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Random Processes

ROBERT BROWN (1828)

These motions were such as to satisfy me, after frequently repeated observation, that they arose
neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle itself.
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6.1 Overview

In this chapter we analyze, among others, the following issues:

What is the time evolution of the distribution function for an ensemble of
systems that begins out of statistical equilibrium and is brought to equilib-
rium through contact with a heat bath?

How can one characterize the noise introduced into experiments or obser-
vations by noisy devices, such as resistors and amplifiers?
What is the influence of such noise on oneé’s ability to detect weak signals?

What filtering strategies will improve one’s ability to extract weak signals
from strong noise?

Frictional damping of a dynamical system generally arises from coupling to
many other degrees of freedom (a bath) that can sap the system’s energy.
What is the connection between the fluctuating (noise) forces that the bath
exerts on the system and its damping influence?
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6.2.1 Random Variables and Random Processes

RANDOM VARIABLE

A (1-dimensional) random variable is a (scalar) function y (), where f is usually time,
for which the future evolution is not determined uniquely by any set of initial data—
or at least by any set that is knowable to you and me. In other words, random variable
is just a fancy phrase that means “unpredictable function” Throughout this chapter,
we insist for simplicity that our random variables y take on a continuum of real values
ranging over some interval, often but not always —o0 to +00. The generalizations to
y with complex or discrete (e.g., integer) values, and to independent variables other
than time, are straightforward.

Examples of random variables are: (i) the total energy E(t) in a cell of gas that is
in contact with a heat bath; (ii) the temperature 7'(t) at the corner of Main Street and
Center Street in Logan, Utah; (iii) the price per share of Google stock P(t); (iv) the
mass-flow rate M (t) from the Amazon River into the Atlantic Ocean. One can also
deal with random variables that are vector or tensor functions of time; in Track-Two
portions of this chapter we do so.
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Daily Returns of the S&P 500 index between 1990 - 1999
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Mass flow rate from the Amazon’s river
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RANDOM PROCESS
A (1-dimensional) random process (also called “stochastic process”) is an ensemble £
of real random variables y(t) that, in a physics context, all represent the same kind of
physical entity. For example, each y () could be the longitude of a particular oxygen
molecule undergoing a random walk in Earth’s atmosphere. The individual random
variables y(t) in the ensemble € are often called realizations of the random process.
As an example, Fig. 6.1 shows three realizations y(f) of a random process that
represents the random walk of a particle in one dimension. For details, see Ex. 6.4,
which shows how to generate realizations like these on a computer.
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PROBABILITY DISTRIBUTIONS FOR A RANDOM PROCESS
Since the precise time evolution of a random variable y(f) is not predictable, if one
wishes to make predictions, one can do so only probabilistically. The foundation for
probabilistic predictions is a set of probability functions for the random process (i.e.,
for the ensemble € of its realizations).

More specifically, the most general (1-dimensional) random process is fully char-
acterized by the set of probability distributions p;, py, ps, . . . defined as

PnOns b+ - 3 Y25 s Y15 1)AY,, - . . dy,dy,. (6.1)

Equation (6.1) tells us the probability that a realization y(t), drawn at random from
the process (the ensemble &), (i) will take on a value between y, and y; + dy, at time
t;, (ii) also will take on a value between y, and y, + dy, at a later time f,, . .., and
(iii) also will take on a value between y, and y, + dy, atalater time #,. (Note that the
subscript n on p,, tells us how many independent values of y appear in p,, and that
earlier times are placed to the right—a practice common for physicists, particularly
when dealing with propagators.) If we knew the values of all the process’s probability
distributions (an infinite number of p,,s!), then we would have full information about
its statistical properties. Not surprisingly, it will turn out that, if the process in some
sense is in statistical equilibrium, then we can compute all its probability distributions
from a very small amount of information. But that comes later; first we must develop
more formalism.
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ENSEMBLE AVERAGES

From the probability distributions, we can compute ensemble averages (denoted by

brackets). For example, the quantities

(y@p) = / y1P1(y> t)dy; and 0_3.(’1) E([)’(’l) - (J’(fl))lz) (6.2a)

are the ensemble-averaged value of y and the variance of y at time #,. Similarly,

(y)y(ty)) = / Y2Y1P2 (2 13 Y1> 11)dyrdy, (6.2b)

is the average value of the product y(#;)y(fy).

CONDITIONAL PROBABILITIES

Besides the (absolute) probability distributions p,,, we also find useful an infinite series
of conditional probability distributions P,, P;, . . . , defined as

Pn(yn' tnlyn—l' Lp—p5- -

5V H)AY,. (6.3)

This distribution is the probability that, if y(f) took on the values y;, y,, ..., y,_;at
times t;, 1y, . . ., ,_y, then it will take on a value between y, and y, + dy, at a later

time 7,,.
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extremely small 7, — 1,

small 7, — 1,

large #, — t,, Maxwellian

FIGURE 6.2 The probability P,(v,, 1,]0, #;) that a molecule with
vanishing speed at time ¢, will have speed v, (in a unit interval dv,)
at time #,. Although the molecular speed is a stationary random
process, this probability evolves in time.

STATIONARY RANDOM PROCESSES
A random process is said to be stationary if and only if its probability distributions p,,
depend just on time differences and not on absolute time:

POty + T 50 L+ Y+ T) =PV bys -5V I Yo 1) (65)

If this property holds for the absolute probabilities p,,, then Eq. (6.4) guarantees it also
will hold for the conditional probabilities P,.

