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Maps of burned area have been obtained from an automatic algorithm applied to a multitemporal series of
Landsat TM/ETM+ images in two Mediterranean sites. The proposed algorithm is based on two phases: the
first one intends to detect themore severely burned areas andminimize commission errors. The second phase
improves burned patches delimitation using a hybrid contextual algorithm based on logistic regression
analysis, and tries to minimize omission errors. The algorithm was calibrated using six study sites and it was
validated for the whole territory of Portugal (89,000 km2) and for Southern California (70,000 km2). In the
validation exercise, 65 TM/ETM+ scenes for Portugal and 35 for California were used, all from the 2003 fire
season. A good agreement with the official burned area perimeters was shown, with kappa values close to 0.85
and low omission and commission errors (b16.5%). The proposed algorithm could be operationally used for
historical mapping of burned areas from Landsat images, as well as from future medium resolution sensors,
providing they acquire images in two bands of the Short Wave Infrared (1.5–2.2 μm).
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1. Introduction

Biomass burning is widely recognized as one of the critical factors
affecting vegetation succession and carbon budgets worldwide
(Chuvieco, 2008; Thonicke et al., 2010). It has many socio-economic
implications, especially in developed countries where the growing
urbanization of forested areas tends to increase accidents associated
with extreme fire events. Australia, Greece, Portugal, Russia or
California have been seriously affected by severe fires in the last few
years. At a global scale, the effects of fire on the atmospheric chemistry
are one of the most complex factors to account for in the current
emission models (Randerson et al., 2005). The estimations are
typically based on the amount of biomass consumed, and this requires
accuratemapping of burned areas, as well as knowing the combustion
completeness of fires and having pre-fire biomass assessments
(Palacios-Orueta et al., 2005).

Mapping of burned areas at global scale using satellite images has
been mostly based on coarse spatial resolution data such as Advanced
Very High Resolution Sensor (AVHRR), VEGETATION or Moderate
Resolution Imaging Spectroradiometer (MODIS) images. However, the
requisites of the climatemodelling community are not yet met with the
current satellites (GCOS, 2006), as these sensors do not provide enough
spatial detail. The use of mid-resolution sensors has commonly been
oriented toward local-scale studies, but in the last years they have also
been used in global studies, both because of the more strict
requirements set by the Kyoto protocol (Rosenqvist et al., 2003), and
by the growing availability of those images, specially after the Landsat
historical archive was placed in the public domain. Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper (ETM+) images have
been widely used for mapping burned areas, mostly in local and
regional studies (Chuvieco et al., 2002; Hudak & Brockett, 2004;
Koutsias & Karteris, 1998; Mitri & Gitas, 2004; Russel-Smith et al., 1997,
2002; Smith et al., 2007). The accuracy of those studies was generally
high, but most of themwere focused on single sites and did not provide
estimations on the potential performance of the proposed algorithms to
other sites with different input conditions. Therefore, there is not yet an
operationally accepted method to map burned areas from TM-ETM+
images, which could be applicable to a wide variety of fire conditions.

Few countries have operational programs to map burned areas
systematically. A notable exception is Portugal, which has performed
yearly mapping of burned areas since 1990, based on visual analysis of
multitemporal Landsat images (http://www.afn.min-agricultura.pt/
portal/dudf/cartografia/cartograf-nac-areas-ardidas-1990-2008 last
access September, 1st). The database is now being extended to 1975
using classification techniques. Other countries that have recently
undertaken this activity are the US program on mapping burn
severity, which includes large fires from 1984 to 2008 (http://www.
mtbs.gov/index.html, last access September, 1st).

Burned patches are relatively easy to discriminate visually, but
they are complex to detect automatically, because of the wide spatial
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and spectral diversity caused by the severity of the fire, the time
elapsed since the fire was extinguished, and the type of vegetation
burned (Chuvieco et al., 2006; Pereira & Setzer, 1993; Pereira et al.,
1999b). For this reason,most of the available algorithms try to balance
between reducing false detections (commission errors) and increas-
ing detection rate (omission errors). When the detection criteria are
very strict, false discriminations are reduced, but many burned pixels
remain undetected; the opposite is true when the criteria are looser.
In most of the published papers the proposed algorithms are adjusted
to the local conditions and therefore obtain reasonable results, but it is
not clear whether (they) can be extended to other study sites. The
global algorithms developed for coarse resolution images (Riaño et al.,
2007; Roy et al., 2005; Tansey et al., 2008b) try to providemore robust
approaches while considering the wide range of burn conditions;
these generally offer very diverse omission and commission errors in
different ecosystems (Roy & Boschetti, 2009; Roy et al., 2008; Tansey
et al., 2008a).

