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Tutorial Review 

Calculating Standard Deviations and 
Confidence Intervals with a Universally 
Applicable Spreadsheet Technique 

J. Kragten 
Laboratory of Analytical Chemistry, University of Amsterdam, Nieuwe 
Achtergracht 166, 1018 WV Amsterdam, The Netherlands 

A quick and universally applicable spreadsheet method is 
outlined for the calculation of standard deviations based on 
the general formula for error propagation: 

With this method, standard deviations are calculated 
numerically without violating the condition of mutual 
independence, with a substantial time gain and with no risk 
of calculating errors. Satterthwaite’s approximation of the 
degrees of freedom is a logical extension of the technique 
with which confidence intervals can be easily established. 
Direct insight is obtained about the separate contributions of 
the different error sources. 

Keywords: Numerical method; error propagation; estimated 
degrees of freedom; standard deviation; confidence interval 

Introduction 
Quality improvement of laboratory results forces us to look 
critically, more than ever before, at our statistical manipula- 
tions. The availability of computers avoids time-consuming 
calculations and permits calculations free from errors. How- 
ever, there is still no guarantee that the final results are 
correct. For instance the estimation of standard deviations in 
error propagation is a field where ‘rules’ are often applied 
wrongly. It is well known that assumptions have been made in 
the derivation of these rules and that the underlying conditions 
have to be satisfied. Too often, however, the conditions are 
violated unintentionally and mistakes are made. This can be 
explained as follows. The simple rules 

sR2 = s,2 + sy* when R = x k y 

(:)’ = (:)2 + ( ; ) 2  when R R = x / y  = xy 1 (1) 

are well known. They hold only for mutually independent 
variables. In practice, however, many observations are 
mutually independent, which makes most people think that 
the condition of mutual independence is satisfied automatic- 
ally when the rules are applied, but this is not necessarily true. 
[For the quantities x ,  y ,  etc., the best estimates (the mean 
values) will generally be substituted in the equation for R .  It 
depends on the inquiry whether for s,, sy, etc., the values of 
the population or of the mean ( s ~ ,  sy, . . .) will be used in eqns. 

The rules in eqn. (1) may only be applied when we are 
dealing with either an exclusive mix of additions and 
subtractions or with a combination of just divisions and 
multiplications. As soon as R is a more complicated function 

(1) and (2)-1 

of x ,  y ,  . . ., the simple rules lead to erroneous results. This will 
be shown with the calculation of the surface of a block: R = 
2(lb + bh + hl). Most workers will split R into the parts 16, bh 
and hl. The rules are applied to these separate parts and the 
standard deviations of these separate parts are obtained. 
Eventually the separate parts are summed to obtain R and the 
simple error propagation rules are applied again to find S R .  At 
this point the error is made: commonly the separate parts of R 
have some variables in common and hence are mutually 
dependent. (Use of the word correlation is restricted to 
covariance between measured quantities. Terms containing 
the same variable in a mathematical relationship will be called 
dependent.) The block-surface R = 2(lb + bh + hl) is a good 
example with the product terms lb, bh and hl sharing 6 ,  h and 
1. Application of the simple rules generates a standard 
deviation sR which is fl too low. In more complicated cases 
this factor may even be as large as 10. 

The only way to get rid of these errors is by using the general 
eqn. ( 2 ) ,  in which R is the calculated Result, and x,  y ,  z ,  . . . 
are the measured values whose standard deviations and 
covariances (usually of the mean) are known from the 
experiments. 

The correlation coefficients pxY, etc., are defined as 

covariance (x ,  y) 
var ( x )  var (y) P x y =  

In practice, most cross-product terms vanish because p = 0. 
There is an aversion to applying eqn. ( 2 )  because of the 

complexity of its calculations. When eqn. (2) is used in the 
usual analytical way, we deal with n independent measured 
values, n differentiations, n + 1 equations and n2 + n 
substitutions. All these manipulations are time consuming, 
sensitive to calculation errors and cannot be generalized and 
automated as they are connected with the specific function 
R(x, y, z ) .  This can all be prevented by making use of 
numerically operating spreadsheet programs. 

