
solely for the freely moving bosons of Chap. 3.

When the mean occupation number is small, 75 < 1, both the bosonic and the
fermionic distribution functions are well approximated by the classical Boltzmann
mean occupation number

ns = exp[—(Es — i)/ (kgT)]. (429)

In Sec. 4.9 we explore an important modern application of the Bose-Einstein
mean occupation number (4.28b): Bose-Einstein condensation of bosonic atoms in

(= wir

2 3
(e~ m/kT

a magnetic trap.
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4.4.4 Equipartition Theorem for Quadratic, Classical Degrees of Freedom

As a second example of statistical equilibrium distribution functions, we derive the
classical equipartition theorem using statistical methods.
To motivate this theorem, consider a diatomic molecule of nitrogen, N,. Toa good

ion, its energy (its hamil ) can be written as

2

="’—i p—i p3+P—’1+1M,w2e2+J—‘2+—". (430)
2M  2M  2M  2M; 2 v 21 21
Here M is the molecule’s mass; p,, p,, and p; are the components of its translational
momentum; and the first three terms are the molecule’s kinetic energy of translation.
The next two terms are the molecule’s longitudinal vibration energy, with £ the
change of the molecule’s length (change of the separation of its two nuclei) from
equilibrium, P, the generalized momentum conjugate to that length change, w, the
vibration frequency, and M the generalized mass associated with that vibration. The
last two terms are the molecule’s energy of end-over-end rotation, with J, and J, the

comp of angular iated with this two-di I rotator and
I its moment of inertia.
Notice that every term in this hamiltonian is quadratic in a lized coordi-

nate or generalized momentum! Moreover, each of these coordinates and momenta
appears only in its single quadratic term and nowhere else, and the density of states
is independent of the value of that coordinate or momentum. We refer to such a co-
ordinate or momentum as a quadratic degree of freedom.

In some cases (e.g., the vibrations and rotations but not the translations), the en-
ergy E; = «¢? of a quadratic degree of freedom ¢ is quantized, with some energy
separation &, between the ground state and first excited state (and with energy sep-
arations to higher states that are S¢,). If (and only if) the thermal energy kpT is
significantly larger than ¢, then the quadratic degree of freedom ¢ will be excited far
above its ground state and will behave classically. The equipartition theorem applies
only at these high temperatures. For diatomic nitrogen, the rotational degrees of free-
dom J, and J, have g, ~ 10~* eV and g,/ kg ~ 1K, so temperatures big compared

to 1K are required for J, and J, to behave classically. By contrast, the vibrational
degrees of freedom € and P, have 5 ~ 0.1V and &y/kp ~ 1,000 K, so temperatures
of a few thousand Kelvins are required for them to behave classically. Above ~10* K,
the hamiltonian (4.30) fails: electrons around the nuclei are driven into excited states,
and the molecule breaks apart (dissociates into two free atoms of nitrogen).

The equipartition theorem holds for any classical, quadratic degree of freedom
[i.e., at temperatures somewhat higher than 7, = ¢,/(kzT)]. We derive this theorem
using the canonical distribution (4.25a). We write the molecule’s total energy as
E = a2 + E',where E’ does not involve ¢. Then the mean energy associated with ¢ is

[ ag? e P@E+E) 4¢ d(other degrees of freedom)
[ eP@E+ENE d(other degrees of freedom)

(Eg) = (431)
Here the exponential is that of the canonical distribution function (4.25a), the de-
nominator is the normalizing factor, and we have set 8 = 1/(kpT). Because ¢ does
not appear in the portion E’ of the energy, its integral separates out from the others
in both numerator and denominator, and the integrals over E in numerator and de-
nominator cancel. Rewriting [ a&? exp(—pat?) d¢ as —d/dB|[ [ exp(—pat?) d¢),
Eq. (4.31) becomes

__d o2
(B =—2in [[ exp(—pac )dc]
y (432)

=5 [\/%H / due"‘zdu] = i = %k,,T.

Therefore, in statistical equilibrium, the mean energy associated with any classical,
quadratic degree of freedom is %k pT. This is the equipartition theorem. Note that the
factor 3' follows from the quadratic nature of the degrees of freedom.

For our diatomic molecule, at room temperature there are three translational and
two rotational classical, quadratic degrees of freedom (p,, py, p,, Jy, Jy), so the
mean total energy of the molecule is %kﬂ T.Ata temperaturé of several thousand
Kelvins, the two vibrational degrees of freedom, £ and P;, become classical and the
molecule’s mean total energy is %kg T. Above ~10* K the molecule dissociates, and
its two parts (the two nitrogen atoms) have only translational quadratic degrees of
freedom, so the mean energy per atom is 2k, 7.
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Translational, rotational and vibrational

freedom
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4.6 The Ergodic Hypothesis

The ensembles we have been studying are almost always just conceptual ones that do
not exist in the real universe. We have introduced them and paid so much attention
to them not for their own sakes, but because, in the case of statistical-equilibrium en-
sembles, they can be powerful tools for studying the properties of a single, individual
system that really does exist in the universe or in our laboratory.

