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A patchy spatial distribution of resources underpins many models of population
regulation and species coexistence, so ecologists require methods to analyse spatially-
explicit data of resource distribution and use. We describe a method for analysing maps
of resources and testing hypotheses about species’ distributions and selectivity. The
method uses point pattern analysis based on the L-function, the linearised form of
Ripley’s K-function. Monte Carlo permutations are used for statistical tests. We
estimate the difference between observed and expected values of L(t), an approach with
several advantages: 1) The results are easy to interpret ecologically. 2) It obviates the
need for edge correction, which has largely precluded the use of L-functions where plot
boundaries are ‘‘real’’. Including edge corrections may lead to erroneous conclusions if
the underlying assumptions are invalid. 3) The null expectation can take many forms,
we illustrate two models: complete spatial randomness (to describe the spatial pattern
of resources in the landscape) and the underlying pattern of resource patches in the
landscape (akin to a neutral landscape approach). The second null is particularly useful
to test whether spatial patterns of exploited resource points simply reflect the spatial
patterns of all resource points. We tested this method using over 100 simulated point
patterns encompassing a range of patterns that might occur in ecological systems, and
some very extreme patterns. The approach is generally robust, but Type II decision
errors might arise where spatial patterns are weak and when trying to detect a clumped
pattern of exploited points against a clumped pattern of all points. An empirical
example of an intertidal lichen growing on barnacle shells illustrates how this technique
might be used to test hypotheses about dispersal mechanisms. This approach can
increase the value of survey data, by permitting quantification of natural resource
patch distribution in the landscape as well as patterns of resource use by species.
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In nature, resources are often patchily distributed and

such patchiness can affect both population numbers and

the coexistence of species (Chesson 2000). Spatially,

resources may be described as patches within a land-

scape: patches can be large and form mosaic landscapes,

or small and scattered through the study area. Patterns

generated by this second kind are of particular interest

here: resource patches that can be described as discrete

‘‘points’’ in the landscape. Ecological examples are

abundant and include emergent rocks in rivers used as

oviposition sites by aquatic insects (Peckarsky et al.

2000, Reich and Downes 2003), parasites and their hosts

(Tenhumberg et al. 2001, Tripet et al. 2002), food plants

for specialist herbivores (Fahrig and Paloheimo 1988,

Doak 2000), fruit or fungi for flies with larvae that

consume those resources (Atkinson and Shorrocks 1984,

Krijger and Sevenster 2001) and carrion fly communities

(Ives 1991).

Describing the spatial distribution of resources is

challenging, given that resource ‘‘points’’ may be

clumped or over-dispersed at multiple spatial scales. A

further challenge is to describe how organisms use those
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spatially distributed resources and, ultimately, to under-

stand the consequences of resource distribution patterns

for population-level processes. In all these examples,

mobile animals select and exploit resource points from

an array of possible resource points, and some points are

not exploited. The distribution of resources is often

driven by environmental factors (e.g., geomorphic pro-

cesses in rivers distribute boulders that may become

oviposition sites), but the selection of resource points by

organisms, coupled with differential survival following

selection, may produce different patterns. Understand-

ing the interactions between these two processes, i.e.,

how different organisms interact with variable land-

scapes, is integral to understanding population dy-

namics.

To begin to de-couple effects of different resource

arrays in a landscape from the effects of selection

behaviour and differential survival of species on those

resources, it is important to examine exploited resource

points within the context of all available resource points.

Surprisingly little attention, however, has been directed

at comparing the spatial patterns of available and

exploited points. Numerical techniques exist for some

related aspects of population dynamics on patchy

resources, such as the aggregation model of coexistence

(Hartley and Shorrocks 2002), but these models are

rarely spatially-explicit (i.e., directly consider the ar-

rangement of resource patches in space) and this may be

important in some situations (Heard 1998, Remer and

Heard 1998). There are many spatially-explicit studies of

organism-landscape interactions that view landscapes as

a mosaic of habitat types, and they use different

numerical techniques, appropriate to that scenario (e.g.

With and Crist 1995, McIntyre and Wiens 2000, Palmer

et al. 2000). Such studies are often concerned with

ecosystem-level issues like habitat fragmentation and

connectivity, and less with how resource patch distribu-

tion might mediate coexistence or regulate populations

(but see Silver et al. 2000). Thus there is a need for

methods to de-couple the pattern of resource patch

exploitation from the background of available patches

and, eventually, these processes need to be integrated

into tests of population processes.