An alternative to solve the apparent contradiction between
omission and commission errors in mapping burned areas is to
apply a two-phase approach. In the first phase the goal would be to
reduce the commission errors using strict criteria that would detect
only themore clearly burned pixels (seed pixels: “core burned”), even
at the cost of omitting many burned pixels within each burned patch.
The second phase would analyze only the vicinity of the seed pixels,
applying looser criteria to accept as burned those neighbour pixels
with similar spectral characteristics to the seeds. This phase would
enlarge the burned area to match the whole burned patch, and thus
should aim to reduce omission errors. The first proposals for a two-
phase mapping method were based on TM/ETM+ images (Chuvieco
et al., 2002) but these ideas have also now been explored with
Fig. 1. Location o
medium and low resolution data (Chuvieco, Englefield, et al., 2008;
Chuvieco, Opazo, et al., 2008; Fraser et al., 2003; Garcia & Chuvieco,
2004; Maggi & Stroppiana, 2002; Martín, 1998).

This paper presents the performance of a two-phase algorithm
developed for burned areamapping based on Landsat TM/ETM+ images,
which could be applicable at regional and global scales. To test the
generalization power of the algorithm, different study sites have been
considered, which include diverse fire conditions within mostly
Mediterranean ecosystems. The paper first describes the study sites and
the pre-processing steps of the Landsat images and then explains the two
phases of the proposed algorithm. The first phase is based on spectral/
temporal decision rules, and the second one on contextual techniques.

2. Methods

2.1. Study areas and input data

This study is based on two datasets. The input images to train the
different phases of the algorithm were six Landsat TM scenes located
in the European Mediterranean basin. They cover diverse areas of
Greece, France and Spain, andwere acquired before and after fires that
mostly affected shrubs and evergreen forested areas (Fig. 1 and
Table 1). The validation dataset covered the whole of Portugal and
Southern California (Fig. 1) and they were acquired during the 2003
devastating fire season. We downloaded all available TM scenes for
those regions from the USGS Global Visualization Viewer (http://
www.glovis.usgs.gov/, last access September, 1st), providing they had
less than 50% of cloud cover and were acquired between May and
December, 2003. Two images acquired at the end of the previous fire
season (year 2002) were used to ensure cloud free data for
f study sites.

http://www.glovis.usgs.gov/
http://www.glovis.usgs.gov/


Table 1
Characteristics of the reference study sites.

Name Localization Path Row Pre-fire image Post-fire image Dominant
vegetation affected

Sensor Date Sensor Date

184-34 Greece 184 34 TM (L5) 29/06/2009 TM (L5) 01/09/2009 Scrub
193-31 Corsica-Sardinia 193 31 TM (L5) 25/06/2002 TM (L5) 16/09/2003 Scrub
195-30 France 195 30 TM (L5) 23/06/2002 TM (L5) 14/09/2003 Scrub and forest
199-32 Spain 199 32 TM (L5) 22/06/2009 TM (L5) 24/07/2009 Forest and scrub
201-32 Spain 201 32 TM (L5) 17/06/2002 TM (L5) 23/08/2003 Scrub and forest
201-34 Spain 201 34 TM (L5) 01/07/2007 TM (L5) 23/08/2009 Scrub
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multitemporal comparisons. With those conditions, 65 scenes were
processed for Portugal (Table 2) and 35 scenes for Southern California
(Table 3).

The Corine Land Cover map of Europe (CLC2000) (http://www.
eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-
seamless-vector-database, last access November, 3rd, 2010) and
MRLC 2000 Land Cover Database for US (NLCD2000) (Homer et al.,
2007) were also available for the study sites. This information was
used to detect land cover classes that may offer more confusion with
burned areas.
2.2. Validation data

The performance of our algorithm was validated using official fire
statistics of the Portuguese and Californian forest services. For
Portugal, official fire perimeters are derived from visual analysis of
Landsat images. According to these perimeters, 662 fires under 25 ha,
286 fires between 25 and 100 ha, and 238 fires greater than 100 ha
(with six large fires higher than 10,000 ha, one of them exceeding
60,000 ha) affected Portugal during the 2003 fire season totalling a
burned area of 439,641 ha.

For California, the reference data were based on combined
perimeters recorded by several agencies: Bureau of LandManagement
(BLM), California Department of Forestry and Fire Protection (CDF),
National Park Service (NPS) and US Forest Service (USFS) (http://
www.frap.cdf.ca.gov/data/frapgisdata/select.asp, last access Septem-
ber, 1st). In Southern California the burned area was estimated in
Table 2
Landsat TM/ETM+ scenes processed for Portugal.