This power comes about because a sequence of snapshots of the single system,
taken at times separated by sufficiently large intervals Az, has a probability distri-
bution p (for the snapshots™ instantaneous locations {q, p} in phase space) that is
the same as the distribution function p of some conceptual, statistical-equilibrium
ensemble. If the single system is closed, so its evolution is driven solely by its own
hamiltonian, then the time between snapshots should be Az > 7;, and its snapshots
will be (very nearly) microcanonically distributed. If the single system exchanges en-
ergy, and only energy, with a thermal bath on a timescale 7., then the time between
snapshots should be Az >> 7., and its snapshots will be canonically distributed; sim-
ilarly for the other types of bath interactions. This property of snapshots is equivalent
to the statement that for the individual system, the long-term time average'® of any
function of the system’s location in phase space is equal to the statistical-equilibrium
ensemble average:

A= lim 1
T—oo T

+T/2
f A(q(D), p(1)) =(A) = Z A,pp. (4.33)
-T2 "

This property comes about because of ergodicity: the individual system, as it evolves,
visits each accessible quantum state n for a fraction of the time that is equal to the
equilibrium ensemble’s probability p,,. -
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Entropy

For an ensemble

= _kB Z Pn In Pn-

n

Microcanonical

S:kBInNS

tates*

The entropy, so defined, has some important properties. One is that when the
ensemble can be broken up into statistically independent subensembles of subsystems
(as is generally the case for big systems in statistical equilibrium), so that p =[], p,»
then the entropy is additive: S = )", S, (see Ex. 4.3). This permits us to regard the
entropy, like the systems’ additive constants of motion, as an extensive variable.

A second very important property is that, as an ensemble of systems evolves,
its entropy cannot decrease, and it generally tends to increase. This is the statistical
mechanical version of the second law of thermodynamics.

Entropy is maximized when p is constant
(microcanonical ensemble)
5S=5 fy D(—kBp In p — Ap)NigresdT = 0. (4.36b)

Consider the class of all distribution functions p that: (i) vanish unless the con-
stants of motion have the prescribed values € (in the tiny range §€) and K ; (ii) can be
nonzero anywhere in the region of phase space, which we call ),, where the prescribed
values &, K 4 are taken; and (iii) are correctly normalized so that

Z Pn= / PNstatesdT = 1
n Y

o

(4.36a)

[Eq. (4.8b)]. We ask which p in this class gives the largest entropy
S=—kpy_ palnpy
[

Here A is a Lagrange multiplier that enforces the normalization (4.36a). Performing
the variation, we find that

./3; (—kpIn p — kg — A)3pNaedT =0, (4.36c)
which is satisfied if and only if p is a constant, p = e A ks, independent of lo-
cation in the allowed region ), of phase space (i.e., if and only if p is that of the
microcanonical ensemble). This calculation actually only shows that the microcanon-
ical ensemble has stationary entropy. To show it is a maximum, one must perform
the second variation (i.e., compute the second-order contribution of §p to 85 =
8 [(—kpp In p)NyqresdT). That second-order contribution is easily seen to be

5, 2
825 = / (—k,,%)/vsmdr <0.

Thus, the microcanonical distribution does maximize the entropy, as claimed.

(4.36d)
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Examples

+1

+
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Paradox ?

There is an apparent paradox at the heart of statistical mechanics, and,

at various stages in the development of the subject it has led to
confusion and even despair.

It still creates controversy (see, e.g., Hawking and Penrose, 2010;

Penrose, 1999).

Its simplest and most direct expression is to ask: how can the time-
reversible, microscopic laws, encoded in a time-independent
hamiltonian, lead to the remorseless increase of entropy?
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Entropy increase

Assume, for simplicity, that at time t = 0 all the systems are concentrated in a small but
finite region of phase space with volume AT as shown in Fig. 4.2a, with p = 1/ (Nyates AT)
in the occupied region and p = 0 everywhere else.

Px Pk

AT

9k 9k 9k
(a) (b) ()

FIGURE 4.2 Evolution of a classical ensemble at f = 0 (a) toward statistical equilibrium by means of
phase mixing (b) (cf. Fig. 4.1) followed by coarse-graining of one’s viewpoint (c).
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As time passes each system evolves under the action of the systems’ common hamiltonian. As
depicted in Fig. 4.2b, this evolution distorts the occupied region of phase space; but Liouville’s
theorem dictates that the occupied region’s volume remain unchanged and, correspondingly,
that the ensemble’s entropy remains unchanged.