How does the spatial distribution of exploited re-

sources compare with the distribution of all resources,

and what ecological processes generate the observed

patterns? Are exploited resources regularly spaced,

perhaps through inter-individual repulsion, despite an

underlying clumped pattern of all resources? In this

paper, we present a method for tackling these questions.

This method uses spatially explicit, point pattern analy-

sis coupled with tests of ‘‘null’’ models generated by

posing ideas about how organisms are using resource

patches (akin to neutral landscape models: With and

King 1997). The method allows relatively sophisticated

information to be drawn from basic survey data, with

these results then enabling the design of experimental

tests of hypotheses.

Background and the problem of edge correction

Analysis of spatial point patterns commonly involves

Ripley’s K-function (Ripley 1976, 1981) and the related

functions of second-order neighbourhood analysis. Var-

ious forms of such spatial pattern analysis are widely

used in many disciplines (e.g., epidemiology, geomor-

phology, criminology) and are becoming more common

in ecological studies, especially in plant ecology. The

simplest application is to use the mapped position of

points (e.g., plants), expressed as x:y co-ordinates, in a

univariate analysis to describe spatial pattern as

clumped, random or over-dispersed (Ward et al. 1996,

Cole and Syms 1999). Extensions of this K-based point

pattern analysis allow examination of spatial association

in two-species interactions (Andersen 1992), such as

competition (Martens et al. 1997) and facilitation (Haase

2001), and could be extended further to examine

processes involving more than two species or categories

of points (Lotwick and Silverman 1983, Penttinen et al.

1992). Another logical extension involves comparing the

pattern of ‘‘marked’’ points (e.g., exploited resource

points) to the pattern of all points (Besag and Diggle

1977, Diggle 1983, Rowlingson and Diggle 1993), but

this has received relatively little attention from ecologists

(but see Penttinen et al. 1992). Andersen (1992) explored

this idea a little, but concluded that his K-function plots

were not ‘‘conceptually transparent’’ and hence difficult

to interpret ecologically. Our objective was to develop a

robust and easily interpreted technique that calculates

the difference between two spatial patterns (marked vs

all points) and tests whether the pattern of marked

points is significantly different from the underlying

pattern of all points.

Because plots of resource points necessarily have

boundaries (real in some habitats and artificially im-

posed in others), edge correction is an important issue

associated with K-function analyses in ecological studies

and it may restrict the range of situations in which these

methods can be used. Edge corrections consider points

near the plot boundary, where the real number of

neighbouring points may be underestimated if some

points lie outside the plot. Thus an edge correction is

applied in which points near the boundary are weighted

more heavily than those closer to the centre. Hitherto,

virtually all ecological applications of K-functions have

included edge correction and Goreaud and Pélissier

(1999) recommend the use of edge correction for

ecological interpretations, but this view is not unan-

imous (Ward and Ferrandino 1999). The suitability of

edge correction depends on the underlying assumption

that the region surrounding the study plot has a point
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density and distribution pattern similar to areas within

the plot. For many ecological situations, this assumption

may be inappropriate and edge correction difficult to

justify. Many habitats have hard, ‘‘real’’ edges, e.g.,

aquatic-terrestrial boundaries, and the point pattern

cannot possibly extend beyond the plot boundary. It

may not be feasible (or ecologically sensible) to map only

the interior of a habitat patch in order to satisfy this

assumption, especially where overall point density is low.

Indeed, points near the edge of the plot may contribute

little to the overall ecological processes and, thus,

weighting these points may be erroneous. If edge

correction is not justified ecologically, then we need to

explore alternative methods of point pattern analysis for

these situations. K-based methods without edge correc-

tion are poorly developed, but we do know that applying

edge correction when it is unwarranted may lead to

erroneous conclusions (Baddeley et al. 2000). Gignoux et

al. (1999) found that the power of statistical tests was

increased without edge correction, especially if the

number of points is small (B/20) and the pattern is

clumped. Nevertheless, using a statistical argument for

omitting edge correction may be difficult to justify if it is

inconsistent with the ecological context. We explore

ways in which K-based analyses can be used to describe

point patterns when edge correction is inappropriate,

and we assess the effect of edge correction when

comparing the patterns of marked vs all points. Techni-

ques with widespread applicability are clearly advanta-

geous.