Nonstationary random processes arise when one is studying a system whose evo-
lution is influenced by some sort of clock that registers absolute time, not just time
differences. For example, the speeds v(t) of all oxygen molecules in downtown St. An-
thony, Idaho, make up random processes regulated in part by the atmospheric temper-
ature and therefore by the rotation of Earth and its orbital motion around the Sun. The

influence of these clocks makes v(f) a nonstationary random process. Stationary ran-
dom processes, by contrast, arise in the absence of any regulating clocks. An example
is the speeds v(r) of all oxygen molecules in a room kept at constant temperature.
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Stationary and non-stationary molecular velocity
distributions

# of molecules
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Henceforth, throughout this chapter, we restrict attention to random processes that
are stationary (at least on the timescales of interest to us); and, accordingly, we use
1Y) =pi(y, 1) (6.62)
for the probability, since it does not depend on the time #,. We also denote by
Py (32, tly)) = Py(y2, ty1, 0) (6.6b)
the probability that, if a (realization of a) random process begins with the value y,,
then after the lapse of time ¢ it has the value y,.
176
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Ergodic hypothesis

6.2.3 Ergodic Hypothesis

A (stationary) random process (ensemble £ of random variables) is said to satisfy the
ergodic hypothesis (or, for brevity, it will be called ergodic) if and only if it has the
following property.

Let y(t) be a random variable in the ensemble £ (i.e., let y(f) be any realization of
the process). Construct from y(f) a new ensemble £ whose members are

YX@t)y=y(t + K1), 6.7)

where K runs over all integers, negative and positive, and where T is some very
large time interval. Then £ has the same probability distributions p, as &; that is,
Pu(Yys ty5 .. .5 Yy, 1)) has the same functional form as p,(y,, t,; - ..; Y1, ;) for all
times such that [f; — ;| < T.

This is essentially the same ergodic hypothesis as we met in Sec. 4.6.
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Ergodic processes

As in Sec. 4.6, because of the ergodic hypothesis, time averages defined using any
realization y () of a random process are equal to ensemble averages:

T/2
F=tim 2 [ Fo@)ar=Fon= [ Fommd, 6
T—oo T Jo1)2

for any function F = F(y). In this sense, each realization of the random process is
representative, when viewed over sufficiently long times, of the statistical properties
of the process’s entire ensemble—and conversely. Correspondingly, we can blur the
distinction between the random process and specific realizations of it—and we often
do so.
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6.3.1 Markov Processes; Random Walk

A random process y(t) is said to be Markov (also sometimes called “Markovian”) if
and only if all of its future probabilities are determined by its most recently known
value:

PV Ll Vs tats - - 3 Y0 1) = Po(Vps ty| V1o ta—y) forallz, >...>t,>1,.

(6.9)

This relation guarantees that any Markov process (which, of course, we require to be
stationary without saying so) is completely characterized by the probabilities

P2(¥2, 15 ¥, 0)
P1(y)

p1(y) and Py(yy, t]y)) = (6.10)
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An example of a Markov process is the x component of velocity v, (f) of a dust
particle in an arbitrarily large room,! filled with constant-temperature air. Why?
Because the molecule’s equation of motion is? mdv, /dt = F!(t), and the force F/ (1)
is due to random buffeting by other molecules that are uncorrelated (the kick now is
unrelated to earlier kicks); thus, there is no way for the value of v, in the future to be
influenced by any earlier values of v, except the most recent one.

By contrast, the position x (¢) of the particle is not Markov, because the probabili-
ties of future values of x depend not just on the initial value of x, but also on the initial
velocity v, —or, equivalently, the probabilities depend on the values of x at two initial,
closely spaced times. The pair {x(t), v, (¢)} is a 2-dimensional Markov process (see
Ex. 6.23).
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State Space Discrete Continuous

Type of Parameter

Discrete

(Discrete-parameter)  Continuous-parameter

Markov chain

Markov chain

Continuous  Discrete-parameter Continuous-parameter

Markov process

Markov process
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THE SMOLUCHOWSKI EQUATION

Choose three (arbitrary) times #;, ,, and 5 that are ordered, so f; < 1, < t3. Consider
a (realization of an) arbitrary random process that begins with a known value y; at
t;, and ask for the probability P,(ys, t3]y;) (per unit y3) that it will be at y; at time
t3. Since the realization must go through some value y, at the intermediate time #,
(though we don’t care what that value is), it must be possible to write the probability
to reach y; as

Py(y3, 3lyp 1) =/ P3(y3, 13]y2, 13 Y1 1) Py (32, 1|y 1) Ay,

where the integration is over all allowed values of y,. This is not a terribly interesting
relation. Much more interesting is its specialization to the case of a Markov process.
In that case P3(y3, 13]y3, ; ¥1> ;) can be replaced by Py(y3, 132, 1) = Py(y3, 13 —
1|¥2, 0) = Py(y3, 13 — 1| y,), and the result is an integral equation involving only P;.
Because of stationarity, it is adequate to write that equation for the case t; = 0:

Py(y3, t31y1) =/ Py(y3, t3 — 1 y2) Po (32, 1|y )y (6.11)

This is the Smoluchowski equation (also called Chapman-Kolmogorov equation). It is
valid for any Markov random process and for times 0 < 1, < 3. We shall discover its
power in our derivation of the Fokker-Planck equation in Sec. 6.9.1.
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Passive and active brownian motion
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DRY ACTIVE PARTICLE MODELS FOR A SINGLE PARTICLE
Model Equations of motion Parameters Natural units
\""(t) =p(t) + Pe_ig(t) _ Time scale: 7, = I)l;l
ABP . Pe = V2DDg
B(t) = V2n(t) Length scale: [ = I, = wDg!
(1) = At Time scale: 7, = A}
RTP )= None™ i ‘
d(t) = > Adad(t— T,) Length scale: I =1, = oAy !
%(() = to(t) Time scale: 7,
AOUP ) None
Bo(t) = —Bo(t) + V(1) Length scale: [ = /D,
ZereN = —1 77 _ vy : . — -1
CAP T(t) = p(t) + Pe” "&(t) Pe = \/73_171( Time scale: 7, = Dy
() =@ +v2n(t) & =wr, Length scale: [ =1, = L‘QI)EI
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An Introduction to Modeling Approaches of Active Matter
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GAUSSIAN PROCESSES
A random process is said to be Gaussian if and only if all of its (absolute) probability
distributions are Gaussian (i.e., have the following form):

n n
Pa s b -3 V0 b3 Yo 1) = A exp[— DY ey = Nok— i)], (6.14a)
j=1 k=1
where (i) A and o j; depend only on the time differences t, —t;, 13 — 1y, ..., 1, — 133
(ii) A is a positive normalization constant; (iii) [e; ] is a positive-definite, symmetric
matrix (otherwise p, would not be normalizable); and (iv) y is a constant, which one
readily can show is equal to the ensemble average of y,

y={y = / yp(y) dy. (6.14b)

