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The spatial pattern of a forest ecosystem
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Abstract

Statistical analysis of stands of trees as a whole need suitable methods of spatial statistics. Obviously, trees within
a stand affect development and survival of their neighbours. They interact and therefore have to be considered as a
system of dependent random variates from an unknown stochastic process. One such statistical model which considers
the spatial dependence among trees in a forest and their characteristics is a marked point process. The ‘points’, called
events in spatial statistics, are the tree positions and the ‘marks’ are tree characteristics such as crown lengths or tree
species. A minimal prerequisite for any serious attempt to model an observed pattern is to test the hypothesis of
complete spatial randomness (CSR). Concerning the fitting of parametric models to spatial point patterns, a class of
models which seems potentially useful for describing the present type of data is the class of marked Gibbs (pairwise
interaction) point processes. Essentially, these processes characterise the interaction between events by some
parametrically specified function of distance. In this paper several statistical methods to test CSR are described and
marked Gibbs processes are used to fit a model in two different forest ecosystems. © 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Complete spatial randomness; F-function; G-function; Independence; K-function; Marked Gibbs pro-
cesses; Pseudo-likelihood; Random labelling

1. Introduction

A spatial point pattern is a set of data {(xi, yi)
i=1,…,n} consisting of n locations in an essen-
tially planar region. Examples include the loca-

tions of cell nuclei in a microscopic tissue section,
trees in a forest, or cases of disease in a geograph-
ical region. A fundamental assumption in the
analysis of such data is that they can usefully be
regarded as a partial realisation of a stochastic
point process (Cox and Isham, 1980). Many sys-
tems of individuals can also be described by at-
taching to the locations measurable quantities mx
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like, say, diameter of a tree. This last case is an
example of marked points patterns.

The concept of complete spatial randomness
(CSR) is fundamental to the quantitative descrip-
tion of a spatial pattern. We refer to the positions
of the trees in question as events, to distinguish
them from arbitrary points in the region of obser-
vation A. A formal definition of CSR is that the
events in A constitute a partial realisation of a
homogeneous, planar Poisson process (Diggle,
1983). This process incorporates a single parame-
ter, l, the intensity, or mean number of events per
unit area. The actual number of events in A, n
say, is an observation from a Poisson distribution
with mean l �A �, where �A � denotes the area of the
region A. If we consider n as fixed, we arrive at
the following definition of CSR: (1) each of the n
events is equally likely to occur at any point
within A; (2) the n events are located indepen-
dently of each other. Our interest in CSR is that it
represents an idealized standard which, if strictly
unattainable in practice, may nevertheless be ten-
able as a convenient first approximation. Most
analysis begin with a test of CSR, and there are
several good reasons for this. Firstly, a pattern for
which CSR is not rejected scarcely merits any
further formal statistical analysis. Secondly, tests
are used as a means of exploring a set of data,
rather than because rejection of CSR is of intrin-
sic interest. It is emphasized that ecologists often
know CSR to be untenable but nevertheless use
tests of CSR as an aid to the formulation of
ecologically interesting hypotheses concerning
pattern and its genesis. Thirdly, CSR acts as a
dividing hypothesis to distinguish between pat-
terns which are broadly classifiable as ‘regular’ or
‘aggregated’. It is important to emphasize the
value of graphical methods for these will almost
always be informative and will sometimes make
formal testing unnecessary.

In recent years, there has been considerable
interest in studying the spatial pattern presented
by different types of trees coexisting in the same
region. A bivariate spatial point pattern is one in
which the events are of two distinguishable types.
One possible benchmark hypothesis for the assess-
ment of interactions between the two types is that
the two component patterns are determined inde-

pendently of one another. If, on the other hand, a
bivariate pattern arises through some form of
labelling mechanism the question of whether or
not the component patterns are statistically inde-
pendent is not relevant. A more natural bench-
mark hypothesis is that the two component
patterns are formed by random labelling, by
which we mean that events are labelled indepen-
dently, each event being labelled type 1 with
probability P, and type 2 with probability 1−P.
Independence and random labelling are in general
statistically distinct hypotheses: they coincide if
and only if the superposition of the two types of
event forms a completely random pattern, in
which case both component patterns are also
completely random.