Method

Neighbourhood analysis of point patterns is based on

distances between all pairs of points; it counts the

number of points within a certain distance, t, of each

point, with t taking a range of values. Ripley’s

K-function describes the cumulative frequency distribu-

tion of all point-to-point distances:

K(t)�n�2A
Xn

i

Xn

j"i

wijIt(uij)

where: t is the radius of a circle centred on a point in the

pattern, n is the total number of points, A is the plot

area, wij is a weighting factor to correct for edge effects,

and It is a counter variable which is set to 1 if the

distance uij between points i and j is 5/t, otherwise It�/

0. Commonly, K(t) is presented as the linearised

L-function (Besag 1977):

L(t)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(t)=p

p
�t

This is often easier to interpret than K(t) as, under

complete spatial randomness, L(t)�/0 for all t. If points

are clumped in space, L(t)�/0; if points are regularly

dispersed, L(t)B/0. The significance of any observed

patterns are usually assessed by comparing the observed

distribution function with that expected under complete

spatial randomness (CSR). In other words, we ask

whether the observed spatial pattern of n points is

more clumped or more evenly distributed than a random

arrangement of n points in the plot. The 95% confidence

envelope for CSR is obtained by Monte Carlo permuta-

tions.

There are several different methods of calculating a

weighting factor to correct for edge effects (e.g., see

review by Haase 1995). Perhaps the most widely used is

Ripley’s local weighting factor, in which wij is computed

as the inverse of the proportion of the circumference of

the circle (centred on i, passing through j and with radius

uij) which is inside the study area. We used formulae for

local weighting factors published in Goreaud and

Pélissier (1999) for rectangular study areas, including

long narrow plots, i.e., edge correction includes cases

where the circle intersects with three sides of the study

plot. This allows computation of L(t) for t up to half of

the longest side of a rectangular plot, instead of the more

usual limit of t at half the shortest side of a rectangle

(Diggle 1983), as set by the computations for local

weighting factors.

Simulated point patterns were run for over 100

different combinations and permutations of square or

rectangular plots, of random, clumped or even distribu-

tions, of all and marked points. These simulated land-

scapes are hypothetical and hence artificial, but our aim

was to include a very wide range of spatial patterns that

might occur in ecological systems and to test the limits of

our methods with some very extreme patterns. All plots

had the same area and had 200 points, of which 50 were

marked as ‘‘exploited’’. All Monte Carlo tests used 999

permutations. Programs were written on a Macintosh

computer using REALbasic (ver. 3.0, 2001).

Comparing distribution functions

We illustrate our results with two extreme examples.

Firstly, Fig. 1a illustrates a square plot in which all

points are weakly clumped, but marked points are

randomly arranged in space (despite the clumped back-

ground) and are a random selection of the points

available. [Note that a random sample of points from a

clumped pattern will usually be clumped in space also.

Some random samples, however, will be randomly or

evenly distributed in space. The probability of such an

event occurring depends on the underlying pattern

strength and the number of points. This could arise in

some ecological applications so this extreme case war-

rants consideration.] Secondly, Fig. 1b illustrates a

rectangular plot in which all points are arranged into

five clusters, marked points are randomly distributed in
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space, and thus more evenly distributed than the under-

lying clumped pattern. We can illustrate these patterns

by examining the L-functions. For the square plot, the

L-function for all points (calculated with edge correc-

tion), lies above the confidence envelope for CSR and

clearly indicates clumping (Fig. 2a). For the rectangular

plot, the L-function for all points (calculated with edge

correction), lies above the confidence envelope for CSR

at �/3 units, indicating clumping within clusters (Fig.

3a). Significant clumping is also apparent at �/11 and 19

units. This ‘‘ripple effect’’ reflects peaks in point-to-point

distances between clusters and is typical of patterns with

multiple clumps close together.

If edge correction is excluded from the analysis and

the term wij is removed from the calculation of K(t),

(e.g., the underlying assumptions are violated so that an

edge correction is inappropriate, as discussed above),

then simple examination of the L-function and the

confidence envelope under CSR may be inadequate to

define the spatial pattern. An L-function that excludes

edge correction typically becomes increasingly negative

after just a few t and the resultant graphs are difficult to

interpret, because values for the observed and expected

L(t) converge and become indistinguishable relative to

the scale of the y-axis (Fig. 2b and 3b). With edge

correction, CSR is indicated by L(t)�/0 for all t; without

edge correction, the L-function under CSR is more

complex. An alternative approach is required.