Since the conditional probabilities are all computable as ratios of absolute proba-
bilities [Eq. (6.4)], the conditional probabilities of a Gaussian process will be Gaussian.
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Gaussian random processes are very common in physics. For example, the total
number of particles N (¢) in a gas cell that is in statistical equilibrium with a heat bath
is a Gaussian random process (Ex. 5.11d); and the primordial fluctuations that gave
rise to structure in our universe appear to have been Gaussian (Sec. 28.5.3). In fact, as
we saw in Sec. 5.6, macroscopic variables that characterize huge systems in statistical
equilibrium always have Gaussian probability distributions. The underlying reason is
that, when a random process is driven by a large number of statistically independent,
random influences, its probability distributions become Gaussian. This general fact is a
consequence of the central limit theorem of probability. We state and prove a simple
variant of this theorem.
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Gaussian processes with different kernels
- 'H:(IT‘I,-FC)Z‘ .
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6.3.3 Doob’s Theorem for Gaussian-Markov Processes, and Brownian Motion

A large fraction of the random processes that one meets in physics are Gaussian, and
many are Markov. Therefore, the following remarkable theorem is very important.
Any 1-dimensional random process y(t) that is both Gaussian and Markov has the
following form for its conditional probability distribution Py:

1 (0 —3)*
Py(yy, tlyp) = - exp | ——2 | (6.18a)
[27'”7)",2]7 ZUYI

where the mean y, and variance ayz at time ¢ are given by
1

Y=y +e "y — ), Uyz’ =(1—e */")o 2 (6.18b)

Here y and 0,7 are respectively the processs equilibrium mean and variance (the
values at f — 00), and 7, is its relaxation time. This result is Doob’s theorem.® We shall
prove it in Ex. 6.5, after we have developed some necessary tools.
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t=0
+=0.021,
t=0.21,
L |
Y2
FIGURE 6.4 Evolution of the conditional probability P,(y,, t|y,) for a Gaussian-Markov
random process [Eq. (6.18a)], as predicted by Doob’s theorem. The correlation function
and spectral density for this process are shown later in the chapter in Fig. 6.8.
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6.4 Correlation Functions and Spectral Densities
6.4.1 Correlation Functions;

Let y(t) be a (realization of a) random process with time average y. Then the corre-
lation function of y(#) is defined by

_ _ 1 (172
€ =B® 3T 0 —31= Jim 7 [ v =30 + 1) — 5.

(6.19)

This quantity, as its name suggests, is a measure of the extent to which the values of y
attimest and ¢ + 7 tend to be correlated. The quantity 7 is sometimes called the delay
time, and by convention it is taken to be positive. [One can easily see that, if one also
defines C\(7) for negative delay times 7 by Eq. (6.19), then C,,(—7) = C,(). Thus
nothing is lost by restricting attention to positive delay times.]

As an example, for a Gaussian-Markov process with P, given by Doob’s formula
(6.18a) (Fig. 6.4), we can compute C () by replacing the time average in Eq. (6.19) with
an ensemble average: C () = J ¥2 y1 P2(v2» T3 ¥p) dy; dy,. If we use py(yy, T3 yy) =
Py(yy, T3 yp) P1(yD) [Eq. (6.10)], insert P, and p, from Egs. (6.18), and perform the
integrals, we obtain

Cy(t) =0/, (6.20)
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This correlation function has two properties that are quite general:

1. The following is true for all (ergodic and stationary) random processes:

Cy 0) s (6.21a)

as one can see by replacing time averages with ensemble averages in defini-
tion (6.19); in particular, C,(0) = (y — ¥)? = ((y — )?), which by defini-
tion is the variance a).z of y.

(0

[N

. In addition, we have that

C,(t) asymptotes to zero for 7 > 7,, (6:21b)

where 7, is the process’s relaxation time or correlation time (see Fig. 6.5). This
is true for all ergodic, stationary random processes, since our definition of
ergodicity in Sec. 6.2.3 relies on each realization y(r) losing its memory of
earlier values after some sufficiently long time 7. Otherwise, it would not be
possible to construct the ensemble &’ of random variables Y X (1) [Eq. (6.7)]
and have them behave like independent random variables.

FIGURE6.5 Properties (6.21) of correlation functions.
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6.4.2 Spectral Densities

There are several different normalization conventions for Fourier transforms. In this
chapter, we adopt a normalization that is commonly (though not always) used in the
theory of random processes and that differs from the one common in quantum theory.
Specifically, instead of using the angular frequency w, we use the ordinary frequency
f = w/(27). We define the Fourier transform of a function y(t) and its inverse by

+00 +00
()= / yner i, y(t)= f F(He T df | (629)

00 —00

Notice that with this set of conventions, there are no factors of 1/(27) or 1/+/27
multiplying the integrals. Those factors have been absorbed into the df of Eq. (6.23),
sincedf =dw/(27m).

Theintegrals in Eq. (6.23) are not well defined as written because a random process
¥(t) is generally presumed to go on forever so its Fourier transform y( f) is divergent.
One gets around this problem by crude trickery. From y() construct, by truncation,
the function

y@t) if-T/2<t<+T/2,

yrt) = [ (6.24a)
0 otherwise.