In the following, a standardized scheme of manipulations is 
presented. The procedure is universally applicable, takes into 
account dependences within the equations, gives much less 
risk of calculation errors and is executed in a fraction of the 
time. Although the method can be performed fruitfully on a 
sheet of paper with the aid of a programmable pocket 
calculator, it is preferably done with spreadsheet programs 
such as LOTUS 123, QUATTRO and EXCEL to lower the 
risk of personal errors. 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
94

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
id

ad
e 

de
 L

is
bo

a 
on

 2
3/

02
/2

01
8 

11
:4

9:
23

. 
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/an9941902161
http://pubs.rsc.org/en/journals/journal/AN
http://pubs.rsc.org/en/journals/journal/AN?issueid=AN1994_119_10


2162 Analyst, October 1994, Vol. 119 

Calculation 
of basic 

R (x, y ,  z, . . .) 

Spreadsheet Method 

The calculation scheme is presented schematically in Table 1 
for the specific case of four measured quantities x, y, z and u. 
It is not a restriction. When we deal with n quantities the 
number of columns is extended to n + 1 and the number of 
rows is extended correspondingly. 

First the manipulations are outlined; later the logic will be 
explained. The procedure is as follows: 

Numerical differentiation by change of the diagonal 
elements with the absolute standard deviations 

SX SY SZ SU 

Arrange the n measured quantitites x ,  y, z, u,  . . ., in the 
left-most column from the top down as a column vector. 
Calculate the value of R and put the result underneath the 
vector x ,  y, z, u . . .. When using a spreadsheet program, 
the equation for R is entered, but the value of R is 
displayed. 
Enter the value of R into the cell underneath by referring 
to the previous cell and making the cell address absolute 
(or by transferring its value by hand). 
Put the equation of the difference of the last two cells in 
the following cell in the column (first the difference AR 
will be zero in the first column). 
Calculate the squared difference in the next cell, entering 
the equation referring to the cell above (= zero again). 
The next step is to copy all filled cells of the first column n 
times into the columns to the right (n = 4 here as we 
adopted four variables in this specific case). An n x n 
square matrix of measured values appears (inside the 
double-lined area). The calculated R, the initial value 
of R,  the difference and its square appear underneath 
again. 

So far all columns are still identical, but this is modified 
during the following steps. 

(8) Put in the row above the double-lined matrix the standard 

(h) Add the standard deviations to the diagonal elements of 

In the copying step, equations have been copied as 
equations and values as values. When the standard deviations 
are added to the diagonal elements in the double-lined matrix, 
new values of R will appear in the first row under the matrix. 
One row lower all cells contain the (constant) initial value of 
R.  

In the next row the differences of the last two cells are 
displayed. The change of R can be estimated with a 
MacLaurin series development. Generally, the changes of R 
are small, which implies that the higher order terms in the 
series development may be neglected. As only one variable is 
changed in a column of the matrix, only the first partial 
derivatives will appear in each cell. The sequential changes are 
equal to: (aRlax)s,, (aRlay)sy, (dRlat)s, and (M lau )~ , .  By 
taking the square of the differences we obtain the terms of 
eqn. (2). Summing all terms gives the variance of R required. 
When the measured values are correlated with p known, the 
row with squares can be extended with the corresponding 
cross-product terms. In the rest of this paper covariance will 
not be considered any longer. It is not essential for the 
message. 

deviations in column sequence (sx, sy, s,, su, . . .). 
the matrix as shown in Table 1. 

Discussion 
The schematic calculation offers a number of advantages, as 
follows. 