A way forward is to consider that the value of L(t)

may be of little interest. Of greater interest and perhaps

of more utility in describing spatial pattern is the

position of the observed L-function in relation to the

confidence envelope, i.e., the difference between the

Fig. 1. Maps of two simulated point patterns used for illustra-
tion. Fifty of the 200 points are marked and marked points are
indicated by filled symbols. Both plots have the same area;
distance units are arbitrary. (a) Square plot where all points are
weakly clumped; marked points are randomly distributed in
space and relative to the underlying pattern. Twenty-five percent
of all the points are clumped in 15% of the area. (b) Rectangular
plot where all points are arranged in five clumps with �/20% of
all points in each clump; each clump covers �/16% of the total
area. Marked points are randomly distributed in space, but
evenly distributed relative to the underlying pattern.

Fig. 2. Point pattern analyses of square plot illustrated in Fig.
1a. Edge correction was included for all analyses in the left
column and excluded from those on the right. (a) and (b) spatial
pattern of all points, as indicated by the L-function. Solid line
indicates observed L-function of all points, dashed line indicates
L-function under CSR, dotted lines indicate a 95% confidence
envelope for CSR. (c) and (d) spatial pattern, indicated by the
mean difference between the observed L-function and the
L-function under CSR, of all points, and (e) and (f) of marked
points. Solid line indicates the mean difference between
L-functions, dotted lines indicate 95% confidence envelope for
the difference, dashed line indicates the null hypothesis of no
difference. (g) and (h) spatial pattern of marked points
compared with underlying distribution of all points. Solid line
indicates the mean difference between the observed L-function
of marked points and the L-function of a random selection of
all available points, dotted and dashed lines as in c�/h.
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observed L-function and the L-function under CSR,

L(t)Obs�/L(t)CSR. The null hypothesis is that there is no

difference between the two functions, i.e., L(t)Obs�/

L(t)CSR�/0 for all t. To interpret the spatial pattern

statistically, Monte Carlo permutations are used to

calculate the mean difference and the confidence envel-

ope about the difference. If the observed difference

between L-functions is positive (i.e., the mean difference

and its confidence envelope lie above the null hypothesis

of no difference), then the points are more clumped than

expected by chance. If the observed difference between

L-functions is negative, then the points are evenly

spaced. If the null hypothesis lies within the confidence

envelope, this indicates a random spatial pattern. This

method of calculating the difference between L-func-

tions should be equally appropriate for analyses with or

without edge correction. Similarly, Baddeley et al. (2000)

describe a method for estimating the J-function of

spatial point patterns in which any edge effect bias in

the test statistic is accounted for by similar biases in the

null distribution of the test statistic.

Using the above approach in all our simulations, the

inclusion or exclusion of edge correction had either no

effect on the interpretation of spatial pattern (i.e.,

clumped, random or even), or differences in interpreta-

tion could be related directly to the assumptions under-

lying edge correction. For the clumped pattern in Fig.

1a, the mean difference between L-functions and its

confidence envelope is positive and indicates clumping,

in analyses with and without edge correction (Fig. 2c, d).

Similarly, the difference between L-functions is positive

in Fig. 3c, d and indicates a clumped spatial pattern.

Only Fig. 3c indicates significant clumping at several

scales (as in Fig. 3a), and whether this interpretation is

correct depends entirely on the ecological context and

the assumptions underlying edge correction. If the point

pattern does indeed extend in all directions beyond the

plot boundary, then edge correction would be appro-

priate and we could expect statistically significant

‘‘ripples’’ that suggest clumping at multiple scales (Fig.

3c). If the pattern does not extend beyond the plot

boundary, then visual examination of Fig. 1b suggests

that clumping should be significant at only the smallest

scale, as shown in Fig. 3d. The J-function estimates of

Baddeley et al. (2000) also suggest that calculations with

and without edge correction may provide contradictory

conclusions. Note that in our simulations (most of which

are not reported here owing to space constraints), square

plots were less sensitive than elongated plots to the

inclusion/exclusion of edge correction. Regardless of

plot shape, the most sensitive patterns involved a few

large clumps (especially if clumping was weak, as in Fig.