193
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Then the Fourier transform y7(f) is finite, and by Parseval’s theorem (e.g., Arfken,
Weber, and Harris, 2013) it satisfies
+T/2 ) +00 ) +00 ) 00 )
| bobda= [brora= [ it =2 [ 5ok
-T/2 —00 —00 0
(6.24b)
In the last equality we have used the fact that because y(¢) is real, y7(f) = ¥7(—f),
where * denotes complex conjugation. Consequently, the integral from —o0 to 0 of
|F7(f)|? is the same as the integral from 0 to +00. Now, the quantities on the two
sides of (6.24b) diverge in the limit as T — 00, and it is obvious from the left-hand
side that they diverge linearly as T'. Correspondingly, the limit
1 [T ) 5 [ )
li —/ Hdt = i —/ y d 6.24
AT y®] A7 [yr(HI7df (6.240)
is convergent.
These considerations motivate the following definition of the spectral density (also
sometimes called the power spectrum) S,(f) of the random process y(t):
2 +T/2 ) 2
S,(f)= lim —' / [y(t) — yle>™/"dt (6.25)
T—oo T| J-1p2
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Notice that the quantity inside the absolute value sign is just 7( f), but with the mean
of y removed before computation of the Fourier transform. (The mean is removed to
avoid an uninteresting delta function in S, (f) at zero frequency.) Correspondingly,

by virtue of our motivating result (6.24c), the spectral density satisfies f0°° Sy(fHdf =

. T/2 S S
limy_, %fjr//z [y — ylzdt =0 -2 :o'yz, or

/ * S,(f)df =C,0) =0?. (6.26)
) ) )

Thus the integral of the spectral density of y over all positive frequencies is equal to
the variance of y.

By convention, our spectral density is defined only for nonnegative frequencies f.
This is because, were we to define it also for negative frequencies, the fact that y () is
real would imply that S, (f) = S, (—f), so the negative frequencies contain no new
information. Our insistence that f be positive goes hand in hand with the factor 2 in
the 2/ T of definition (6.25): that factor 2 folds the negative-frequency part onto the
positive-frequency part. This choice of convention is called the single-sided spectral
density. Sometimes one encounters a double-sided spectral density,

. 1
S;louble-slded(f) — ES)(Ifl)’ (6.27)

inwhich f isregarded as both positive and negative, and frequency integrals generally
run from —00 to +00 instead of 0 to 0o (see, e.g., Ex. 6.7).
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Meaning of the spectral density

‘We can infer the physical meaning of the spectral density from previous experience
with light spectra. Specifically, consider the scalar electric field® E(f) of a plane-
polarized light wave entering a telescope from a distant star, galaxy, or nebula. (We
must multiply this E(t) by the polarization vector to get the vectorial electric field.)
This E(t) is a superposition of emission from an enormous number of atoms, mol-
ecules, and high-energy particles in the source, so it is a Gaussian random process.
It is not hard to convince oneself that E(t)’s spectral density Sg(f) is proportional
to the light power per unit frequency d€/dtdf (the light's power spectrum) en- frequency f
tering the telescope. When we send the light through a diffraction grating, we get
this power spectrum spread out as a function of frequency f in the form of spec-

FIGURE6.6 A spectrum obtained by sending light through a diffraction grating. The intensity of the
image is proportional to d€/dtdf, which, in turn, is proportional to the spectral density Sg(f) of
tral lines superposed on a continuum, as in Fig. 6.6. The amount of light power in the electric field () of the light that entered the diffraction grating.

this spectrum, in some narrow bandwidth Af centered on some frequency f, is

dE/dtdf)Af o« Sp(f)Af (assuming S is nearly constant over that band).
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6.44 The Wiener-Khintchine Theorem;

The Wiener-Khintchine theorem says that, for any random process y(t), the correlation
function C(t) and the spectral density S, (f) are the cosine transforms of each other

and thus contain precisely the same information:

Cy(r)= /-oo Sy(f) cos(2nfr)df, S,(f)=4 /OO C,(t) cos2n fr)dr.
0 : 0o

The factor 4 results from our folding negative frequencies into positive in our defini-

tion of the spectral density.

(6.29)
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Proof of Wiener-Khintchine Theorem. This theorem is readily proved as a con-
sequence of Parseval’s theorem: Assume, from the outset, that the mean has been
subtracted from y(t), so y = 0. (This is not really a restriction on the proof, since C,,
and S are insensitive to the mean of y.) Denote by y(7) the truncated y of Eq. (6.24a)
and by 7(f) its Fourier transform. Then the generalization of Parseval’s theorem’

—+00 +00 . _
f (gh* + hg*)dt = / @+ hghdf (6.30)

—00 —00
[with g = y(t) and h = yy(t + 7) both real and with § = J7(f), h = y;(f)e~ /7],
states

+00 +00 X
/ yr®)yr(t + 7)dt = / (NI (e T df. (6.30b)

—00 —00
By dividing by T, taking the limit as 7 — 00, and using Eqs. (6.19) and (6.25), we
obtain the first equality of Eqgs. (6.29). The second follows from the first by Fourier
inversion. m

Can you prove it?

™~
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As an application of the Wiener-Khintchine theorem, we can deduce the spectral
density S, (f) for any Gaussian-Markov process by performing the cosine transform
of its correlation function C(7) = Uyze_’/ r [Eq. (6.20)]. The result is

(4/t,)0,?

SN = G ey

(6.32)

see Fig. 6.8.

(a)

FIGURE6.8 (a) The correlation function (6.20) and (b) the spectral density (6.32) for a Gaussian-
Markov process. The conditional probability P,(y,, t|y,) for this process is shown in Fig. 6.4.
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6.6 Noise and Its Types of Spectra

Experimental physicists and engineers encounter random processes in the form of
noise that is superposed on signals they are trying to measure. Examples include:

1. In radio communication, static on the radio is noise.

2. When modulated laser light is used for optical communication, random
fluctuations in the arrival times of photons always contaminate the signal;
the effects of such fluctuations are called “shot noise” and will be studied in
Sec. 6.6.1.