S= _kB / (p In p)-/)vstatesdr = kB ln(-/\/’statesAr‘)

How can this be so? The ensemble is supposed to evolve into statistical equilibrium, with its
distribution function uniformly spread out over that entire portion of phase space allowed by the
hamiltonian’s constants of motion—a portion of phase space far, far larger —and in the process
the entropy is supposed to increase.
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Coarsening

Figure 4.2b,c resolves the paradox. As time passes, the occupied region becomes
more and more distorted. It retains its phase-space volume, but gets strung out into
a winding, contorted surface (Fig. 4.2b), which (by virtue of the ergodic hypothe-
sis) ultimately passes arbitrarily close to any given point in the region allowed by the
constants of motion. This ergodic wandering is called phase mixing. Ultimately, the
physicist gets tired of keeping track (or ceases to be able to keep track) of all these con-
tortions of the occupied region and chooses instead to take a coarse-grained viewpoint
that averages over scales larger than the distance between adjacent portions of the oc-
cupied surface, and thereby regards the ensemble as having become spread over the
entire allowed region (Fig. 4.2c). More typically, the physicist will perform a coarse-
grained smearing out on some given, constant scale at all times. Once the transverse
scale of the ensemble’s lengthening and narrowing phase-space region drops below
the smearing scale, its smeared volume and its entropy start to increase. Thus, for an
ensemble of closed systems it is the physicist’ choice (though often a practical necessity) to
perform coarse-grain averaging that causes entropy to increase and causes the ensemble
to evolve into statistical equilibrium.
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Discarding correlations

When one reexamines these issues in quantum mechanical language, one discovers
that the entropy increase is caused by the physicist’s discarding the quantum mechan-
ical correlations (the off-diagonal terms in the density matrix of Box 4.2) that get built
up through the systems’ interaction with the rest of the universe. This discarding of
correlations is accomplished through a trace over the external universe’s basis states
(Box 4.2), and if the state of system plus universe was originally pure, this tracing
(discarding of correlations) makes it mixed. From this viewpoint, then, it is the physi-
cist’ choice to discard correlations with the external universe that causes the entropy
increase and the evolution toward statistical equilibrium. Heuristically, we can say that
the entropy does not increase until the physicist actually (or figuratively) chooses to
let it increase by ignoring the rest of the universe. For a simple example, see Box 4.3
and Ex. 4.9.
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Gravity

133

133

4.10 Statistical Mechanics in the Presence of Gravity ]

Systems with significant gravity behave quite differently in terms of their statistical
mechanics than do systems without gravity. This has led to much controversy as to
whether statistical mechanics can really be applied to gravitating systems. Despite
that controversy, statistical mechanics has been applied in the presence of gravity in a
variety of ways, with great success, resulting in important, fundamental conclusions.
In this section, we sketch some of those applications: to galaxies, black holes, the
universe as a whole, and the formation of structure in the universe. Our discussion is
intended to give just the flavor of these subjects and not full details, so we state some
things without derivation. This is necessary in part because many of the phenomena
we describe rely for their justification on general relativity (Part VII) and/or quantum
field theory in curved spacetime (see, e.g., Parker and Toms, 2009).

134

134

20



21/11/24

Galaxies as closed systems of non-interacting stars

Tyt ~ 2R /v ~ 10® yr.

4101 Galaxies E21

A galaxy is dominated by a roughly spherical distribution of dark matter (believed
to comprise elementary particles with negligible collision cross section) with radius
Rp ~3 x 10*' m and mass M, ~ 10" kg. The dark matter and roughly N ~ 10'!
stars, each with fiducial mass m ~ 10°° kg, move in a common gravitational potential
well. (As we discuss in Chap. 28, the ratio of regular, or baryonic, matter to dark matter
is roughly 1:5 by mass.) The baryons (stars plus gas) are mostly contained within a
radius R ~ 3 x 10%° m. The characteristic speed of the dark matter and the stars and
gasis v ~ (GMp/Rp)"/> ~ (GNm/R)"/* ~ 200 kms™". For the moment, focus on
the stars, with total mass M = Nm, ignoring the dark matter and gas, whose presence
does not change our conclusions.

Age of galaxy 10'° yr. Galaxies have distant encounters with their neighbors on
timescales that can be smaller than their ages but still much longer than z;; in this
sense, they can be thought of as semiclosed systems weakly coupled to their environ-
ments. In this subsection, we idealize our chosen galaxy as fully closed (no interaction
with its environment). Direct collisions between stars are exceedingly rare, and strong
two-star gravitational encounters, which happen when the impact parameter'® is
smaller than ~Gm/v? ~ R/N, are also negligibly rare except, sometimes, near the
center of a galaxy (which we ignore until the last paragraph of this subsection). We
can therefore regard each of the galaxy’s stars as moving in a gravitational potential
determined by the smoothed-out mass of the dark matter and all the other stars, and
can use Hamiltonian dynamics to describe their motions.