In the analysis of point patterns the statistical
modelling of locations of interacting individuals
(trees in a forest) is studied in terms of Gibbs
point processes. Gibbs point processes first ap-
peared in the theory of statistical physics, where
Gibbs distributions are applied to describe the
equilibrium states of closed physical systems of
interacting objects. Gibbs models are constructed
from local interactions between the individuals. In
this paper pairwise interaction processes will be
considered, where only interactions among pair of
objects are taken into account and a parametrized
pair potential function is used to describe interac-
tions between individuals. If the objects are
marked, marked pairwise interaction processes
will be applied where the pair potential function
depends on marks, too. The parameters can be
estimated by using some optimization method
such as maximum likelihood estimation. The ma-
jor problem in the application of this method is
that the likelihood function contains an unknown
scaling factor which depends on parameters of the
pair potential function and which is intractable.
Hence, the maximum likelihood method cannot
be applied straightforwardly. In this paper, the
pseudo-likelihood estimation method will be used.

The hypothesis of CSR, independence and ran-
dom labelling will be analyzed in Section 2. The
use of a Gibbs model and the estimation method
will be presented in Section 3. Finally, in Section
4 two forest ecosystems will be studied. The first
ecosystem consists of a forest of two types of
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mediterranean trees, Quercus ilex L. and Pinus
halepensis L., coexisting in the same area. The
second one is concerned with a birch forest area
in which locations and crown lengths are
recorded.

2. Spatial statistical methods: identification of
pattern

For testing an observed pattern against a
benchmark hypothesis, in this case to test for
departure from complete spatial randomness, sev-
eral useful empirical functions are the empirical
distribution functions of nearest neighbour dis-
tances and point to nearest event distances (Dig-
gle, 1983). It will be used an informal
combination of them to indicate the nature of any
departure from CSR.

For n events in a region A, let di denote the
distance from the ith event to the closest of the
other n−1 events. These distances are called
nearest neighbour distances, and typically include
duplicate measurements between reciprocal
nearest neighbour pairs. The empirical distribu-
tion function (EDF), G. 1(s) say, represents the
observed proportion of nearest neighbour dis-
tances di that are at most s,

G. 1(s)=n−1f(di5s)

where f means ‘the number of’. For a completely
random pattern, the underlying theoretical distri-
bution function is given by

G(s)=1−exp(−pls2)

where l is the intensity. To assess the significance
or otherwise of departures from CSR, the conven-
tional approach would be to find the sampling
distribution of G. 1(s) under CSR, but this is com-
plicated. We therefore proceed as follows. Calcu-
late EDFs, from G. i(s), i=2,…,ns, from each of
ns−1 independent simulations of n events inde-
pendently and uniformly distributed on A, and
define upper and lower simulation envelopes,

U(s)=maxi=2,…,ns{G. i(s)};

L(s)=mini=2,…,ns{G. i(s)}

Under CSR, and for each s, P{G. 1(s)\U(s)}=
P{G. 1(s)BL(s)}=ns−1. The graphical procedure
then consists of plotting G. 1(s), U(s) and L(s)
against G(s).

Similarly, for a grid of k sampling origins, let ei

denote the distance from the ith origin to the
closest of the n points. Then, the EDF for point
to nearest event distances is given by

F. 1(s)=k−1f(ei5s)

Under CSR, the theoretical distribution func-
tion F(.) matches exactly G(.) given above. By
analogy with the procedure adopted for the
nearest neighbour distances, upper and lower en-
velopes must be calculated based on a number of
simulations under CSR.

An exact Monte-Carlo test of complete spatial
randomness can be constructed as follows.
Calculate

D=maxi=1,…,ns �F. (si)−G. (si)�
The value, D1 say, of D for the observed data is
compared with values D2, …, D100 from ns−1
simulations of CSR. If D1 ranks pth largest
amongst D2, …, D100, the attained significance
level of the test is p% (Barnard, 1963).

The second-order properties of a spatial point
process describe variation in the relative fre-
quency of pairs of events as a function of their
positions. Under the assumption of constant local
intensity, this function depends only on the rela-
tive positions of the two events. Under the further
assumption that the underlying process involves
no directional effects, it reduces to a function of
distance only. Perhaps the most useful such func-
tion is the K-function (Ripley, 1977) defined by,

lK(s)

=mean number of events within distance s of an
arbitary event (excluding the arbitrary event).