The spreadsheet method is universally applicable. Going 
from one calculation to another only the equation for R in the 
corresponding cell has to be adapted. The rest of the 

Table 1 Schematic representation of the spreadsheet method 

I -I 

Note: establishing the confidence interval of the true value of R,  the best known values of x, y ,  . . . (= their mean values) are taken in the first 
column together with the standard deviations of the mean in the top row. Generally the inquiries of the investigation determine whether standard 
deviations of the mean or of the individual are substituted in the top row. The bars (in f ,  s,, . . .) have been 
left out for ease of readability. 
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manipulations, repeating R in value, taking the difference, 
squaring the differences and summing the squares, remain the 
same. The spreadsheet method is applicable in a standard 
manner to all error propagation calculations. 

Direct insight is obtained about dominating contributions to 
sR. Hence if the precision has to be improved, the related error 
source is immediately known. The influence of an improve- 
ment can simply be forecasted by changing s,. 

A low risk of calculation error exists. In the first column the 
equation for R(x, y, z, u)  is introduced. As soon as the 
displayed value of R is correct, the copying process will no 
longer introduce errors. There is no violation of the condition 
of mutual independence. The calculated standard deviation 
will be correct. 

There is a substantial gain in time. The calculation of R 
always has to be performed. If its value has been found 
correctly in the corresponding cell, the rest of the calculation 
scheme can be performed in minutes as the only manipulations 
still to be performed are copying the column n times and 
adding the standard deviations to the elements on the 
diagonal. It can be noted that for the calculations a programm- 
able pocket calculator and a piece of paper will serve as well, 
but it takes some more time in moderately complex calcula- 
tions and has a larger risk of errors. 

Intermediate results can be introduced in the row above R 
(equation) if they are entered in the cell as equations. (See 
example 1 in Table 2; the logic will then be clear.) 

Different functions Ri related to the same measured x, y, . . . 
can be added from the the top down in the left-most column. 
Their sRi can be calculated in the same run (see example 2 in 
Table 3). 

A linearity check is quickly performed. Eqn. (2) was 
derived with the assumption that R changes linearly within the 
ranges s,, sy, . . . (= higher order terms in the MacLaurin 
series are negligible). When eqn. (2) is applied in the usual 
way, linearity should be checked. In numerical calculations, 
however, the higher order terms do not vanish. Therefore, 
linearity is easily controlled by subtracting the s values from 
the diagonal elements instead of adding them. Note that 
changes of a few per cent in SR are not important regarding the 
uncertainties that standard deviations usually have. 

The degrees of freedom of SR can be estimated simply in the 
last row of the spreadsheet by using the equation of 
Satterthwaite.1.233 The equation (Table 1) holds for non- 
correlated variables and is elucidated in the next section. 

Degrees of Freedom of SR 

Neglecting the correlation between the measured values, eqn. 
(2) changes into 

Means of four values (or more) follow a normal distribution to 
a good approximation because of the limit theorem.3 Conse- 
quently, their variances will follow a X2-distribution: 

(4) 

where v is the number of degrees of freedom of s. If s is the 
standard deviation of the mean, v = N-1; in case of regression 
v = N-k (k is the number of constants in the polynomial). The 
degrees of freedom of s,, sy, . . . are exactly known from the 
experiments. In contrast to s,2, etc., s R ~  follows its own 
distribution, which deviates slightly from a x2 distribution. 

Satterthwaite4 investigated the distribution of s R ~  for a 
number of cases and concluded that for all cases of practical 

interest the x 2  distribution may be adopted for sR2. He found 
that when vx, vy, Y,, . . . are small, the approximation is worse, 
but when calculating the confidence interval of sR the error 
always remains negligible. For larger v the error still decreases 
as the distributions of both sx2, etc., and sR2 approach a normal 
distribution (limit theorem). The conclusion is that all s2 in 
eqn. (3) can be replaced by substituting eqn. (4): 

In eqn. (5) all x 2  are statistically variant quantities; the other 
quantities are constants. The left-hand side of eqn. (5) may be 
considered as a calculation result, which depends on the 
statistical fluctuating quantities (the ~ 2 s )  on the right-hand 
side. We can apply again the rules for error propagation and 
calculate the standard deviations on both sides of eqn. (5). As 
the standard deviation of the xv2 itself is equal to 2v, we obtain 

If finally all 0s are replaced by their estimators s, Satterth- 
waite’s relationship for estimating vR is obtained: 

This means that the reciprocal of vR is equal to the weighted 
mean of the reciprocal vs in which the weighting factors are 
formed by the square of the relative contributions of all error 
sources to the variance of sR. vR is rounded off to the nearest 
lower integer. 