135
Probability density of N stars Are galaxies at equilibrium ?
Imagine that we have an ensemble of such galaxies, all with the same number of Are real galaxies in statistical equilibrium? To gain insight into this question, we
stars N, the same mass M, and the same energy E (in a tiny range 8 E). We begin our estimate the entropy of a galaxy in our ensemble and then ask whether that entropy
study of that ensemble by making an order-of-magnitude estimate of the probability has any chance of being the maximum value allowed to the galaxy’s stars (as it must
p of finding a chosen galaxy from the ensemble in some chosen quantum state. We be if the galaxy is in statistical equilibrium).
compute that probability from the corresponding probabilities for its sul Obviously, the stars (by contrast with electrons) are distinguishable, so we can
individual stars. The phase-space volume available to each star in the galaxy is ~ assume multiplicity M = 1 when estimating the galaxy’s entropy. Ignoring the (neg-
R3(mv)?, the density of single-particle quantum states (modes) in each star’s phase ligible) correlations among stars, the entropy computed by integating p In p over
space is 1/h?, the number of available modes is the product of these, ~(Rmv/ h)?, the galaxy’s full 6N-dimensional phase space is just N times the entropy asso-
and the probability of the star occupying the chosen mode, or any other mode, is ciated with a single star, which is S~ Nk In(AT'/’) [Egs. (4.37) and (4.82)],
the reciprocal of this product, ~[h/(Rmuv) . The probability of the galaxy occupying where AT is the phase-space volume over which the star wanders in its ergodic,
a state in its phase space is the product of the probabilities for each of its N stars hamiltonian-induced motion (i.e, the phase space volume available to the star).
[Eq. (4.180)]: We express this entropy in terms of the galaxy’s total mass M and its total nonrel-
pre ativistic energy E ~ —GM?/(2R) as follows. Since the characteristic stellar speed is
pr ( h ) ~10-27x10°, 57) v~ (GM/R)"/?, the volume of phase space over which the star wanders is AT’ ~
Rmv (mv)*R® ~ (GMm®R)** ~ (~G*M>*m?*/(2E))*/?, and the entropy is therefore

SGalaxy ~ (M/m)kg In(AT/h%) ~ 3M/(2m))k In(—G*M*m?*/2Eh?)).  (458)
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The galaxy entropy increases

Is this the maximum possible entropy available to the galaxy, given the constraints
that its mass be M and its nonrelativistic energy be E? No. Its entropy can be made
larger by removing a single star from the galaxy to radius r >> R, where the star’s
energy is negligible. The entropy of the remaining stars will decrease slightly, since
the mass M diminishes by m at constant E. However, the entropy associated with the
removed star, ~(3/2) In(GMm?r/h?), can be made arbitrarily large by making its
orbital radius r arbitrarily large. By this thought experiment, we discover that galaxies
cannot be in a state of maximum entropy at fixed E and M; they therefore cannot be
in a true state of statistical equilibrium.!¢ (One might wonder whether there is entropy
associated with the galaxy’s gravitational field, some of which is due to the stars, and
whether that entropy invalidates our analysis. The answer is no. The gravitational
field has no randomness, beyond that of the stars themselves, and thus no entropy;
its structure is uniquely determined, via Newton’s gravitational field equation, by the

stars’ spatial distribution.)
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Galaxies are not in
statistical equilibrium

Age of the Universe
Today: 14 Billion Years 9 Billion Years 5 Billion Years 2 Billion Years

@] [8]=]]

Elliptical

W[

Spiral

In a real galaxy or other star cluster, rare near-encounters between stars in the
cluster core (ignored in the above discussion) cause individual stars to be ejected
from the core into distant orbits or to be ejected from the cluster altogether. These
ejections increase the entropy of the cluster plus ejected stars in just the manner of
our thought experiment. The core of the galaxy shrinks, a diffuse halo grows, and the
total number of stars in the galaxy gradually decreases. This evolution to ever-larger
entropy is demanded by the laws of statistical mechanics, but by contrast with systems
without gravity, it does not bring the cluster to statistical equilibrium. The long-range
influence of gravity prevents a true equilibrium from being reached. Ultimately, the
cluster’s or galaxy’s core may collapse to form a black hole—and, indeed, most large
galaxies are observed to have massive black holes in their cores. Despite this somewhat
negative conclusion, the techniques of statistical mechanics can be used to understand

galactic dynamics over the comparatively short timescales of interest to astronomers
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410.2 Black Holes 21