1b). Overall, the method of examining the difference

between L-functions appears to be robust, but the

decision of whether to include edge correction must be

considered carefully and with reference to the ecological

context of the study.

Using a neutral landscape approach

If the study objectives focus on the spatial pattern of n?
marked (i.e., exploited) points rather than the pattern of

all points, then several different neutral landscape

models, rather than just complete spatial randomness,

could be employed. The method, however, of assessing

point patterns by calculating the difference between two

L-functions remains virtually identical for any neutral

landscape model. We illustrate this by exploring two

neutral landscapes. Firstly, we compared the L-function

of n? marked points with the L-function of n? points

under CSR. Ecologically, this examines the spatial

pattern of marked points, regardless of the underlying

pattern of all available points. Analyses followed the

same procedures as outlined above for analysing the

spatial pattern of all points. Secondly, we tested whether

the distribution of marked points differed from the

Fig. 3. Point pattern analyses of rectangular plot illustrated in
Fig. 1b. See Fig. 2 legend for explanation.
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spatial pattern of all available points, following a

suggestion of Rowlingson and Diggle (1993). Ecologi-

cally, this tests whether the pattern of marked points can

be explained by random selection (by insects seeking

oviposition sites, for example) given the underlying

pattern of all points, which provides the null expectation.

For this analysis, a random sample of n? points (where n?
is the same as the number of marked points) is selected

from the n available points. The null hypothesis, that

marked points are a random selection of those available,

is reflected by no difference between the two L-functions,

i.e., L(t)Obs�/L(t)Ran�/0 for all t. As above, Monte

Carlo permutations are used to calculate the mean

difference and a 95% confidence envelope around the

difference. The position of the mean difference and its

confidence envelope relative to the null hypothesis of no

difference is again used to determine whether marked

points were clumped, random or evenly distributed

relative to the underlying spatial pattern.

The choice of neutral landscape may influence the

perception and interpretation of whatever process is

involved in generating the marked points. Careful

consideration of the ecological context and a clear

description of the hypothesis under test is required

when selecting the neutral landscape as it determines

the null expectation. When we ask questions about the

distribution of marked points irrespective of the under-

lying distribution (neutral landscape one, above), we

cannot distinguish between different types of explana-

tions that might produce similar patterns. A finding that

marked points are clumped might be explained by

selective behaviour of organisms that produces that

pattern, but clumping can also be caused by random

selection by organisms moving over a landscape of

clumped patches. It is the second type of neutral

landscape that allows us to test whether spatial patterns

of marked points are more or less than what would be

expected, given the underlying distribution of resource

patches. We suggest that, in many cases, the latter tests

may be more interesting and informative, given that we

can start to rule out some explanations of patterns.

Further, the use of edge correction influenced the

interpretation of spatial patterns for the first neutral

landscape of CSR in some cases, but did not affect the

second, that of the underlying pattern of all points. For

the plot in Fig. 1a, edge correction had no impact on the

interpretation, marked points are clearly arranged at

random in space (Fig. 2e, f) and are a random selection

of those available (Fig. 2g, h). The confidence envelope

around the mean encompasses the null hypothesis of no

difference in these four cases. It is perhaps paradoxical

that a random selection of points from a clumped point

pattern should result in a random pattern of marked

points compared to CSR. This is because the marked

points are low in number and a small proportion of the

total (25%), and the underlying clumped pattern is weak

(25% of all points in 15% of the area). If these were real

data from an ecological system, the challenge would be

to determine whether the limits of statistical power

precluded detecting a significant pattern, and how strong

patterns need to be before they become ecologically

meaningful. Such methods of power analysis and effect

size have yet to be developed for this method. For the

plot in Fig. 1b in which the point pattern is stronger, if

the neutral landscape is CSR, the difference between

L-functions was positive in the analysis with edge

correction, suggesting a clumped spatial pattern at �/3

units (Fig. 3e). In contrast, the L-functions did not differ

significantly in the analysis without edge correction,

suggesting a pattern that is not significantly different

from CSR (and no evidence of selection by organisms)

(Fig. 3f). Thus, the ecological validity of assumptions

underlying the use of edge corrections are crucial to the

interpretation. For the second neutral landscape (i.e., to

determine whether the spatial pattern of marked points

is independent of the underlying pattern) then analyses

with and without edge correction both indicated an even

distribution over small distances (Fig. 3g, h). We would

have some suggestive evidence that there is selection by

organisms that is not explained by the underlying

distribution of patches.