For a bivariate process, in which the local
intensities of type 1 and type 2 events are l1 and
l2 respectively, a complete description of the sec-
ond-order properties of the process requires us to
define the K-functions Kij(s) by,

ljKij(s)=mean number of type j events wihtin
distance s of an arbitrary type i event.
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Note that K11(s) and K22(s) correspond to K(s) as
previously defined, also that K12(s)=K21(s).

The forms of these K-functions under our vari-
ous benchmark hypothesis are very simple. Under
CSR, K(s)=ps2. Under independence, K12(s)=
ps2, irrespective of the forms of K11(s) and K22(s).
Finally, under random labelling, K11(s)=K22(s)=
K12(s).

3. Marked Gibbs models

Gibbs point processes are applied to model
point patterns with interacting objects. The theory
first arose in the theory of statistical physics,
where Gibbs distributions are use to describe the
equilibrium states of closed physical systems. The
theory of Gibbs processes is based on the idea of
sampling realizations from a weight process, usu-
ally from a Poisson process, following a special
type of probability density. Therefore the distribu-
tion of a Gibbs process is defined as the Radon–
Nikodym derivative of its distribution with
respect to a Poisson process with intensity one.
Poisson process is chosen as a weight process
because it is natural to compare point patterns
with interacting events to a completely random
one. The definitions in next subsection are given
to marked Gibbs processes either on Rd×K or on
W×K, where W is a bounded subset of Rd.

3.1. Interaction

Suppose that Þ is a symmetric relation on W.
Two points j= [x, mx ] and j= [y, my ] on W×K
are said to be neighbours if xÞy implies that
yÞx, and in addition x can not be neighbour of
itself. In many applications individuals are neigh-
bours if they are close enough each other. For a
set A¦W×K we define the neighbourhood V(A)
by setting

V(A)={[x ; mx ]�xÞy for some [y ; my ]�A}.

Let XK denote the family of all locally finite
counting measures on. A subset H of XK is hered-
itary if c1�H and c2¦c1 implies that c2�H
(Ripley and Kelly, 1977). This condition has been
presented independently in the construction of

Markov random fields known as vacuum condi-
tion (Averintshev, 1973).

A function f :XK� [0,�) is a (mark) Markov
function if H={ f\0} is hereditary and
whenever c�H and j�c and the expression

f(c@j)
f(c)+ f(c@j)

depends only on j= [x, mx ] and V(j)@c.
A function h :XK� [0,�) is a (mark) interaction

function if h(c)"1 implies that j and h are
neighbours for every j, h�c. A Markov function
can also be characterized in terms of interaction.

3.1.1. Factorizing theorem (Ripley and Kelly,
1977)

A function f :XK� [0,�) is a (mark) Markov
function if and only if there is an interaction
function h such that

f(c1)= 5
c 2¦c 1

h(c2)

for all c1�XK.
The factorizing theorem is known as Hammers-

ley–Clifford theorem for Markov random fields
(Grimmet, 1973).

3.2. Marked Gibbs processes

As stated above, when introducing the marked
Gibbs point process model it is necessary to make
a difference between a finite point process defined
on a set W×K, where W is a bounded subset of
Rd and K is a given mark space, and an infinite
(stationary) point process on Rd×K. The finite
case is simpler: given a potential function, we only
have to check that the probability measure is
integrable. However, finite processes cannot be
stationary due to boundary effects. On the other
hand, in the infinite case, in addition to checking
the integrability of the probability measure, it is
necessary to prove the existence of the process by
means of considering limits of some thermody-
namical functions (see e.g. Ruelle, 1969; Preston,
1976).

As a compromise between these two ap-
proaches we consider point processes in the space
S=T×K, where T is a torus (obtained by identi-
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fying opposite sides of a hyperrectangle A¦Rd).
In applications, a rectangular sampling window
can be mapped onto a torus and the mark space
K is usually either a discrete set or a part of the
real line.

For ease of notation, let’s consider that XK also
denote the family of all locally finite counting
measures c on S and FS the smallest s-algebra on
XK generated by the maps c�c(W×L), where
c(W×L) is the number of points of in a
bounded Borel set W with marks in L. A marked
point process C is a random variable in XK. The
distribution of C is denoted by P. For conve-
nience, we write C={[xi, mi ]}, where the xi ’s are
the locations of points of the process and the mi ’s
are the marks.