3. Even the best of atomic clocks fail to tick with absolutely constant angular

frequencies w. Their frequencies fluctuate ever so slightly relative to an ideal
clock, and those fluctuations can be regarded as noise.
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6.6.1 Shot Noise, Flicker Noise, and Random-Walk Noise; Cesium Atomic Clock

Physicists, astronomers, and engineers give names to certain shapes of noise spectra:

S,(f) independent of f—white noise spectrum, (6.44a)
S, (f) o< 1/ f —flicker noise spectrum, (6.44b)
Sy(f)x1/f 2_random-walk spectrum. (6.44c)
201
201
H H White noise, S, independent of f, is called “white” because it has equal amounts
W h I te n O I S e of power per unit ;'requency S, at all frequencies, just as white light has roughly equal
. powers at all light frequencies. Put differently, if y(¢) has a white-noise spectrum,
(f I n d e p e n d e n t e ) then its rms fluctuations in fixed bandwidth A f are independent of frequency f (i.e.,
\/m is independent of f).
g | *
0 200 400 600 800 1000
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Flicker noise (1/f)

Flicker noise, Sy o 1/f, gets its name from the fact that, when one looks at the time
evolution y(r) of arandom process with a flicker-noise spectrum, one sees fluctuations
(“flickering”) on all timescales, and the rms amplitude of flickering is independent
of the timescale one chooses. Stated more precisely, choose any timescale At and
then choose a frequency f ~ 3/At, so one can fit roughly three periods of oscillation
into the chosen timescale. Then the rms amplitude of the fluctuations observed will
be \/W, which is a constant independent of f when the spectrum is that of
flicker noise, S, o< 1/f. In other words, flicker noise has the same amount of power
in each octave of frequency. Figure 6.10 is an illustration: both graphs shown there
depict random processes with flicker-noise spectra. (The differences between the two
graphs will be explained in Sec. 6.6.2.) No matter what time interval one chooses,
these processes look roughly periodic with one, two, or three oscillations in that time
interval; and the amplitudes of those oscillations are independent of the chosen time
interval. Flicker noise occurs widely in the real world, at low frequencies, for instance,
in many electronic devices, in some atomic clocks, in geophysics (the flow rates of
rivers, ocean currents, etc.), in astrophysics (the light curves of quasars, sunspot
numbers, etc.); even in classical music. For an interesting discussion, see Press (1978).

FIGURE610 Examples of two random processes that have flicker noise spectra, S, (f) o 1/f. Adapted
from Press (1978).

(a)

(b)

203

Brown or random walk noise (1/f?)
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Random-walk noise, S, < 1/f 2, arises when a random process y(t) undergoes a
random walk. In Sec. 6.7.2, we explore an example: the time evolving position x(¢) of
a dust particle buffeted by air molecules—the phenomenon of Brownian motion.
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Flicker vs White noise (f vs t)
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Noise in atomic clocks
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FIGURE 61 (a) Spectral density of the fluctuations in angular frequency  of a typical cesium atomic
clock. (b) Square root of the Allan variance for the same clock; see Ex. 6.13. Adapted from Galleani
(2012). The best cesium clocks in 2016 (e.g., the U.S. primary time and frequency standard) have
amplitude noise, JS—M and o, 1000 times lower than this.
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Noise in gravitational-wave detectors as a function
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Fluctuation-dissipation theorem

F

ﬂﬁ‘ﬂm A}L i k W

100 200 300 400 500
Frequency (Hz)

Friction is generally caused by interaction with the huge number of degrees of freedom
of some sort of bath (e.g., the molecules of air against which a moving ball or dust
particle pushes). Those degrees of freedom also produce fluctuating forces. In this
section, we study the relationship between the friction and the fluctuating forces when
the bath is thermalized at some temperature T (so it is a heat bath).

For simplicity, we restrict ourselves to a specific generalized coordinate g of the
system that will interact with a bath (e.g., the x coordinate of the ball or dust particle).

‘We require just one special property for g: its time derivative § = dg/dt must appear
in the system’ lagrangian as a kinetic energy,

1 .
Exinetic = qu2, (6.70)

and in no other way. Here m is a (generalized) mass associated with g. Then the
equation of motion for g will have the simple form of Newton’s second law, m§ = F,
where F includes contributions F from the system itself (e.g., a restoring force in the
case of a normal mode), plus a force F,y, due to the heat bath (i.e., due to all the
degrees of freedom in the bath). This Fp,, is a random process whose time average
is a frictional (damping) force proportional to g:

Foan = —R4,  Foan = Foan + F'- 671)

Here R is the coefficient of friction. The fluctuating part F” of F,,y, is responsible for
driving g toward statistical equilibrium.

209

209

Three specific examples, to which we shall return below, are as follows.

'-1voo

1. The system might be a dust particle with g its x coordinate and m its mass.
The heat bath might be air molecules at temperature 7', which buffet the dust
particle, producing Brownian motion.

2. The system might be an L-C-R circuit (i.e., an electric circuit containing an

inductance L, a capacitance C, and a resistance R) with ¢ the total electric
charge on the top plate of the capacitor. The bath in this case would be the
many mechanical degrees of freedom in the resistor. For such a circuit, the
“equation of motion” is

Li+C7'g=Fgn(t)=—RG+ F', (672)

so the effective mass is the inductance L; the coefficient of friction is the re-
sistance (both denoted R); —Rg + F is the total voltage across the resistor;
and F"’ is the fluctuating voltage produced by the resistor’s internal degrees
of freedom (the bath) and so might better be denoted V'.

3. The system might be the fundamental mode of a 10-kg sapphire crystal with

q its generalized coordinate (cf. Sec. 4.2.1). The heat bath might be all the
other normal modes of vibration of the crystal, with which the fundamental
mode interacts weakly.

,'a,\

.& .‘

iy = 1, sin(et)
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LANGEVIN EQUATION

In general, the equation of motion for the generalized coordinate g (¢) under the joint
action of (i) the bath’s damping force —R¢, (ii) the bath’s fluctuating forces F’, and
(iii) the system’s internal force F will take the form [cf. Eq. (6.71)]

mg + Rg=F + F'(1). (6.73)

The internal force F is derived from the system’s hamiltonian or lagrangian in the
absence of the heat bath. For the L-C-R circuit of Eq. (6.72) that force is F = —C 14
for the dust particle, if the particle were endowed with a charge Q and were in an
external electric field with potential ® (¢, x, y, z), it would be F = — Q3 ®/dx; for the
normal mode of a crystal, it is F = —maw?q, where w is the mode’s eigenfrequency.