Path Row Year Day/month (sensor) No. scenes

204 31 2002 02/09(ETM+), 04/10(ETM+) 2
2003 25/06(TM), 11/07(TM), 27/07(TM), 12/08(TM),

13/09(TM), 29/09(TM)
6

203 31 2002 25/07(ETM+), 27/09(ETM+) 2
2003 04/07(TM), 20/07(TM), 05/08(TM), 06/09(TM),

22/09(TM), 08/10(TM)
6

204 32 2002 02/09(ETM+), 04/10(ETM+) 2
2003 25/06(TM), 11/07(TM), 27/07(TM), 12/08(TM),

13/09(TM), 29/09(TM)
6

203 32 2002 01/07(TM), 29/10(ETM +) 2
2003 04/07(TM), 20/07(TM), 05/08(TM), 22/09(TM),

08/10(TM)
5

204 33 2002 16/07(ETM+), 02/09(ETM+) 2
2003 25/06(TM), 11/07(TM), 27/07(TM), 12/08(TM),

13/09(TM),
5

203 33 2002 11/09(ETM+), 29/10(ETM+) 2
2003 04/07(TM), 20/07(TM), 05/08(TM), 06/09(TM),

22/09(TM), 08/10(TM), 24/10(TM)
7

204 34 2002 16/07(ETM+), 02/09(ETM+) 2
2003 25/06(TM), 11/07(TM), 27/07(TM), 12/08(TM),

13/09(TM), 29/09(TM), 15/10(TM)
7

203 34 2002 01/07(TM), 29/10(ETM+) 2
2003 04/07(TM), 20/07(TM), 05/08(TM), 06/09(TM),

22/09(TM), 08/10(TM), 24/10(TM)
7

312,928 ha, with a less burned patches than Portugal: 21 fires under
25 ha, 23 between 25 and 100 ha and 39 greater than 100 ha (with six
fires higher than 10,000 ha and one that exceeded 100,000 ha).

2.3. Preprocessing of Landsat data

The images downloaded from the Glovis web server included the
Standard Terrain Correction (Level 1T), with systematic radiometric
and geometric accuracy corrections based on ground control points
and a Digital ElevationModel (DEM) for topographic accuracy. Images
were converted to Top of the Atmosphere (ToA) reflectance using
calibration values included in Chander et al. (2009). Neither
atmospheric nor topographic correction was applied.

2.4. Spectral indices for burned land mapping

A literature review was conducted to select the most sensitive
input bands to discriminate between burned and unburned pixels.
The TM/ETM+ input bands were grouped in three categories
according to the different spectral discrimination domains: (a) Visible
(VIS, 0.4-0.7 μm) and Near Infrared (NIR, 0.7–1.2 μm); (b) Visible, NIR
and 1 band in the ShortWave Infrared (SWIR, 1.5–1.8 μm); (c) Visible,
NIR and 2 bands in the SWIR (the second one, between 2 and 2.2 μm).
The first spectral domain has been themost commonly used in remote
sensing missions, being included in the AVHRR, IRS-WiFS, ENVISAT-
MERIS and SPOT-HRV, among others. The second group of bands
correspond to more recent environmental sensors, such as the
AVHRR-3 (after NOAA-15 at daytime), HRVIR and VEGETATION
(both after SPOT-4), LISS and AWIFS (both in Indian IRS satellites).
The third group of bands is spectrally the most complete, but it is only
covered by a few sensors, such as Landsat TM and ETM+, ASTER and
Terra/Aqua-MODIS.

Among the original bands, several spectral indices were included
in our analysis in order to enhance the discrimination of burned areas.
These indices were used by several authors in burned land mapping
studies (Barbosa et al., 1999; Chuvieco et al., 2002; Chuvieco,
Englefield, et al., 2008; Fernández et al., 1997; Kasischke & French,
Table 3
Landsat TM/ETM+ scenes processed for California.

Path Row Year Day/month (sensor) No. scenes

40 36 2002 07/10(ETM+), 12/06(TM) 2
2003 28/06(TM), 14/07(TM), 15/08(TM), 31/08(TM),

16/09(TM), 02/10(TM), 18/10(TM), 03/11(TM),
19/11(TM), 05/12(TM)

10

40 37 2002 07/10(ETM+), 16/11(TM) 2
2003 28/06(TM), 14/07(TM), 30/07(TM), 31/08(TM),

16/09(TM), 02/10(TM), 18/10(TM), 19/11(TM),
05/12(TM)

9

41 36 2002 06/10(TM), 15/11(ETM+), 2
2003 03/06(TM), 19/06(TM), 05/07(TM), 21/07(TM),

06/08(TM), 22/08(TM), 23/09(TM), 09/10(TM),
10/11(TM), 26/11(TM)

10

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database
http://www.frap.cdf.ca.gov/data/frapgisdata/select.asp
http://www.frap.cdf.ca.gov/data/frapgisdata/select.asp
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1995; Martín, 1998; Martín et al., 2005; Pereira, 1999; Smith et al.,
2007). The following indices were considered:

(a) VIS+NIR domain: NDVI (Rouse et al., 1974), GEMI (Pinty &
Verstraete, 1992) and BAI (Martín, 1998), defined as:

NDVI =
ρNIR−ρR
ρNIR + ρR

ð1Þ

GEMI =
η 1−0:25ηð Þ− ρR−0:125ð Þ

1−ρRð Þ η =
2 ρ2

NIR−ρ2R
� �

+ 1:5ρNIR + 0:5ρR
ρR + ρNIR + 0:5ð Þ

ð2Þ

BAI =
1

ρNIR−ρcNIRð Þ2 + ρR−ρcRð Þ2 ð3Þ

where ρNIR is the reflectance in the NIR, ρR is the reflectance in
the RED and ρcNIR and ρcR are the convergence values (0.06 and
0.1, respectively)

(b) VIS+NIR+1SWIR. In addition to the input bands of group (a),
the Normalized Burn Ratio (NBR) (Key & Benson, 1999) and the
improved BAI (BAIM) (Martín et al., 2005) were computed as
follows:

NBRS =
ρNIR−ρSSWIR

ρNIR + ρSSWIR
ð4Þ

BAIMS =
1

ρNIR−ρcNIRð Þ2 + ρSSWIR−ρcSSWIRð Þ2 ð5Þ

where ρNIR is the reflectance in the NIR, ρSSWIR is the
reflectance in the short SWIR (Landsat TM/ETM+ band 5)
and ρcNIR and ρcSSWIR are the convergence values (0.05 and 0.2,
respectively)

(c) VIS+NIR+2SWIR. In addition to the input bands of groups (a)
and (b) three new indiceswere added, the long SWIRvariation of
the NBR and BAIM, using band 7 instead of band 5 of TM/ETM+
(Martín et al., 2005) and the MIRBI (Trigg & Flasse, 2001):

NBRL =
ρNIR−ρLSWIR

ρNIR + ρLSWIR
ð6Þ

BAIML =
1

ρNIR−ρcNIRð Þ2 + ρLSWIR−ρcLSWIRð Þ2 ð7Þ

MIRBI = 10ρLSWIR−9:8ρSSWIR + 2 ð8Þ

where ρNIR is the reflectance in the NIR, ρLSWIR is the
reflectance in the long SWIR (Landsat TM/ETM+ band 7),
ρSSWIR is the reflectance in the short SWIR and ρcNIR and ρcLSWIR

are the convergence values (0.05 and 0.2, respectively)

All the aforementioned input variables were computed from both
the post-fire image and the multitemporal changes between the post
and pre-fire image.

2.5. Phase 1: determination of “core burned” pixels

The determination of seed pixels for burned land mapping was
based on an iterative criterion decisionmethod, using a large database
of burned and unburned samples extracted from the reference
images. About 70,000 burned pixels showing strong magenta colour
in TM7-TM4-TM1 RGB post-fire colour composite (Koutsias &
Karteris, 2000b) were extracted from the reference images (six
small study sites), trying to avoid those located near the patch
boundaries, to ensure that only clearly burned pixels were selected.
The unburned pixels were selected by a random sampling over the
non affected area using the same reference images. The sample size
was about twenty times larger than the burned one. The larger
database of unburned areas emulates a real situation where this
category is more probable and heterogeneous than the burned class.
The unburned samples included cloud and cloud-shadows, as well as
other land covers that have been reported to produce potential
confusions with burned areas: borders of lakes, topographic and cloud
shadows and mixed urban-vegetated areas (Chuvieco & Congalton,
1988).

Since this work aimed to classify burned pixels with the lowest
possible confusion error, a rule-concatenation methodology was
developed to obtain the ideal decision combination that may fulfill
that objective. First, the thresholds that allowed selecting a certain
burned sample percentage for each variable were extracted (itera-
tively from 100% to 75%). For each particular percentage, the
combination of rules that showed the larger decrement of commission
error (percentage of false burned samples) was selected, with a
maximum concatenation of four rules to avoid overfitting the dataset.
Finally, a cut-off percentage was selected by analyzing the omission
and commission errors: whenever a smaller percentage was consid-
ered, the thresholds were more severe and the commission error was
reducedwhile themisdetection of burned patches increased. This task
was repeated independently with the variables considered in each
spectral scenario.

As some decision rules were multitemporal, the seed pixels were
obtained applying the criteria over all the combinations between the
post-fire scenes (2003) and the previous season scenes (2002),
joining the results in a unique raster layer. Performance of this phase
was based on three criteria: (a) proportion of burned patches
detected (for three different sizes: under 25 ha, from 25–100 ha and
above 100 ha); (b) commission error (pixels identified as burned area
that were in fact unburned), (c) commission errors by land cover
(same as before but classified according to different categories: water,
urban areas/bare soils, trees, shrubs, croplands); (d) omission error
(true burned pixels not identified as such). This later error was not
especially critical in this phase, since themain goal was to reduce false
detections.

2.6. Phase 2: shaping the burned areas

The second phase of the burned land mapping algorithm aimed to
reduce the omission errors. This phase analyzed the spectral
properties of those pixels close to the seed pixels, applying a region-
growing algorithm to enlarge the burned patches previously detected.
To carry out this phase, we had to select a suitable algorithm, within
those proposed for contextual analysis, as well as a suitable band for
running that algorithm.

Several contextual algorithms were examined for the region
growing process. In image processing literature, spatial segmentation
algorithms have been mainly based on three approaches: a) seeded
region growing techniques (Adams & Bischof, 1994), based on
iterative addition of pixels bordering the seed pixels and with similar
spectral characteristics; b) segmentation techniques, which create
patches by identifying borders between categories, and c) hybrid
techniques that mix both approaches (Baraldi & Parmiggiani, 1996;
Pavlidis & Liow, 1990; Rydberg & Borgefors, 2001; Zhang et al., 2005).

After reviewing the advantages and drawbacks of each approach,
two fixed region growing algorithms were tested, both with a
connectivity of 8 pixels (all pixels in the 3×3 neighbourhood to
each seed are considered candidates). In the Fixed algorithm, those
neighbour pixels were considered burned when they exceed a 35%
threshold of probability derived from the logistic regression model
and a reflectance in the NIR below 0.25. A hybrid technique was also
evaluated, named Fixed+Borders algorithm, using an edge detection
that combined a low pass Gauss and Sobel edge filters. This process
removes the candidate pixels if there is any border in the neighbour-
hood and includes them with the same fixed probability thresholds
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aforementioned. The adaptive threshold methods, where the similar-
ity measures change as new pixels are added to the seeds, were not
considered due to their high computational cost.