A marked point process on a torus is stationary
if its distribution is invariant under shifts on the
torus: the processes C={[xi, mi ]} and Cx=
{[xi�x, mi ]} have the same distribution for all x
in T, � denoting a shift on the torus. The
distance between the points x and y defined on
the torus is denoted by d(x, y).

Further on we consider stationary marked
point processes on S. For such processes the
intensity measure has the form

Lp=lp6×Mp

where lp is the intensity of the process C, v is the
Lebesgue measure and Mp is the mark distribu-
tion of the process.

Let us fix a finite non-atomic measure t on T
(typically t is the Lebesgue measure, yielding the
unmarked Poisson process of unit intensity) and a
measure M on K corresponding to the distribu-
tion of the marks. Given r=t×M we define the
marked Poisson measure Q with intensity r on
(XK, FS) as

Q(F)=e−r(S) %
�

n=0

1
n(n−1)(n−2)···1

&
···
&

1F(( [x1, m1]+ ···+( [xn, mn ])r(d [x1, m1])

× ···r(d [xn, mn ])

for F�FS

A probability measure P on (XK, FS) is called a
marked Gibbs measure with total energy U if it is
absolutely continuous with respect to the marked

Poisson measure Q and the Radon–Nikodym
derivative f=dP/dQ is a Markov function. The
measurable function U :FS� (-�,�] must satisfy
the following conditions (see Nguyen and Zessin,
1979): U(¥)=0 and U(c1)=� whenever U(c2)
and c2¦c1 for c1, c2�FS.

The distribution of the point process is given by
a probability density function f :Wn×Kn� [0,�)
such that

f(c)=
1
Z

exp(−U(c))

where Z is a normalizing constant. We restrict
ourselves to pairwise interaction processes for
which the total energy U can be written in terms
of a mark pair potential function f :T×T×K×
K� (−�,�) and a mark chemical activity func-
tion a :K� (−�, �) i.e.

U(c)= %
n

i=1

a(mi)+ %
iB j

f(xi, xj, mi, mj)

If the process is homogeneous f depends on the
distance d(xi, xj). This function characterizes in-
teractions between the marked points and a(m)
describes the ability of the system to receive a
point with mark m. In addition to the total energy
U we can consider the local energy at [x, m ] with
respect to c.

E(x, m, c)=a(m)+ %
[y,l]�c

f(x, y, m, l)

which can be interpreted as the energy required to
add the point [x, m ] to the configuration c.

3.3. Maximum pseudo-likelihood method

From now on we consider parametric Gibbs
models for which the local energy can be written
as

Eu(x, m, c)=a(m)+ %
[y,l]�c

f(x, y, m, l ; u)

where u is a parameter vector to be estimated.
Since the distribution of the points of a data set
can potentially be influenced by some points out-
side of the sampling window, we should take the
effect of the unobserved points into account. Dif-
ferent strategies have been proposed to reduce the



J. Mateu et al. / Ecological Modelling 108 (1998) 163–174168

edge effect but their careful treatment is beyond
the scope of this paper. We’ll assume that the
point pattern is a realization of a Gibbs process
on a torus T. Hence, we avoid the problem of
boundary correction. Clearly, applicability of the
estimation method considered here is not re-
stricted to the cases for which the sampling win-
dow can be wrapped onto a torus.

The idea of the maximum pseudo-likelihood
(MPL) method and its application in estimating
parameters of Gibbs point processes is due to
Besag (1978). This estimation procedure is a com-
putationally easier alternative to the maximum
likelihood method since the likelihood function
contains a scaling factor which cannot be calcu-
lated explicitely (Mateu and Montes, 1994).

In order to provide a rigourous base to the use
of the MPL method for analyzing point patterns,
Besag et al. (1982) showed that a sequence of
lattice processes approximating the point process
converges to the point process. Using this limit
procedure Ripley (1988) found a general form for
the pseudo-likelihood (PL) function of unmarked
processes. Jensen and Moller (1991) proposed a
definition of the PL function as a limit of a
product of conditional densities. Starting from the
true likelihood it is proved that a sequence of
degraded likelihoods gives in the limit the pseudo-
likelihood.