211

211

Because the equation of motion (6.73) involves a driving force F’(t) that is a ran-
dom process, one cannot solve it to obtain ¢ (7). Instead, one must solve it in a statistical
way to obtain the evolution of ¢’s probability distributions p, (g, t;; . . . ; g, t,,)- This
and other evolution equations involving random-process driving terms are called by
modern mathematicians stochastic differential equations, and there is an extensive
body of mathematical formalism for solving them. In statistical physics the specific
stochastic differential equation (6.73) is known as the Langevin equation.
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ELEMENTARY FLUCTUATION-DISSIPATION THEOREM

Because the damping force — Rg and the fluctuating force F’ both arise from inter-
action with the same heat bath, there is an intimate connection between them. For
example, the stronger the coupling to the bath, the stronger will be the coefficient of
friction R and the stronger will be F’. The precise relationship between the dissipa-
tion embodied in R and the fluctuations embodied in F’ is given by the following
fluctuation-dissipation theorem: At frequencies

<1/t (6.74a)

where 7, is the (very short) relaxation time for the fluctuating force F’, the fluctuating
force has the spectral density

hf

1 .
Spl(f) =4R (Ehf + m) mn general, (6.74b)

Sp(f) =4RkgT in the classical domain, kT > hf. (6.74¢)

Here T is the temperature of the bath, and 4 is PlancK’s constant.

213
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Notice that in the classical domain, kzT > hf, the spectral density has a white-
noise spectrum. In fact, since we are restricting attention to frequencies at which
F’ has no self-correlations (f~! > 1,), F’ is Markov; and since it is produced by
interaction with the huge number of degrees of freedom of the bath, F’ is also
Gaussian. Thus, in the classical domain F" is a Gaussian-Markov, white-noise process.

At frequencies f > kpT/h (quantum domain), in Eq. (6.74b) the term S =
4R%h f is associated with vacuum fluctuations of the degrees of freedom that make
up the heat bath (one-half quantum of fluctuations per mode as for any quantum
mechanical simple harmonic oscillator). In addition, the second term, Sp/(f) =
4Rhfe"f/ksT) associated with thermal excitations of the bath’s degrees of freedom,
is exponentially suppressed because at these high frequencies, the bath’s modes have
exponentially small probabilities of containing any quanta at all. Since in this quantum
domain Sz/(f) does not have the standard Gaussian-Markov frequency dependence
(6.32), in the quantum domain F’ is not a Gaussian-Markov process.
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Proof of the Fluctuation-Dissipation Theorem.

In principle, we can alter the system’s internal restoring force F without altering its

interactions with the heat bath [i.e., without altering R or Sg,(f)]

set F to zero so g becomes the coordinate of a free mass. The basic idea of our proof
is to choose a frequency f, at which to evaluate the spectral density of F’, and then,
in an idealized thought experiment, very weakly couple a harmonic oscillator with

eigenfrequency f, to g. Through that coupling, the oscillator is

by the resistance R of ¢ and is indirectly driven by R’s associated fluctating force
F', which arises from a bath with temperature T. After a long time, the oscillator will
reach thermal equilibrium with that bath and will then have the standard thermalized
mean kinetic energy (E = kT in the classical regime). We shall compute that mean

energy in terms of Sz/( f,) and thereby deduce Sp/(f,).

Can you prove it?

S

. For simplicity, we

indirectly damped

215

215

The Langevin equation (6.73) and equation of motion for the coupled free mass
and harmonic oscillator are

mi+RG=—«xQ+F'(t), MO+ Mo’Q=—«q. (6.753)

Here M, Q, and w, = 21 f,, are the oscillator’s mass, coordinate, and angular eigen-
frequency, and « is the arbitrarily small coupling constant. (The form of the coupling
terms —« Q and —« ¢ in the two equations can be deduced from the coupling’s in-
teraction hamiltonian H; = k¢ Q.) Equations (6.75a) can be regarded as a filter to
produce from the fluctuating-force input F'(t) a resulting motion of the oscillator,
o) = ffo? K(t —t')F'(t")dt’. The squared Fourier transform |K (f)|? of this fil-
ter’s kernel K (t —t’) is readily computed by the standard method [Eq. (6.51) and
associated discussion] of inserting a sinusoid e™*** (with @ = 27 f) into the filter
[i.e., into the differential equations (6.75a)] in place of F’, then solving for the sinu-
soidal output @, and then setting | K |2 = | Q|. The resulting | K |2 is the ratio of the
spectral densities of input and output. We carefully manipulate the resulting |K | so
as to bring it into the following standard resonant form:

|BJ?
® — w])?+ (2Mw2R|B|»)?]

S,() = IK())PSp(f) = 7 Sp(f). (675b)

Can you prove it?

e —————

N
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Here B =« /[2M wo(ma)g + i Rw,)] is arbitrarily small because « is arbitrarily small;
and wf = a)g +4mM wﬁl B|? is the oscillator’s squared angular eigenfrequency after
coupling to g, and is arbitrarily close to w? because |B|? is arbitrarily small. In
these equations we have replaced w by w, everywhere except in the resonance term
(w— a);)2 because | K |? is negligibly small everywhere except near resonance, » = w,,.

The mean energy of the oscillator, averaged over an arbitrarily long timescale, can
be computed in either of two ways.

Can you prove it?

e ————

N

217

217

1. Because the oscillator is a mode of some boson field and is in statistical
equilibrium with a heat bath, its mean occupation number must have the
standard Bose-Einstein value 5 = 1/[¢o/*sT) _ 1], and since each quan-
tum carries an energy hw,, the mean energy is

- ho,

1
E= W + Ehw"' (6.75¢)

Here we have included the half-quantum of energy associated with the
mode’s vacuum fluctuations.

. Because on average the energy is half potential and half kinetic, and the
mean potential energy is %mwﬁ 02, and because the ergodic hypothesis tells
us that time averages are the same as ensemble averages, it must be that

N

00
E= %ngwz(gz) =Mao? fo So(f)df. (6.75d)

By inserting the spectral density (6.75b) and performing the frequency integral with
the help of the narrowness of the resonance, we obtain
Spi(fo)
4R

Equating this to our statistical-equilibrium expression (6.75¢) for the mean energy,
we see that at the frequency f, = w,/(27) the spectral density Sp(f,) has the
form (6.74b) claimed in the fluctuation-dissipation theorem. Moreover, since f,, can
be chosen to be any frequency in the range (6.74a), the spectral density Sz/( f) has
the claimed form anywhere in this range. m

E= (6.75€)

Can you prove it?

e ——————

S~
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System of a passive probe immersed in a bath of
active Langevin particles
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System of a passive probe immersed in a bath of

active Langevin particles
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-2

-3

pressure

BROWNIAN MOTION

In Secs. 6.3.3 and 6.7.2, we have studied the Brownian motion of a dust particle being
buffeted by air molecules, but until now we omitted any attempt to deduce the motion’s

relaxation time 7,. We now apply the fluctuation-dissipation theorem to deduce t,,
using a model in which the particle is idealized as a sphere with mass m and radius a
that, of course, is far larger than the air molecules.