For optimum algorithm performance, the variable to run the
growing process should be sensitive enough to show a clear
discrimination between burned and unburned areas, while having
simultaneously a low variance within burned areas. Some alternatives
were the spectral mixture analysis (Pereira et al., 1999a; Vafeidis &
Drake, 2005), classification trees (Maggi & Stroppiana, 2002), logistic
regression models (Fraser et al., 2003) or spectral indices based
thresholds, for instance the BAI (Garcia & Chuvieco, 2004), GEMI
(Chuvieco, Englefield, et al., 2008) or BAIM (Chuvieco, Opazo, et al.,
2008).

After testing several of those procedures, we selected a logistic
regression approach, which had a long tradition in burned land
mapping (Fraser et al., 2003; Koutsias & Karteris, 1998, 2000a; Pu &
Gong, 2004; Silva et al., 2004). Input data for the model calibration
were the reflective bands and the spectral indices used in the first
phase. In this analysis a similar number of burned and unburned
samples were used, approximately 60,000, extracted from the set of
reference images. The logistic model was computed using a stepwise
forward process with a 0.05 significance level and 60% of the samples.
The model was tested with the remaining 40%.

The performance of the logistic model was compared with other
variables previously used in burned area mapping, such as the post-
fire and temporal difference values of the NIR, GEMI, NBRS, BAIML,
BAIML and MIRBI. Model performance was measured using the
Jeffries-Matusita (JM) distance, defined as:

JM = 2 1−e−Bij
� �

ð9Þ

where Bij is the Battacharyya distance, defined as:

Bij =
1
8

mi−mj

� �T
P

i +
P

j

2

� �
mi−mj

� �
+

1
2

ln
j P

i +
P

j

� �
=2j

jPij1=2jPjj1=2
2
4

3
5

ð10Þ

Where mi and mj are the vector means of classes i and j,
respectively and ∑i and ∑j are the covariance matrices of the
same classes. JM varies from 0 to 2, and values above 1.9 are
generally considered clearly separable (Richards, 1993).

2.7. Aggregation and validation

The results of the algorithms proposed for each scene were
summed up, obtaining a unique burned area map for each study site.
The raster dataset was then vectorized and aggregated, so all the
polygons within the neighbourhood of 100 m were combined into
new polygons. The final perimeters were an aggregation of the each
those detected in each date, keeping as such the unburned islands.
This dataset was compared to the reference cartography for
validation, computing error matrices and standard accuracy indices
(omission and commission errors and kappa index). The difference in
the total area detected for the algorithms in comparison of the official
cartography was computed as well.
Table 4
Omission and commission errors of the first phase for the different spectral spaces.

Study sites VIS+NIR VIS+NIR+

Omission error (%) Commission error (%) Omission

Reference sample dataset 27.8 26.2 36.8
Portugal 41.5 51.2 59.6
Southern California 83.2 44.8 77.8
3. Results

3.1. Results for the first phase

The decision rules with the three spectral groups previously
mentioned resulted on the following classification rules:

a) VIS+NIR: Diff_BAIN144.3835 AND Diff_NDVIb−0.17767 AND
Post_NDVIb0.14413 AND Diff_GEMIb−0.11578

b) VIS+NIR+1SWIR: Diff_BAIMSN46.8143 ANDDiff_NDVIb−0.17767
AND Post_NBRSb−0.17079 AND Post_BAIN188.88

c) VIS+NIR+2SWIR: Diff_BAIMLN56.2384 ANDDiff_NDVIb−0.17767
AND Post_MIRBIN1.8514 AND Post_NBRLb−0.15006

Table 4 shows the summary of the results for this first phase. For
the reference dataset, the omission and commission errors were
generally lower than for the large validation regions (Portugal and
Southern California) in all spectral groups. It was evident a decrease in
commission errors (which was the target of this phase) by including
SWIR bands in the discrimination space (from 26.2 of VIS+NIR to 1.6
of VIS-NIR-1SWIR). For Portugal and Southern California, both the
omission and commission errors were higher than for the reference
dataset, but significant improvements were also observed when using
SWIR bands, specially in the commission errors. In this case, a clear
improvement was shown when using two SWIR bands versus just
one.

When analyzing results by burned patch size, in Portugal the
spectral group 1 reached 99.6% detection rate for fires greater than
100 ha and 95.5% for those between 25 and 100 ha. The detection rate
decreased for smaller fires (84.3%). In Southern California the
detection rate was 82.1% for patches larger than 100 ha, but decreased
notably for smaller fires (34.8% for those between 25 and 100 and
19.0% for those below 25 ha). Commission errors showed to be high in
this spectral group, above 40% considering both study areas. These
errors were generally associated to confusion with clouds and cloud-
or topographic-shadows, as well as with borders of lakes, rivers or
coastal areas. Confusion with croplands arose as well in those regions
with higher agricultural cover. Omission errors were not very relevant
in this phase and, as expected, they were high: 41.5% for Portugal and
83.2% for South-California.