3.3.1. Definition
The PL function is defined by

log PL(u ; c)= − %
[x,m]�c

Eu(x, m, c− [x, m ])

−
&

T

&
K

exp(−Eu(j, t, c))M(dt)dj

Justification of the functional form of the PL
function can be found in Grabarnik and Sarkka
(1992). According to the above definition, the log
PL function for a multitype Gibbs process (dis-
cretely marked) is

− log PL(u ; c)

= %
k

i=1

nia(i )+ %
k

i=1

%
k

j=1

%
x�ci

%
y�cj
y"x

f(d(x, y), i, j )

+ %
k

i=1

e−a(i) &
T

exp
�

− %
k

j=1

%
x�cj

f(d(x, j), i, j )
�

dj

where ni is the total number of events of species i.
And the log PL function for a continuous marked
Gibbs process with a bounded mark space K is

− log PL(u ; c)

= %
[x,m]�c

a(m)+ %
[x,m]�c

%
[y,l]�c
y"x

f(d(x, y), m, l)

+
&

T

&
K

exp(−a(t)− %
[x,m]�c

f(d(x, j), m, t))

dtdj

Proofs can be found in Grabarnik and Sarkka
(1992).

4. Spatial analysis of forest ecosystems

Let us consider two examples of forest ecosys-
tems. Both data sets have been observed within a
rectangular sampling window and therefore some
corrections are needed to reduce the edge effects
(Diggle, 1983). Here the toroidal edge correction
is applied, i.e. the rectangle is mapped onto a
torus by identifying opposite edges.

4.1. Ecosystem 1

A data set consisting of locations of two types
of mediterranean trees, Quercus ilex L. (110 indi-
viduals, type 1-events) and Pinus halepensis L. (81
individuals, type 2-events), measured in a rectan-
gular planar area of size 180×120 m2. See Fig. 1.

Fig. 2 shows the EDF plot of nearest neighbour
distances (G. function) for the pattern consisting
of the locations of Quercus ilex L., together with
the upper and lower envelopes from 99 simula-
tions of CSR (the benchmark hypothesis). There
is a clear excess of nearest neighbour distances
between 4 and 5 and between 6 and 7 m which
provides evidence for rejection of CSR in favour
of a relative regularity of events in the above
mentioned intervals. Fig. 2 also provides the plot
of the EDF of point to nearest event distances (F.
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Fig. 1. Mediterranean forest: Quercus ilex L. (110 individuals,
crosses) and Pinus halepensis L. (81 individuals, squares) in a
rectangular plot of size 180×120 m2. Birch forest (231 indi-
viduals) in a rectangular plot of size 280×190 m2 . The sizes
of the circles are proportional to crown lengths.

The formal statistical test for CSR using a
Monte-Carlo experiment to evaluate F. −G. gives
the following values:

D1=0.209336, min(Di, i=2,...,100)

=0.042669, max(Di, i=2,...,100)=0.209172.

So the Monte-Carlo test suggests rejection of
CSR with an attained significance level of 0.01
confirming the graphical assessment. We can con-
clude that the univariate pattern of Quercus ilex
L. has been produced by a non-random and regu-
lar ecological mechanism with most of individuals
being between 4–5 or 6–7 m.

Concerning type 2 data, we have also plotted
the EDF G. and F. (see Fig. 2). There is a clear
excess of nearest neighbour distances between 4
and 6 m. Finally, Fig. 2 also provides the plot of
the EDF of point to nearest event distances (F.
function) using a grid of 1100 points inside the
surrounding polygon. This EDF for the data lies
below the lower simulation envelope for part of
its range (from 4.5 to 10 m) leading both EDF’s
to emphatic rejection of CSR. We conclude that

function) using a grid of 1100 points inside the
surrounding polygon. This EDF for the data lies
below the lower simulation envelope for part of
its range (from 3.75 to 10 m) leading to emphatic
rejection of CSR. This different behaviour of G.
and F. functions is typical in this kind of patterns
(Diggle, 1983).