Quantum field theory predicts that, near the horizon of a black hole, the vacuum fluc-
tuations of quantized fields behave thermally, as seen by stationary (non-infalling)
observers. More specifically, such observers see the horizon surrounded by an atmo-
sphere that is in statistical equilibrium (a thermalized atmosphere) and that rotates
with the same angular velocity £ as the hole’s horizon. This remarkable conclusion,
due to Stephen Hawking (1976), William Unruh (1976), and Paul Davies (1977), is
discussed pedagogically in books by Thorne, Price, and MacDonald (1986) and Frolov
and Zelnikov (2011), and more rigorously in a book by Wald (1994). The atmosphere
contains all types of particles that can exist in Nature. Very few of the particles man-
age to escape from the hole’s gravitational pull; most emerge from the horizon, fly up
to some maximum height, then fall back down to the horizon. Only if they start out
moving almost vertically upward (i.e., with nearly zero angular momentum) do they
have any hope of escaping. The few that do escape make up a tiny trickle of Hawking
radiation (Hawking, 1975) that will ultimately cause the black hole to evaporate, un-
less it grows more rapidly due to infall of material from the external universe (which
it will unless the black hole is far less massive than the Sun).

139
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In discussing the distribution function for the hole’s thermalized, rotating atmo-
sphere, one must take account of the fact that the locally measured energy of a particle
decreases as it climbs out of the hole’s gravitational field (Ex. 26.4). One does so by
attributing to the particle the energy that it would ultimately have if it were to escape
from the hole’s gravitational grip. This is called the particle’s “redshifted energy” and
is denoted by £,. This £, is conserved along the particle’s world line, as is the pro-
jection j - €, of the particle’s orbital angular momentum j along the hole’s spin axis
(unit direction € -

The hole’s horizon behaves like the wall of a blackbody cavity. Into each up-
going mode (single-particle quantum state) a of any and every quantum field that
can exist in Nature, it deposits particles that are thermalized with (redshifted) tem-
perature T}, vanishing chemical potential, and angular velocity €. As a result,
the mode’s distribution function—which is the probability of finding N, particles
in it with net redshifted energy &, ., = N, x (redshifted energy of one quantum
in the mode) and with net axial component of angular momentum j, - € = N, x
(angular momentum of one quantum in the mode)—is

a0+ R 'ja]

(4.59)
kTy

Pa=CexP[
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The temperature T;; and angular velocity 2, like all properties of a black hole,
are determined completely by the hole’s spin angular momentum J ;; and its mass M.
To within factors of order unity, they have magnitudes [Ex. 26.16 and Eq. (26.77)]

N fi _6x1078K N Ju
M 8rkyGMy/d  My/My " MuQGMy )

(4.60)

For a very slowly rotating hole the “~” becomes an “=” in both equations. Notice how
small the hole’s temperature is, if its mass is greater than or of order M. For such holes
the thermal atmosphere is of no practical interest, though it has deep implications for
fundamental physics. Only for tiny black holes (that might conceivably have been

formed in the big bang) is T}, high enough to be physically interesting.
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First law of thermodynamics & BH Entropy

Suppose that the black hole evolves much more rapidly by accreting matter than
by emitting Hawking radiation. Then the evolution of its entropy can be deduced
from the first law of thermod: ics for its here. By techni 1 to
some developed in the next chapter, one can argue that the atmosphere’s equilibrium
distribution (4.59) implies the following form for the first law (where we set ¢ = 1):

dMy =TydSy + Qy -dly (4.61)

[cf. Eq. (26.92)]. Here d M ; is the change of the hole’s mass due to the accretion (with
each infalling particle contributing its €, to d M ;;), d] j; is the change of the hole’s spin
angular momentum due to the accretion (with each infalling particle contributing its
j), and d Sy is the increase of the black holes entropy.

Because this first law can be deduced using the techniques of statistical mechanics
(Chap. 5), it can be argued (e.g., Zurek and Thorne, 1985) that the hole’s entropy

increase has the standard statistical h

ical origin and inter fon: if Nyyies
is the total number of quantum states that the infalling material could have been in
(subject only to the requirement that the total infalling mass-energy be 4 M ; and total
infalling angular momentum be dJ ), then dSy = kp log Nyyes [cf. Eq. (4.35)]. In
other words, the holes entropy increases by kp times the logarithm of the number
of quantum mechanically different ways that we could have produced its changes of
mass and angular momentum, @My, and dJ . Correspondingly, we can regard the
hole’s total entropy as k g times the logarithm of the number of ways in which it could
have been made. That number of ways is enormous, and correspondingly, the hole’s

entropy is enormous. This analysis, when carried out in full detail (Zurek and Thorne,
1985), reveals that the entropy is [Eq. (26.93)]

2

Sy =kg A”z ~1x107kg My )| (462)
4L, M,

where Ay ~ 47 (2GMy/c?) is the surface area of the hole’s horizon, and Lp =

VGh/c* =1.616 x 10733 cm is the Planck length—a result first proposed by Beken-

stein (1972) and first proved by Hawking (1975).