The equation of motion for the dust particle, when we ignore the molecules’ fluc-
tuating forces, is mdv/dt = —Rv. Here the resistance (friction) R due to interaction
with the molecules has a form that depends on whether the molecules’ mean free
path A is small or large compared to the particle. From the kinetic-theory formula
A =1/(nopy), where n is the number density of molecules and oy, is their cross
section to scatter off each other (roughly their cross sectional area), we can deduce
that for air A ~ 0.1 um. This is tiny compared to a dust particle’s radius a ~ 10 to
1,000 z2m. This means that, when interacting with the dust particle, the air molecules
will behave like a fluid. As we shall learn in Chap. 15, the friction for a fluid de-
pends on whether a quantity called the Reynolds number, Re = va/v, is small or large
compared to unity; here v ~ 107> m? s~ is the kinematic viscosity of air. Inserting
numbers, we see that Re ~ (v/0.1 m s~!)(a/100 wm). The speeds v of dust particles
being buffeted by air are far smaller than 0.1 m s~! as anyone who has watched them
in a sunbeam knows, or as you can estimate from Eq. (6.53a). Therefore, the Reynolds
number is small. From an analysis carried out in Sec. 14.3.2, we learn that in this low-
Re fluid regime, the resistance (friction) on our spherical particle with radius a is
[Eq. (14.34)]

R =6npva, (6.76)

where p ~ 1kg m~? is the density of air. (Notice that this resistance is proportional to
the sphere’s radius a or circumference; if A were > a, then R would be proportional
to the sphere’s cross sectional area, i.e., to a%)

221
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When we turn on the molecules’ fluctuating force F’, the particle’s equation of
motion becomes mdv/dt + Rv = F'. Feeding ¢/2"/" through this equation in place
of F’, we get the output v = 1/(R + i27 f m), whose modulus squared then is the ratio
of S, to Sg». In this obviously classical regime, the fluctuation-dissipation theorem
states that Sz = 4Rkp T . Therefore, we have

N 4RkpT 4RkpT/m?

5= R Gagmy Rt Qafmr - @nfi 4 RimE 7

By comparing with the S, that we derived from Doob’s theorem, Eq. (6.53b), we can
read off the particle’s rms velocity (in one dimension, x or y or z), 0, = /kgT/m—
which agrees with Eq. (6.53a) as it must—and we can also read off the particle’s
relaxation time (not to be confused with the bath’s relaxation time),

7, =m/R=m/(6mpva). (6.78)

If we had tried to derive this relaxation time by analyzing the buffeting of the particle
directly, we would have had great difficulty. The fluctuation-dissipation theorem,
Doob’s theorem, and the fluid-mechanics analysis of friction on a sphere have made
the task straightforward.
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6.9 Fokker-Planck Equation

In statistical physics, we often want to know the collective influence of many degrees
of freedom (a bath) on a single (possibly vectorial) degree of freedom g. The bath
might or might not be thermalized. The forces it exerts on g might have short range
(as in molecular collisions buffeting an air molecule or dust particle) or long range
(as in Coulomb forces from many charged particles in a plasma pushing stochastically
on an electron that interests us, or gravitational forces from many stars pulling on a
single star of interest). There might also be long-range, macroscopic forces that pro-
duce anisotropies and/or inhomogeneities (e.g., applied electric or magnetic fields).
We might want to compute how the bath’s many degrees of freedom influence, for
example, the diffusion of a particle as embodied in its degree of freedom g. Or we
might want to compute the statistical properties of g for a representative electron in
a plasma and from them deduce the plasma’s transport coefficients (diffusivity, heat
conductivity, and thermal conductivity). Or we might want to know how the gravita-
tional pulls of many stars in the vicinity of a black hole drive the collective evolution
of the stars’ distribution function.

223
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6.9.1 Fokker-Planck for a 1-Dimensional Markov Process

For a 1-dimensional Markov process y(t) (e.g., the x component of the velocity of a
particle) being driven by a bath (not necessarily thermalized!) with many degrees of
freedom, the Fokker-Planck equation” states

3 py—— 2 (AP + L2 By (694)
3t2_ dy y) 20y2 y) ). ~

Here P, = P,(y, t|y,) is to be regarded as a function of the variables y and  with y,
fixed; that is, Eq. (6.94) is to be solved subject to the initial condition

Py(y,0]y,) =8(y — ¥,)- (6.95)

As we shall see later, this Fokker-Planck equation is a generalized diffusion equation
for the probability P,: as time passes, the probability diffuses away from its initial
location, y = y,, spreading gradually out over a wide range of values of y.
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In the Fokker-Planck equation (6.94) the function A(y) produces a motion of the
mean away from its initial location, while the function B(y) produces a diffusion of
the probability. If one can deduce the evolution of P, for very short times by some
other method [e.g., in the case of a dust particle being buffeted by air molecules, by
solving statistically the Langevin equation mdv/dt + Rv = F'(t)], then from that
short-time evolution one can compute the functions A(y) and B(y):

1 +00
A(y)= lim —= "~ y)Py(y, At|y)dy', .
)= lim /_ _ O =0P0" Atly)dy (6.963)
1 +00 .
J— 3 . /_ / ’
B(y)_Al}go At /_oo (V' = )Py, Atly)dy'. (6.96b)
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(These equations can be deduced by reexpressing the limit as an integral of the time
derivative 3 P,/dt and then inserting the Fokker-Planck equation and integrating by
parts; Ex. 6.19.) Note that the integral (6.96a) for A(y) is the mean change Ay in the
value of y that occurs in time At, if at the beginning of At (at r = 0) the value of the
process is precisely y; moreover (since the integral of y P, is just equal to y, which is
a constant), A(y) is also the rate of change of the mean, dy/dt. Correspondingly we
can write Eq. (6.96a) in the more suggestive form