Fig. 2. EDF plot of nearest neighbour distances (G function) for type 1 and 2-events: G. (solid line), Upper envelope under CSR
(sparcely dotted line), Lower envelope under CSR (continuously dotted line). EDF of point to nearest event distances (F function)
for type 1 and 2-events: F. (solid line), Upper envelope under CSR (sparcely dotted line), Lower envelope under CSR (continuously
dotted line).
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Fig. 3. K function for type 1 and 2-events (K11 and K22, respectively): K. ii (solid line), Upper envelope under CSR (sparcely dotted
line), Lower envelope under CSR (continuously dotted line).

Pinus halepensis L. pattern is produced by a regu-
lar mechanism with a ‘normal’ (under CSR) num-
ber of individuals being less than 4 m appart and
with most of them being more than 4 m appart.
The formal statistical test gives

D1=0.243291, min(Di, i=2,...,100)

=0.071024, max(Di, i=2,...,100)=0.2418912.

Fig. 3 shows the K-function for the observed
data together with the upper and lower envelopes
from 99 simulations under the benchmark hy-
pothesis of CSR for type 1 and type 2 individuals.
It is obvious that type 1 and 2-events are not
compatible with the CSR hypothesis.

In Fig. 4 it is observed that the trace for the
data does not lie within the upper and lower
envelopes from 99 simulations under the hypothe-
sis of random labelling. If we explore Fig. 4 it is
seen that the trace corresponding to the observed
data lies within the upper and lower envelopes
from 99 simulations under the hypothesis of inde-
pendence of the two components for values of
distance t less than about 7 m. For larger dis-
tances the data is not compatible with indepen-
dence of the two components. For distances
above 7 m both patterns become dependent but
still generated by two different regular biological
mechanisms.

As an appropriate model for this data set we
consider a bivariate Gibbs point process for which
the mark space consists of two elements, K=
{1,2}, and the local energy Eu(x, m, c) can be
written in the form

Eu(x, 1, c)

=a1+ %
[y,1]�c

f11(x, y ; u11)+ %
[y,2]�c

f12(x, y ; u12)

Eu(x, 2, c)

=a2+ %
[y,2]�c

f22(x, y ; u22)+ %
[y,1]�c

f12(x, y ; u12)

where (a1, a2, u11, u22, u12) are the parameters to be
estimated by the MPL method, f11 and f22 describe
interactions within the species 1 and 2, respectively,
and f12 interactions between the two species.

We have fitted a bivariate Strauss model with
pair potential function

fij(x, y, uij)=Í
Á

Ä

�
u ij

0

if d(x, y)B1
if d(x, y)B12
if d(x, y)]12

where the hard-core distance is 1 m, the minimum
inter-event distances, and interaction radii 12 m.
Parameter values very close to zero indicate homo-
geneous or CSR pattern. Regular patterns are based
on parameter values above 0.5 and cluster patterns
are defined for parameter values below zero. The
MPL estimates are â1=4.9, â2=6.9 and u. 11=
0.671, u. 22=0.523, u. 12= −0.231. Type 2 trees
pattern has more ability to receive a new marked
event than type 1 pattern (â2\ â1). According to
this model, the patterns formed by Quercus ilex L.
and Pinus halepensis L. are generated by a regular
inhibitory mechanism in determined intervals of
distances and they are CSR patterns out of them.
The dependence between both species is based on
a certain attraction for distances above 7 m.
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Fig. 4. Random labelling and independence: Empirical (wider solid line), Upper envelope under random labelling or independence
(dotted line), Lower envelope under random labelling or independence (narrower solid line).

To see that the estimated model fits to the data
we calculated the L11, L12 and L22 functions (see
e.g. Diggle, 1983) and the corresponding upper
and lower envelopes from 99 simulations under
estimated parameters. All the L-functions calcu-
lated from the data lie between the envelopes (Fig.
5) and therefore the estimated model fits well to
the data.

4.2. Ecosystem 2

The second data set is concerned with a birch
forest area in which locations (231 individuals)
and crown lengths (lengths varying between 2 and
8 m) are recorded in a rectangular planar stand of
size 280×190 m2. See Fig. 1.