What is it about a black hole that leads to this peculiar thermal behavior and enor-
mous entropy? Why is a hole so different from a star or galaxy? The answer lies in the
black-hole horizon and the fact that things that fall inward through the horizon can-
not get back out. From the perspective of quantum field theory, the horizon produces
the thermal behavior. From that of statistical mechanics, the horizon produces the
loss of information about how the black hole was made and the corresponding en-
tropy increase. In this sense, the horizon for a black hole plays a role analogous to

coarse-graining in conventional classical statistical mechanics.!”
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Zeroth Law

Black holes Classical thermodynamics

For a non-rotating black | For a system in thermal

hole, the event horizon | equilibrium, that system
has constant has constant
surface gravity k. temperature T.

follow
@strange_antiquark
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First Law
Black holes Classical thermodynamics
dM = 8"GdA+ﬂd, dE = TdS — PdV
T
Relates the change in mass to | Relates the change in energy
the change in surface area & to the change in entropy &
change in angular momentum change in volume
follow
@strange_antiquark
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Second Law

Black holes
The surface area of a
black hole is
non-decreasing.
dA=>0

145

Classical thermodynamics

The entropy of an
isolated system is
non-decreasing.
ds>0

Third Law

Classical thermodynamics

Black holes
Extremal black holes
(those with vanishing
surface gravity k = 0)

have the minimum
surface area.
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A system at absolute
zero (T = 0 ) have the
minimum entropy.
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More on Black Hole Thermodynamics &
SM (D. Wallace)

In this article, and its sequel, I want to lay out as carefully and thoroughly
as I can the theoretical evidence for BHT. It is written with the zeal of the
convert: I began this project sharing at least some of the outsiders’ scepticism,
and became persuaded that the evidence is enormously strong both that black
holes are thermodynamical systems in the fullest sense of the word, and that
their thermodynamic behaviour has a statistical-mechanical underpinning in
quantum gravity (and, as a consequence, that black hole evaporation is a unitary
process not different in kind from the cooling of other hot systems, and that it
involves no fundamental loss of information).

Black hole thermodynamics (BHT) is perhaps the most striking and unexpected
development in the theoretical physics of the last forty years. It combines the
three main areas of ‘fundamental’ theoretical physics — quantum theory, general
relativity, and thermal physics — and it offers a conceptual testing ground
for quantum gravity that might be the nearest that field has to experimental
evidence. Yet BHT itself relies almost entirely on theoretical arguments, and its
most celebrated result — Hawking’s argument that black holes emit radiation
— has no direct empirical support and little prospect of getting any. So to
outsiders — to physicists in other disciplines, or to philosophers of science — the
community’s confidence in BHT can seem surprising, or even suspicious. Can
we really be so confident of anything without any grounding in observation?
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410.3 The Universe [

Observations and theory agree that the universe, when far younger than 1s old,
settled into a very hot, highly thermalized state. All particles except gravitons were
in statistical equilibrium at a common, declining temperature, until the dark matter
and the neutrinos dropped out of equilibrium and (like the gravitons) became thermo-

dynamically isolated.

During this early relativistic era, the equations of relativistic cosmology imply
(as discussed in Sec. 28.4.1) that the temperature 7' of the universe at age ¢ satisfied
T/Tp~ (t/tp)~ "2 Here Tp = [fic>/(Gk%)]* ~ 10%2 K is the Planck temperature,
and tp = (fiG/c°)/? ~ 10~# s is the Planck time. (This approximate 7'/ T relation-
ship can be justified on dimensional grounds.) Now the region that was in causal
contact at time  (i.e., that was contained within a mutual cosmological horizon) had
avolume ~ (ct)*, and thermodynamic considerations imply that the number of rela-
tivistic particles that were in causal contact at time t was N ~ (kgT't /F)* ~ (t/tp)>/%
(This remains roughly true today when N has grown to ~10°!, essentially all in
microwave background photons.) The associated entropy was then S ~ Nk (cf.

Sec. 4.8).

148

148

27



21/11/24

Although this seems like an enormous entropy, gravity can do even better. The
most efficient way to create entropy, as described in Sec. 4.10.2, is to form mas-
sive black holes. Suppose that out of all the relativistic particle mass within the
horizon, M ~ NkgT/c?, a fraction f has collapsed into black holes of mass M.
Then, with the aid of Sec. 4.10.2, we estimate that the associated entropy is Sy ~
f(My/M)(t/tp)'/S. If we use the observation that every galaxy has a central
black hole with mass in the ~10°-10° solar mass range, we find that f ~ 10~ and
Sy ~ 10''S today!

Now it might be claimed that massive black holes are thermodynamically isolated
from the rest of the universe because they will take so long to evaporate. That may be
so as a practical matter, but more modest gravitational condensations that create stars
and starlight can produce large local departures from thermodynamic equilibrium,
accompanied by (indeed, driven by) a net increase of entropy and can produce the
conditions necessary for life to develop.
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410.4 Structure Formation in the Expanding Universe:
Violent Relaxation and Phase Mixing 21

The formation of stars and galaxies (“structure”) by gravitational condensation pro-
vides a nice illustration of the phase mixing and coarse-graining that underlie the
second law of thermodynamics (Sec. 4.7.2).