The results of the second spectral group resulted on a similar
detection capacity as the first group in Portugal, but were better for
South-California with a 5% increase for detecting fires larger than
25 ha, and 10% for those smaller than 25 ha. The commission error of
this spectral group improved over the first one, with considerable
reductions in the two study sites (Table 4). This should be related
mainly to the inclusion of the Diff_BAIMS index, which reduces false
assignments of clouds and cloud-shadows, as well as with topo-
graphic shadows and water, although some confusion was still
observed in coastal areas and mixed land–water pixels. Omission
errors increased in Portugal and decreased in Southern California,
with values higher than 59.6% considering both study areas (Table 4).

The results for the third spectral group clearly improved the
performance of the two previous models. The detection of burned
patches was similar to the other spectral groups in Southern
California, but they were lower in Portugal especially for those
below 25 ha, resulting on a decrement of 15%. However, the
1SWIR VIS+NIR+2SWIR

error (%) Commission error (%) Omission error (%) Commission error (%)

1.6 33.6 0.2
19.8 66.5 3.6
10.7 77.0 4.1
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commission errors decreased significantly, resulting on values below
5% in both study sites (Table 4). Half of this error was related to
croplands, and another important part was located over scrubs,
probably due to real fires not included in the validation dataset and
geometric misregistration problems between the reference cartogra-
phy and the Landsat images. There is no evidence of any systematic
confusion with other land covers.

3.2. Results for the second phase

Table 5 shows the results of the logistic regression model
computed to obtain the variable for the contextual analysis. The
selected variables were mostly post-fire indices and input bands
(MIRBI, NBRL, BLUE, SWIRS), but the pre-fire NDVI and NBRL were
selected as well. According to the −2LL change the most significant
variables in the model were the post-fire MIRBI, NBRL and BLUE
reflectance. The first two variables represents the twomore important
spectral regions to detect burned areas from Landsat TM/ETM data,
which are the SWIRL/SWIRS and NIR/SWIRL, while the Blue channel
reduced the confusion with urban/artificial areas and bare soils. The
model correctly predicted more than 95% of both burned and
unburned sampling pixels, with very low omission (b5%) and
commission (b3%) errors. Table 6 shows the results of separability
measures after comparing the performance of this model with respect
to other variables of potential interest for region growing of the seed
pixels; the analysis was based on 25,000 samples extracted using a
spatial systematic sampling over the reference sites. Fig. 2 shows a
representative example of a large fire in San Diego County
(California). As it is shown, the logistic model obtains the higher JM
scores not only in the reference images, but also in both validation
sites, with values higher than 1.93.

The two region growing algorithm (Fixed and Fixed+borders)
showed significant improvements over the first phase in terms of
omission errors and global accuracy (Table 7). The increase in the
Kappa index was significant in both cases (pb0.05). Omission errors
were reduced by more than 50% in both study sites. In the negative
side, commission errors increased as well but in a fairly low
proportion and depending on the algorithm considered: the Fixed+
Borders algorithm showed lower commission errors (b16.5%) in
comparison with the Fixed algorithm (b32.2%) (see Fig. 3), which also
implies a better general agreement (Kappa=0.85 for Fixed+Borders,
while Kappa N0.77 for Fixed). Comparing with reference cartography,
Fixed+Borders overestimated 27,574 ha in Portugal and under-
estimated 13,077 ha in Southern California, while Fixed overestimated
more than 165,000 and 31,000 ha respectively (Table 7). In addition,
Fixed+Borders was computationally more efficient when less candi-
date pixels were evaluated. The Fig. 4 shows a general view of the
burned cartography obtained by Fixed+Borders algorithm in the
validation sites.

Considering both study areas, the confusion in croplands showed
to be responsible for more than 50% of the resulting commission error.
Removing the areas detected for the algorithm mainly in agricultural
areas (using land cover cartography and considering a minimum
Table 5
Logistic regression model.

Variables B S.E. Wald Sig. Change in the −2LL when
removing the variable

MIRBI_post 11.805 0.130 8241.4 0.00 12,715.9
NBRL_post −11.845 0.146 6575.8 0.00 10,424.3
BLUE_post −102.827 1.717 3587.4 0.00 5967.5
SWIRs_post 20.377 0.476 1833.7 0.00 2105.4
NBRL_pre 5.844 0.147 1574.1 0.00 1684.0
NDVI_pre 5.001 0.180 771.4 0.00 876.7
Constant −15.500 0.245 4012.2 0.00
membership of 90%), the commission error improved significantly
(pb0.05) obtaining kappa values N0.87, maintaining similar omission
errors.

4. Discussion

This paper has presented a two phase methodology to confidently
map burned areas from Landsat TM-ETM+ images. Themethods have
been develop for six reference Landsat scenes in the Mediterranean
basin and applied to two regional study sites to check consistency and
generalizing power.