This test of whether the spatial pattern of marked

points is independent of the underlying point pattern

appears to be robust and performed satisfactorily in all

our simulations, although only two are presented here.

This is encouraging as it means this technique can be

applied to address ecological questions in a wide range

of situations and habitats, including those where sample

plots are irregular shapes (hence making edge correc-

tions computationally difficult) and where the as-

sumptions underlying edge correction are invalid.

Additionally, the distance scale (i.e., maximum t) need

not be limited (by computational constraints) to half the

longest side of a rectangular plot if no edge correction is

used, and this increases the scope for detecting features

of the pattern that are large-scale relative to the plot size.

Perhaps the most ‘‘problematic’’ of our simulations

involved weak spatial patterns and a relatively small

number of marked points (as in Fig. 1a and discussed

above) and simulations involving clumped distributions

of both all and marked points. To detect a clumped

distribution of marked points, over and above any

underlying clumping, required very strong clumping of

marked points. For example, strong clumping might

entail �/50% of marked points in a single cluster against

a background of 25% of all points in a single cluster.

This difficulty remained regardless of whether the clump

of marked points coincided with the background clump

of points. The risk of a Type II error may be high when

dealing with ecological data with these characteristics.

Some assessment of the power or sensitivity of the test to

detect different degrees of clumping might be beneficial
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in those situations. Alternatively, clump recognition

techniques may prove more useful (Coomes et al.

1999), depending on the study objectives.

Empirical example

We illustrate the method of comparing available and

exploited resource patches (without edge correction)

using an example of an intertidal lichen, Pyrencollema

halodytes (Nyl.) R.C. Harris (1987), that grows endo-

lithically on barnacle shells. In this example, barnacles

are potential resource patches that can be mapped as a

point pattern; barnacles with lichen are exploited

patches (marked points). Direct observation of dispersal

or colonisation of lichens is rare and most studies rely on

indirect methods (Warren 2003). Point pattern analysis

may be useful to test hypotheses about modes of

dispersal in some situations. At our study site in SE

Scotland (56801?N, 2835?W), the intertidal zone was very

gently sloped and comprised of isolated, angular cobbles

and boulders of basalt, in a matrix of gravel, silt and

seaweed. Pyrencollema halodytes was common and

occurred almost exclusively on barnacles, Semibalanus

balanoides (Linnaeus), attached to the upper surfaces of

these large rocks. Some barnacles did occur in the matrix

between large rocks, but at a much lower density and

these rarely hosted the lichen. Thus, rocks are hard-

edged patches with barnacles and lichens, and we cannot

assume that the pattern extends beyond the rock

boundary. Dispersal of lichens is complex and, at this

small, within-rock scale, P. halodytes could colonise

barnacles through vegetative spread of a single thallus

onto adjacent barnacles, or via current-assisted dispersal

of various propagules (Bailey 1976). If vegetative spread

is the dominant form of colonisation, we might expect

the spatial pattern of barnacles with P. halodytes to be

more clumped than the underlying pattern of barnacles.

Alternatively, propagules are likely to be deposited at

random over the rock surface and barnacles with P.

halodytes are likely to reflect the underlying pattern of

barnacles if this is the major form of colonisation.

The spatial pattern of barnacles with and without

lichen were mapped on the upper, flat surface of

individual rocks, small enough to transport to the

laboratory. Each barnacle was examined under a micro-

scope at 40�/ and those with P. halodytes were marked

with a water soluble, non-toxic ink. The rock surface was

then photographed and x:y co-ordinates of each barna-

cle and the rock boundary were determined using the

public domain software NIH IMAGE program (devel-

oped at the US National Institutes of Health and

available on the Internet at B/http://rsb.info.nih.gov/

nih-image�/). The results of one such mapping exercise

are presented (Fig. 4a) for a rock of 162 cm2 with 227

barnacles, 97 of which supported the lichen. Few

barnacles had settled on this rock recently and all were

large enough to support P. halodytes (small, young

barnacles rarely host lichens).