The relative contributions are easily calculated in some 
extra rows at the bottom of the scheme from the contributions 
already present in the calculation scheme. Finally, vR is used 
to find the limiting t(95%, two-tailed) for establishing the 
confidence interval of R. 

Some Examples From Practice 

(1) A potentiometric measurement is performed seven times 
for the determination of Ag+ in solution. During the 
experiment the room temperature changed from 22 to 23 “C. 
The value of Eo is known from 41 previous experiments. The 
results are given in Table 2 together with their standard 
deviations. 

The equations used are 
( E  - 4 1 )  

factor [Ag+] = 10 
( t  - 20) 

factor = 58.1 + - 
5 

From Table 2, it follows that the direct determination of 
[Ag+] from potential measurements is not precise. Improve- 
ment is hardly possible because the determination of Eo is not 
precise from solution. If E is measured in order to follow 
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concentration changes, a corresponding scheme will show that 
the precision of changes is much better as the influence of Eo is 
then eliminated. As a consequence, potentiometric titrations 
can be performed with high precision even if the potential 
jumps are not sharp. 

(2) After a calibration procedure to establish the relation- 
ship between stimulus x and response y, the straight calib- 
ration line is used to establish in two different samples the 
unknown contents xl and x2 from the corresponding responses 
y1 and y2. (Errors from drift, sample taking, sample pre- 
treatment, etc., are assumed to be absent for simplification, 
but can easily be introduced.) 

The line function is transformed into the orthogonal form y 
= a + b(x - Xz) in order to make the covariance between a and 
b zero. The variances of a and b are known from calibration. 
We use the reversed form x(y )  in the spreadsheet scheme: 

The experiment was undertaken to establish a possible 
difference between the two contents x1 and x2. Prospectively 
x1 and x2 will be compared routinely by applying eqn. (1). sxl 
and sx2 are known (Table 3) and so the standard deviation sAX 
= V(s,l2 + ~ ~ 2 ~ )  = 0.040. Compared with Ax = 0.062 from the 
significance test it then follows that there is no reason to reject 
the null hypothesis (Ho: p1 = p2). 

However, this conclusion is wrong. It is overlooked that 
although yl and y2 are not covariant, x1 and x2 are not mutually 
independent as they are found with the same calibration line. 
Hence application of the simple rules [eqn. (l)] is not 
permitted. It should be emphasized that all results following a 
specific calibration are related to the same calibration line and 
hence are covariant! 

The correct answer is found by calculating both xl, x2 and 
Ax = x2 - x1 directly from the independent quantities a ,  b ,  yl 
and y2 in one spreadsheet. The standard deviation of Ax now 
found is smaller, 0.026, and the correct conclusion from the 
significance test is that Ho has to be rejected. 

From the separate contributions of a ,  b ,  y l  and y2  to the 
standard deviation sAX, it will be obvious why sAX is smaller: 
neither s, nor sb contributes substantially. 