Many authors have recognized that burned patches do not present
a specific spatial pattern (Smith et al., 2002) and therefore the
discrimination of those areas should be based on either spectral or
temporal contrast (or rather in both). Considering the wide variety of
spectral characteristics within a burned patch (char, scorched leaves
or grass, or even green leaves when the fire is not very severe), the
detection of burned areas is not a trivial task. When applying very
strict algorithms, false alarms are reduced at the expense of reducing
the detection of true-burned areas. The opposite occurs when
applying less severe algorithms, which are commonly complemented
by different filters that try to remove potential confusions (water or
cropland masks, for instance).

The two-phase approach presented in this paper reduces both
problems associated to over and underestimation. The first phase tries
to identify the most clearly burned pixels within each burned patch,
while the second one improves the discrimination by analyzing the
spectral properties of only the pixels nearby those identified in the
first phase. Since conceptually speaking the aim is different in both
phases, themethods and input bands to obtain those goals should also
be different. The first phase requires a technique that emphasizes the
internal differences within the burned area (to extract the most
clearly burned), while the latter reduces those differences and
increase them with the unburned surrounding environment.

Following this logic, two different techniques have been applied in
this case. In the first phase, a decision rule combination method has
been developed to try to establish the concatenation of rules that
minimize the confusion with not burned areas. An alternative process
would be to apply classification trees (Breiman et al., 1984), but this
technique is oriented to balance omission and commission errors and
it wasn't appropriate to reach our goal. Thresholds for the different
spectral variables considered had been extracted so that they selected
the 85% of reference burned samples. That value was considered
adequate as the best commission errors obtained in the reference
samples were considered operative and below 0.1%.

Among the three spectral spaces tested, the best results were
obtained with VIS+NIR+2SWIR, which reduced the confusions with
water, shadows and agricultural areas observed in the other spectral
spaces. This implies that MODIS and Landsat TM-ETM+ are currently
the only sensors that provide the ideal spectral resolution for the
accurate discrimination of burned areas. Other sensors with only one
band in the SWIR should present a lower ability to detect burned areas
maintaining low commission errors. This is the case of VEGETATION or
HRVIR, the AWIFS, AATSR and AVHRR. Other sensors which do not
even have the SWIR (such as the DMC constellation) should present a
lower performance, although it should be checked whether the
improvement in temporal resolution may compensate this deficiency.

The spectral indices that more clearly contribute to the discrim-
ination of burned pixels were the multitemporal difference of BAI and
BAIM (either computed with SWIR bands 5 and 7), which were
selected in the first stage of decision rule combination in the three
spectral groups. Later, NDVI difference was also included in the three
groups, reducing the confusion with urban areas and other not
combustible land covers. Additional variables were introduced in later
stages to amend some of the potential confusions with other land
covers. In the VIS+NIR group, the Post NDVI and GEMI difference



Table 6
Separability values (JM distances) between burned and unburned pixels in different unitemporal (Post-fire) and multitemporal (Diff=Post–Pre Fire) variables.

Logistic model NIR NDVI NBRS NBRL BAIML MIRBI

Post Diff Post Diff Post Diff Post Diff Post Diff Post Diff

Reference sample dataset 2 1.06 0.44 0.82 0.91 1.20 1.17 1.53 1.51 1.35 1.39 1.41 1.40
Portugal 1.93 0.50 0.21 0.86 0.46 1.18 0.43 1.33 0.61 1.21 1.13 0.50 0.69
Southern California 1.95 0.44 0.16 0.48 0.30 1.09 0.35 1.05 0.48 1.37 1.30 0.60 0.44
Average 1.96 0.67 0.27 0.72 0.56 1.16 0.65 1.30 0.87 1.31 1.27 0.84 0.84
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reduced slightly the problems with dark surfaces (shadows and
water). In the VIS+NIR+1SWIR the post NBRS, BAI and MIRBI and
NBRL variables in the VIS+NIR+2SWIR group were selected for the
same purpose, trying to overcome the confusion with urban and
cropland areas. TheMIRBI indexwas shown to be a critic variable with
an excellent ability to reduce the confusions with mixed pixels found
in water–land borders, areas affected in previous fire seasons and
arable land areas. In contrast, it caused a decrement in the detection
rate, especially for the smaller fires. This behaviour was observed
clearly in Portugal, with a 15% reduction of detection rate for fires
b25 ha.

The second phase of the proposed methodology was found to be
critical for reducing the omission errors, but the choice of the region-
growing algorithm was less important than the actual detection of
seed pixels of the first phase and the absence of commission errors.
The contextual algorithms were found very dependent on the spatial
configuration of the seed pixels. The algorithms tested in this paper
significantly reduced the omission errors, while increasing slightly the
commission errors over the first phase. For running those algorithms
the user first needs to define an input variable to start the growing
Fig. 2. Comparison between logistic regression model predicted probability, NBRL and
process. The ideal candidate for this task is a variable that shows a
strong separability between burned and unburned pixels, while
keeping a low variance within the burned area. The burned
probability produced by our logistic probability image produced
higher separability than other variables, while facilitating the
establishment of adequate cut-off values for different burning
conditions.