A(y) = lim ﬂ :(Q) . (6.97a)
At—0 \ At dt /g

Similarly, the integral (6.96b) for B(y) is the mean-squared change in y, (Ay)?, if at
the beginning of At the value of the process is precisely y; and (as one can fairly easily
show; Ex. 6.19) it is also the rate of change of the variance ag' = [y — y)*Pydy'.
Correspondingly, Eq. (6.96b) can be written as

— 2

) (Ay)? dov_v
B(y)=1 — ) =— . 6.97b
o) A}m—>0< At dt —0 ¢ )
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It may seem surprising that Ay and (Ay)? can both increase linearly in time for
small times [cf. the Af in the denominators of both Eq. (6.97a) and Eq. (6.97b)],
thereby both giving rise to finite functions A(y) and B(y). In fact, this is so: the linear
evolution of Ay at small 7 corresponds to the motion of the mean (i.e., of the peak of
the probability distribution), while the linear evolution of (Ay)?2 corresponds to the

diffusive broadening of the probability distribution.

A solution to the one-dimensional Fokker—Planck equation, with both
the drift and the diffusion term. In this case the initial condition is a
Dirac delta function centered away from zero velocity. Over time the

distribution widens due to random impulses.
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DERIVATION OF THE FOKKER-PLANCK EQUATION (6.94)
Because y is Markoy, it satisfies the Smoluchowski equation (6.11), which we rewrite
here with a slight change of notation:

DON'T DRINK AND DERIVE:

a=b

ab

ab

2 2 —ab
400 2a(a 7'b) =a(a—b)
Py(y, t 4 T1y,) :/ Py(y =& tly) Py(y =&+ & Tly = 8)dE. (698a) moe
—00

Take 7 to be small so only small & will contribute to the integral, and expand in a Taylor
series in 7 on the left-hand side of (6.98a) and in the & of y — £ on the right-hand side:

- 11 o
Py, 1Y) + ) —,[ o P20 rl,vo)]r"
e t

+00
- / Py, 110 Po(y + &> Tly)dE

—0o0

| +00 "
+y — (=O)"——[Py(y: t1y,) P2y + &, T[Y)] . (698b)
n!'J_ ay"

n=1
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In the first integral on the right-hand side the first term is independent of ¢ and can
be pulled out from under the integral, and the second term then integrates to one;
thereby the first integral on the right reduces to P,(y, t|y,), which cancels the first
term on the left. The result is then

o0

19"
—| =P, tly,) [t"
> n![at" 2(¥5 1) ):|

n=1
0 —_1n oo +00
:E:iﬁL——[&me)/ H&owf,ﬂndﬂ. (6980
oot oy —o0

Divide by 7, take the limit 7 — 0, and set ¢ = y” — y to obtain

F) > (=" 9"
EPz(.v,r[_vo)=”Z:‘T o oy MhOVPA0 1130) (6:992)
where
1 +00
M, () = lim f_w O =" Py, Atly) dy’ (6:99b)

is the nth moment of the probability distribution P, after time At. This is a form
of the Fokker-Planck equation that has slightly wider validity than Eq. (6.94). Almost
always, however, the only nonvanishing functions M,,(y) are M| = A, which describes
the linear motion of the mean, and M, = B, which describes the linear growth of the
variance. Other moments of P, grow as higher powers of At than the first power, and
correspondingly, their M,,s vanish. Thus, almost always'? (and always, so far as we
are concerned), Eq. (6.99a) reduces to the simpler version (6.94) of the Fokker-Planck
equation.

DON'T DRINK AND DERIVE:

+ab
2a* —2ab =a? —ab

2a(a—b) =a(a—b)
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TIME-INDEPENDENT FOKKER-PLANCK EQUATION
If, as we assume in this chapter, y is ergodic, then p;(y) can be deduced as the limit
of Py(y, t|y,) for arbitrarily large times 7. Then (and in general) p, can be deduced
from the time-independent Fokker-Planck equation:
—i[A(\‘) M1+ —13—2[3(\') »]=0 (6.100)
3y ¥Y)P1() 29y2 )Py I=0. -
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GAUSSIAN-MARKOV PROCESS

For a Gaussian-Markov process, the mathematical form of P,(y;, t|y;) is known from
Doob’s theorem: Egs. (6.18). In the notation of those equations, the Fokker-Planck
functions A and B are

A = (d3,/d1)eg =~ = $)/7,, and B(y) = (o} /d1),o =20}/,
Translating back to the notation of this section, we have
AN ===/t  BO)=2]/7. (6.101)

Thus, if we can compute A(y) and B(y) explicitly for a Gaussian-Markov process,
then from them we can read off the process’s relaxation time t,, long-time mean y,
and long-time variance af. As examples, in Ex. 6.22 we revisit Brownian motion of a
dust particle in air and in the next section, we analyze laser cooling of atoms. A rather
different example is the evolution of a photon distribution function under Compton
scattering (Sec. 28.6.3).
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Brownian dynamics simulation for particles in 1-D linear potential compared with
the solution of the Fokker—Planck equation
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Bibliographic Note

Random processes are treated in many standard textbooks on statistical physics,
typically under the rubric of fluctuations or nonequilibrium statistical mechanics (and
sometimes not even using the phrase “random process”). We like Kittel (2004), Sethna
(2006), Reif (2008), and Pathria and Beale (2011). A treatise on signal processing that
we recommend, despite its age, is Wainstein and Zubakov (1962). There are a number
of textbooks on random processes (also called “stochastic processes” in book titles),
usually aimed at mathematicians, engineers, or finance folks (who use the theory of
random processes to try to make lots of money, and often succeed). But we do not like
any of those books as well as the relevant sections in the above statistical mechanics
texts. Nevertheless, you might want to peruse Lax et al. (2006), Van Kampen (2007),
and Paul and Baschnagel (2010).
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