Looking at a graphical representation, it will be clear that x1 
and x2 are dependent. Both x1 and x2 will change with a and b ,  

Table 2 Potentiometric [Ag+] determination 

E =  
Eo = 

t =  

663.0 mV 
779.5mV 
22.5 "C 

58.6 mV 
0.010279 
0.010279 

0 
0 

S E  sEO t 
1.0mV 1.0mV 0.5"C I 

1 
0.010691 0.009883 0.010359 
0.010279 0.010279 0.010279 

0.000412 -0.000396 O.ooOo80 
1.70 x 1.57 x 6.38 x lo-' 

sAg2 = 3.31 X hence sAg = 5.78 x and [Ag+] = 102.96 x 

v =  6 df 40 df 1 df 
Weight = 0.260 0.222 0.004 I 
Weightlv = 0.0433 0.0055 0.004 

I l/vAg = 0.0492, vAg = 20, t (95%, 20 df) = 2.09 

Confidence interval [Ag+] = 0.0103 t- 0.0012 (95%, 20 df) 1 

but a shift of the line does not change their difference Ax and a 
slight rotation will change Ax only marginally. 

From this example, it is obvious that if all quantities R j  are 
properly related by their equations to the measured values at 
the top left, the spreadsheet method automatically takes into 
account the mathematical dependence between the variables. 

(3) In I S 0  6976-1984(E),S the calculation of the calorific 
value, density and relative density of natural gas is described. 
In the document numerous pages are dedicated to the 
analytical procedure for calculating the standard deviation of 
the calorific value s,. Following this procedure, it is difficult to 
find the main sources of errors back in s,. For this reason, an 
investigation was undertaken at Gasunie Research in which 
the numerical spreadsheet method was compared with the 
I S 0  6976 procedure.6 About 125 error sources were involved. 
Some were forecasted to be important, but turned out to be 
unimportant. Others were overlooked. The analytical 
approach took months for completion. The numerical method 
took a few days and gave much more insight. The error 
sources were grouped for convenience. The main source was 
the literature values of the physical constants. Second, the 
error in the determination of nitrogen was important, as the 
calorific value of this compound is zero. It is now proposed to 
introduce the spreadsheet technique in the I S 0  specifications. 

Conclusions 

The numerical spreadsheet technique has five main advan- 
tages. First, if all quantities to be calculated are properly 
related to the measured values, in the top of the left-most 
column, there will be no accidental violation of the condition 
of mutual independence during the calculation phase. Second, 
compared with the analytical method there is no risk of 
making errors in calculating and differentiating. If R has been 
found correctly in the left-most column, all other manipula- 
tions consist of copying columns and adding standard devia- 
tions to the diagonal elements with standard spreadsheet 
commands. Generally these manipulations are performed 
with a much smaller risk. Third, the standard manipulations of 

Table 3 Comparison of results after a single calibration 

so sb Sv 1 
0.051 0.014 0.045 $&5 I 

12.63 

yl 13.10 
y2 13.25 

5.193 5.173 5.192 5.212 5.193 X I  
X1 5.193 5.193 5.193 5.193 5.193 
A 0 -0.021 -0.001 0.019 0 

b 

A2 4.3 x 10-4 1.3 x 10-6 3.5 1 10-4 

sX12 = 7.8 x 10-4 SXI = 0.028 

x2 5.255 5.234 5.254 5.255 5.274 
x2 5.255 5.255 5.255 5.255 5.255 
A 0 -0.021 -0.001 0 0.019 
A2 4.3 x 10-4 1.3 x 10-6 3.5 x 10-4 

sx22 = 7.8 x 10-4 sx2 = 0.028 

x Z - X ~  0.062 0.06200 0.061 0.043 0.080 

A 0 0.00000 - 3 . 6 ~ - ~  -0.019 0.019 
x2-x1 0.062 0.06200 0.062 0.062 0.062 

A2 0 . m  1.3 x 10-7 3.5 x 10-4 3.5 x 10-4 

shr2 = 6.9 x 10-4 S& = 0.026 
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the technique are identical from case to case. Once familiar 
with these manipulations, the calculations can be performed in 
a fraction of the time required by the classical technique. 
Fourth, the spreadsheet table gives direct insight into the 
magnitude of each error contribution. Finally, estimating the 
degrees of freedom of the calculated result with the Satterth- 
waite’s equation simply involves adding an additional row to 
the spreadsheet table. 
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