It is believed that galaxies formed when slight overdensities in the dark matter
and gas (presumably irregular in shape) stopped expanding and began to contract
under their mutual gravitational attraction. Much of the gas was quickly converted
into stars. The dark-matter particles and the stars had very little random motion at
this stage relative to their random motions today, v ~ 200 km s~. Correspondingly,
although their physical volume V), was initially only moderately larger than today,
their momentum-space volume V,, was far smaller than it is today. Translated into
the language of an ensemble of N such galaxies, the initial coordinate-space volume
[ d* ~ V" occupied by each of the ensemble’s galaxies was moderately larger than
it is today, while its momentum-space volume [ @*"p ~ V" was far smaller. The
phase-space volume VY V";’ must therefore have increased considerably during the
galaxy formation—with the increase due to a big increase in the relative momenta of
neighboring stars. For this to occur, it was necessary that the stars changed their rel-
ative energies during the contraction, which requires a time-dependent hamiltonian.
In other words, the gravitational potential & felt by the stars must have varied rapidly,
so that the individual stellar energies would vary according to

dE _3H _ 3%

—_—= =m—. (4.66)
dt at ot
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The largest changes of energy occurred when the galaxy was contracting dynami-
cally (collapsing), so the potential changed significantly on the timescale it took stars
to cross the galaxy, 7, ~ 2R /v. Numerical simulations show that this energy trans-
fer was highly efficient. This process is known as violent relaxation. Although violent
relaxation could create the observed stellar distribution functions, it was not by itself
a means of diluting the phase-space density, since Liouville’s theorem still applied.

The mechanism that changed the phase-space density was phase mixing and
coarse-graining (Sec. 4.7.2 above). During the initial collapse, the particles and newly
formed stars could be thought of as following highly perturbed radial orbits. The
orbits of nearby stars were somewhat similar, though not identical. Therefore small
elements of occupied phase space became highly contorted as the particles and stars
moved along their phase-space paths.
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Let us make a simple model of this process by assuming the individual particles
and stars initially populate a fraction f < 1of the final occupied phase-space volume
Vinal- After one dynamical timescale t;,, ~ R/v, this small volume fVj, is (pre-
sumably) deformed into a convoluted surface that folds back on itself once or twice
like dough being kneaded by a baker, while still occupying the same volume f V.-
After n dynamical timescales, there are ~2" such folds (cf. Fig. 4.2b above). After
n ~ —log, f dynamical timescales, the spacing between folds becomes comparable
with the characteristic thickness of this convoluted surface, and it is no longer prac-
tical to distinguish the original distribution function. We expect that coarse-graining
has been accomplished for all practical purposes; only a pathological physicist would
resist it and insist on trying to continue keeping track of which contorted phase-space
regions have the original high density and which do not. For a galaxy we might expect
that f ~ 1073 and so this natural coarse-graining can occur in a time approximately
equal to — log, 10737;,; ~ 10 7;,, ~ 10° yr, which is 10 times shorter than the present
age of galaxies. Therefore it need not be a surprise that the galaxy we know best, our
own Milky Way, exhibits little obvious vestigial trace of its initial high-density (low
phase-space-volume) distribution function.?’
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411 Information Gained When Measuring the State of a System
in a Microcanonical Ensemble 21

In Sec. 4.7, we said that entropy is a measure of our lack of information about the
state of any system chosen at random from an ensemble. In this section we make this
heuristic statement useful by introducing a precise definition of information.
Consider a microcanonical ensemble of identical systems. Each system can reside
in any one of a finite number, Ny, of quantum states, which we label by integers
n=1,2,3,..., Nyaes- Because the ensemble is microcanonical, all Ny states are
equally probable; they have probabilities p, = lﬁNmﬁ. Therefore the entropy of any
system chosen at random from this ensemble isfS = —kg 3", pn In p, = kg In Nyaies
[Egs. (4.34) and (4.35)].
Now suppose that we measure the state of our chosen system and find it to be
(for example) state number 238 out of the N, equally probable states. How much
information have we gained? For this thought experiment, and more generally (see
Sec. 4.11.2 below), the amount of information gained, expressed in bits, is defined to be
the minimum number of binary digits required to distinguish the measured state from all
the other Ny states that the system could have been in. To evaluate this information
gain, we label each state n by the number n — 1 written in binary code (state n = 1
is labeled by {000}, state n = 2 is labeled by {001}, 3 is {010}, 4 is {011}, 5 is {100},
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61is {101}, 7 is {110}, 8 is {111}, etc.). If Nyqaes = 4, then the number of binary digits
needed is 2 (the leading 0 in the enumeration above can be dropped), so in measuring
the system’s state we gain 2 bits of information. If N, = 8, the number of binary
digits needed is 3, so our measurement gives us 3 bits of information. In general,
we need log, Ny, binary digits to distinguish the states from one another, so the
amount of information gained in measuring the system’ state is the base-2 logarithm of
the number of states the system could have been in:

I =108, Nyyes = (1/102) In Nypyyog = 1.4427 In Ny (4.672)

Notice that this information gain is proportional to the entropy S = kg In Nggyes
of the system before the measurement was made:

I=S5/(kgn2). (4.67b)

The measurement reduces the system’s entropy from S = kg In N, to zero
(and increases the entropy of the rest of the universe by at least this amount), and
it gives us I = S/(kg In 2) bits of information about the system. We shall discover
below that this entropy/information relationship is true of measurements made on a
system drawn from any ensemble, not just a microcanonical ensemble. But first we
must develop a more complete understanding of information.
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4M.2 Information in Communication Theory [Z1

The definition of “the amount of information / gained in a measurement” was for-
mulated by Claude Shannon (1948) in the context of his laying the foundations of
C ication theory. Cc ication theory deals (among other things) with the
problem of how to encode most efficiently a message as a binary string (a string of Os
and 1s) in order to transmit it across a communication channel that transports binary
signals. Shannon defined the information in a message as the number of bits required,
in the most compressed such encoding, to distinguish this message from all other messages
that might be transmitted.

Shannon focused on messages that, before encoding, consist of a sequence of sym-
bols. For an English-language message, each symbol might be a single character (a
letter A, B,C, . . ., Zoraspace; N = 27 distinct symbols in all), and a specific message
might be the following sequence of length L = 19 characters: “I DO NOT UNDER-
STAND” Suppose, for simplicity, that in the possible messages, all N distinct symbols
appear with equal frequency (this, of course, is not the case for English-language mes-
sages), and suppose that the length of some specific message (its number of symbols)
is L. Then the number of bits needed to encode this message and distinguish it from
all other possible messages of length L is

I=log, N =Llog, N. (4.682)

In other words, the average number of bits per symbol (the average amount of infor-
mation per symbol) is
I=log, N. (4.68b)
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If there are only two possible symbols, we have one bit per symbol in our message. If
there are four possible (equally likely) symbols, we have two bits per symbol, and so
forth.

It is usually the case that not all symbols occur with the same frequency in the
allowed messages. For example, in English messages the letter “A” occurs with a
frequency pj =~ 0.07, while the letter “Z” occurs with the much smaller frequency
pz =~ 0.001. All English messages, of character length L 3> N = 27, constructed by
a typical English speaker, will have these frequencies of occurrence for “A” and “Z”.
Any purported message with frequencies for “A” and “Z” differing substantially from
0.07 and 0.001 will not be real English messages, and thus need not be included
in the binary encoding of messages. As a result, it turns out that the most efficient
binary encoding of English messages (the most compressed encoding) will use an
average number of bits per character somewhat less than log, N = log, 27 = 4.755.
In other words, the average information per character in English language messages
is somewhat less than log, 27.
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A straightforward generalization of this argument (Ex. 4.17) shows that, when one
constructs messages with very large length L >> N from a pool of N symbols that occur
with frequencies py, p,, . . ., py, the minimum number of bits required to distinguish
all the allowed messages from one another (i.e., the amount of information in each
message) is

N
I=L Z —p, log, p,; (4.70)

n=1

so the average information per symbol in the message is

N N
I= Z —Pnlog; pp=(1/1n2) Z —PnIn p,. (4.71)
n=1

n=1
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4.11.4 Some Properties of Information

Because of the similarity of the general formulas for information and entropy (both
proportional to Y, —p,, In p,), information has very similar properties to entropy.
In particular (Ex. 4.18):

1. Information is additive (just as entropy is additive). The information in two
successive, independent messages is the sum of the information in each
message.

2. If the frequencies of occurrence of the symbols in a message are p,, = 0 for
all symbols except one, which has p, = 1, then the message contains zero
information. This is analogous to the vanishing entropy when all states have
zero probability except for one, which has unit probability.

3. For a message L symbols long, whose symbols are drawn from a pool of N
distinct symbols, the information content is maximized if the probabilities
of the symbols are all equal (p,, = 1/N), and the maximal value of the infor-
mation is / = L log, N. This is analogous to the microcanonical ensemble
having maximal entropy.
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MEMORY AND ENTROPY

Information is also a key concept in the theory of computation. As an important
example of the relationship of information to entropy, we cite Landauer’s (1961, 1991)
theorem: In a computer, when one erases L bits of information from memory, one
necessarily increases the entropy of the memory and its environment by at least
AS = Lkpg In 2 and correspondingly, one increases the thermal energy (heat) of the
memory and environment by at least AQ = TAS = LkgT In 2 (Ex. 4.21).
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