The EDF plot based on the G. function, Fig. 6,
now shows the deficiency of small nearest neigh-
bour distances which is typical of regular or in-
hibitory patterns. Using again a grid of 1100
points in the sampling window to calculate the F.
function, the position of this EDF is near or
above the upper simulation envelope which typ-
ifies a regular pattern and again contrast with the
behaviour of G. . An effective summary of the
regularity in these data is a plot of the K-function
which is shown in Fig. 6. There is a fairly well
defined inhibition distance of 3.16 (minimum in-
ter-event distance). Also, in the range t514 the
K-function for the data lies below the lower envel-
ope from 99 simulations of CSR.

A test for CSR using a Monte-Carlo experi-
ment to evaluate F. −G. leads to rejection of CSR
with a comfortably attained significance level of
0.01.

Let a bounded set K= [2,8] be the mark space
for the crown lengths recorded in 231 positions of
sampled birches in the stand. We model interac-
tions among crowns by the mark pair potential
function

fc 1,c 2
(x, y, m, l)=

Í
Á

Ä

�
c1mlexp(−c2d(x, y))
0

if d(x, y)B3.16
if 3.165d(x, y)B14
if d(x, y)]14

which depends only on two parameters: c1 and c2.
The chemical activity function considered was
a(m)=exp(−ml) where l is the intensity of the
pattern and can be estimated in the obvious way
by l. =n/�A �, where n denotes the number of
events in the region of observation.

The MPL estimates gave ĉ1=0.6 and ĉ2=0.13
indicating a regular or inhibitory pattern amongst
birches. The goodness-of-fit of the model was
studied by means of the Lmm statistic correspond-
ing to the mark correlation measure (Penttinen et
al., 1992). The Lmm statistic calculated from the
data lies between the envelopes (Fig. 7) and there-
fore the estimated model fits well to the data.
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Fig. 5. Goodness-of-fit for bivariate Strauss model: L11(t)−L(t) (type 1-events), L12(t)−L(t) (combination of two types) and
L22(t)−L(t) (type 2-events). Estimated (solid line), Upper envelope under CSR (sparcely dotted line), Lower envelope under CSR
(continuously dotted line).

5. Discussion

In the literature the MPL method has been
applied mainly to analyze unmarked point pat-
terns, and only little attention has been paid to
marked patterns. Obviously, the class of marked
Gibbs point processes extends the applicability of
point process models to such practical problems,
where the interest is not only in the point pattern
but also in variables associated to the locations.
Models with marks are able to describe various
kinds of interaction between the objects and may
therefore be more realistic.

It is not necessary that the chemical activity is
constant in the continuously marked case as it has
been the case for a long time. Here we have
proposed a chemical activity as a function of
marks. However, we have not considered a
parametrized chemical activity function a(m ; m)
depending on a set of parameters m. This would
be a nice idea to incorporate in pseudo-likelihood
functions.

In this paper we have used a toroidal edge
correction. This periodic boundary is commonly

used for computer experiments in statistical me-
chanics in order to calculate physical quantities
associated with a particular potential function. It
is known to be highly reliable even for processes
with very strong interactions. Nevertheless, it also
has some disadvantage: periodic boundaries can
introduce undesirable artefacts; for example,
toroidal distances can be arbitrarily small even
when the underlying process has a positive hard-
core distance. Instead of this method one may use
the one introduced by Ripley (1977) which cor-
rects the bias using areas of parts of circles.

For non-homogeneous patterns we might use a
varying local intensity, l(x) say, in the chemical
activity function instead of a constant. An estima-
tion given by Diggle (1985) has the following
form

l. (x)= %
n

i=1

�
1−

d2
i

2h2
0

�2

where the parameter h0 specifies the width of the
kernel whereas di is the distance from event i to x.

The tests using upper and lower envelopes are
based on 99 simulations to produce a one-sided
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Fig. 6. EDF plots for birch forest: nearest neighbour distances (G function), point to nearest event distances (F function) and K
function. G. , F. and K. (solid line), Upper envelopes under CSR (sparcely dotted line), Lower envelopes under CSR (continuously
dotted line).

test with significance level 1% (or 2% in a one-
sided test). However, many published papers are
based on 19 simulations to get significance levels
of 5 or 10% in one or two-sided tests, respectively.

This paper has presented several statistical
methods which are, we believe, of varying impor-
tance for the forest statistician. These methods
may be included into the everyday toolbox of
exploratory methods for analyzing mapped tree
data.
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