The spatial distribution of lichens appeared to reflect

the underlying distribution of its resource patches, i.e.

Fig. 4. (a) Map of barnacles and lichen on a rock. Open circles
indicate barnacles without lichen; closed circles indicate barna-
cles with lichen. Point pattern analysis without edge correction
of (b) all barnacles and (c) barnacles with lichen. Solid line
indicates mean difference between the observed L-function and
the L-function under CSR, dotted lines indicate 95% confidence
envelope for this difference, dashed line indicates null hypothesis
of no difference. (d) Spatial pattern of barnacles with lichens
compared with the underlying distribution of all barnacles.
Lines as in (b) and (c) except that we calculated the difference
between the observed L-function and the L-function of a
random selection of barnacles.
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barnacles, at this small scale. Barnacles were significantly

clumped (Fig. 4b) and the gregarious nature of many

intertidal barnacles is well known. Reproduction by

sessile adults requires finding a mate in close proximity,

and clumps are formed through the behaviour of settling

larvae and interspecific interactions (Hartnoll and

Hawkins 1985, Hills and Thomason 1996, Jeffery

2000). The pattern of barnacles with P. halodytes was

also clumped (Fig. 4c) but, when compared with the

underlying pattern, P. halodytes appeared to occur on a

random selection of the available barnacles (Fig. 4d).

This suggests that dispersal via propagules is the

dominant form of colonisation at this scale. Spreading

of a single thallus over several barnacles was observed in

a few cases, but the occurrence of lichens on lone

barnacles (Fig. 4a) or lichens restricted to the central,

opercular plates and not covering the outer wall plates, is

consistent with the idea of dispersal and colonisation by

propagules.

Conclusion

This paper illustrates a technique based on the

L-function (a form of Ripley’s K-function (Ripley

1976, 1981, Besag 1977) for testing whether the spatial

pattern of marked points is independent of the under-

lying pattern of all points. Importantly, edge correction

is not required for this analysis. Edge correction has no

impact on the interpretations and thus the technique has

widespread applicability to a range of ecological situa-

tions. The general approach of calculating and plotting

the difference between observed and expected L-func-

tions can be used for any neutral landscape model that is

suitable for Monte Carlo tests. More complex models,

for example, might incorporate information on the

quality of resource patches and the probability of

individuals selecting certain kinds of patch (Lancaster

et al. 2003). Neutral landscape models can take many

forms and selecting the correct null model is crucial to

making the correct ecological interpretation (With and

King 1997). For example, marked points may be over-

dispersed relative to the underlying clumped pattern of

all points, yet appear to be randomly distributed when

the neutral landscape is CSR (Fig. 3e vs 3g and 3f vs 3h).

In the first case, we might hypothesise that some form of

avoidance behaviour prevents individuals exploiting

adjacent resource points.

As an added advantage, estimating the difference

between observed and expected L-functions provides a

means of examining spatial pattern when edge correction

is inappropriate (Lancaster et al. 2003). It is often

assumed (or even recommended) that edge correction

is required for K- and L-function use in ecological

contexts. Thus, either, K-based tests cannot be used in

situations where the assumptions underlying edge cor-

rection are invalid, or, researchers may be tempted to

include edge correction in order to do the analysis, even

though assumptions may be invalid. The former need

not be the case as, by emphasising the difference between

L-functions rather than the actual value of L, analyses

without edge correction are easily interpreted. The later

scenario is more worrying as our simulations indicate

that the inclusion/exclusion of edge effects can lead to

different interpretations of spatial pattern (e.g., Fig. 3e,

f) (see also Baddeley et al. 2000). The ecological context

should be of prime importance for decisions regarding

edge correction.

Our approach might be particularly valuable where

experiments are required to test hypotheses about how

patch distribution (density, dispersion, etc.) affects

population numbers or species coexistence. As long as

surveys of resource patch use are spatially-explicit, our

approach provides both a quantification of resource

patch distribution in the landscape, as well as a

preliminary test of whether there is evidence of selectiv-

ity by organisms (Lancaster et al. 2003). This can better

inform experimental tests, both in establishing a realistic

layout of resources within experimental plots (e.g.,

degree of spatial aggregation of patches) as well as

providing predictions of outcomes under different sce-

narios.
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