The two region growing algorithms evaluated were based on a
fixed cut-off value of 35% of output probability, a quite low value
oriented to reduce the omission error. The NIRb0.25 criterions
allowed to reduce the confusion mainly with arable lands. The Fixed
region growing algorithm showed more dependence than the Fixed+
Borders algorithm to the probability threshold: the Sobel edge
detector (before homogenised with a Gaussian filter to extract cleaner
borders) allowed to detect the pixels with a local variability by
identifying abrupt changes in its local vicinity within a mobile
window of 3×3, allowing a more accurate stop of the region growing
process. Object classification strategies rely on a similar assumption,
considering as many seeds as pixels at the beginning of the process,
locating the local edges in a natural way (Mitri & Gitas, 2004;
BAIML multitemporal difference over Cedar Fire (San Diego County–California).

image of Fig.�2


Table 7
Omission (OE) and Commission (CE) errors, kappa values and the differencewith the reference area (Dif) for the first phase and the region growing algorithms for the different study
sites.

Study area Seeds (first phase) Fixed algorithm Fixed+borders algorithm

OE (%) CE (%) Kappa Dif (ha) OE (%) CE (%) Kappa Dif (ha) OE (%) CE (%) Kappa Dif (ha)

Portugal 66.5 3.6 0.48 −287,177 6.3 32.2 0.77 165,787 11.1 16.5 0.85 27,574
Southern California 77.0 4.1 0.36 −238,067 11.4 19.6 0.84 31,256 15.7 12.1 0.85 −13,077
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Quintano et al., 2006) but this approach is computational less efficient
for an operational application.

The commission errors observed by using the Fixed+Borders
algorithm in both study areas was mostly related with croplands,
especially with arable lands, as they showed very similar spectral and
temporal behaviour to burned areas, especially for dark soils. The
abrupt change between crops limits helped to restrict the growing
process. Even with Fixed+Borders algorithm more than half of the
commission error was found in this land cover, mainly as conse-
quence of erroneously located seeds in the first phase. The other half
of the commission errors was located over scrub and forested areas,
and they were partially related to the unburned patches within the
reference perimeters. In fact, the Southern California perimeters do
not include any “islands” within burned patches, and only the bigger
ones are considered in Portugal, causing the increase of the omission
errors as well. The misregistration of the data sources compared, the
missed or incomplete fires and the detection of old burned areas may
also be responsible for these errors.

The kappa values for the results of the second phase showed high
agreement with the borders approach (0.85, for both study areas),
Fig. 3. Seeds and results from the region growing algorithms for a burned area i
with an overestimation of almost 30,000 ha in Portugal and an
underestimation of less than the half in Southern California. However,
it was observed that the region growing algorithms performed much
better when the burned patch was compact and had few internal
islands, so there was good spatial connectivity between the seeds and
the burned area. This option was more critical when the edge of the
burned patch had similar spectral characteristics, since the filter
helped to restrict the growing to the actual limits of the fire.

Both phases of the described algorithm, particularly the first one
are dependent of the acquisition time after the fire: wherever the
ecosystem succession after fire is quick, the signal is weakened,
especially for smaller ones that are not usually detected. To overcome
this dependence, the proposed methodology works with the
maximum number of available scenes, making more probable to
find a stronger burned signal in short-term post fire conditions. This
strategy avoids as well the need to make a manual selection of post-
fire scenes, thus facilitating a fully automatic process.

The global accuracy of the two-phase method proposed in this
paper was high and consistent throughout two regional study sites
that cover large regions 70,000 km2 in South-California and
n Portugal. Examples from Fixed and Fixed+Borders algorithms are shown.
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Fig. 4. Fixed+Borders algorithm final result in the two study areas.
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89,000 km2 in Portugal, and should be a good alternative to automate
the burned scar mapping process at a country scale. The comparison
of our results with those obtained from previously published studies
showed similar or slightly higher accuracy (Kappa N0.9) but, as
mentioned previously, most of the published studies with Landsat
images are based in local fires, and therefore the generalization
capacity of the proposed algorithms was not really tested.

Both tested regions (Portugal and California) have a Mediterra-
nean climate, and have similarities in terms of vegetation and fire
regime conditions. Additional studies should be performed on
whether the same methods can be confidently applied to tropical or
boreal ecosystems.

5. Conclusions

This paper has shown the results of applying a two-phase
methodology to mapping burned areas with medium resolution
satellite images (Landsat TM/ETM+). The first phase was aimed to
detect the most clearly burned pixels (core burned), and it was based
on spectral–temporal rule combination analysis. The second phase
was based on the application of region-growing algorithms, which
makes it possible to incorporate the spatial properties for discrimi-
nation of burned patches.

The accuracies of both phases were found very high and consistent
throughout two regional study sites. The first phase had very low
commission errors, while the second one reduced significantly the
omission errors, obtaining a final kappa higher than 0.85. The
developed methodology showed to be more accurate for compact
shaped burned areas outside croplandwhere the spectral behaviour is
similar.

In summary, the two-phase algorithm approach presented in this
paper provided an accurate automatic mapping of burned areas. This
method can be operationally used at temperate ecosystems, although
we plan to further test it for other ecosystems as well. Future work is
focused to reduce the commission errors observed at croplands.
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