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a b s t r a c t

Experimental bubble nucleation studies are used for determining the nucleation mechanism as a

function of experimental conditions, the resulting bubble number density, and can also yield estimates

of the melt-vapor surface tension. This provides important information on gas exsolution in silicate

melts, which can be applied towards understanding magmatic degassing in volcanic conduits. At

present, determination of nucleation processes in tiny experimental samples relies upon visual

observations. To improve the characterization of the spatial distribution of bubbles, we present a new

application of spatial point pattern analysis. This technique allows the quantitative description of the

spatial distribution of nucleation sites and has the potential to distinguish between homogeneous,

heterogeneous, and multiple nucleation events. Since point pattern analysis highlights clustering or

spatial regularity among objects, it may improve our understanding of the melt structure underlying the

spatial distribution of nucleation sites, as well as interactions between bubble populations resulting

from different nucleation pulses within a single experimental sample.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial point pattern analysis is a powerful technique applied
to datasets, which record the spatial location of objects observed
within a certain region. It has been used across many disciplines
studying the spatial distribution of objects such as trees (Cox,
1979), galaxies (Peebles, 1974), and neuron profiles in brains
(Diggle et al., 1991).

We present the application of spatial point pattern analysis to
bubble nucleation experiments performed in silicate melts
decompressed and quenched from high pressures and tempera-
tures. Through a quantitative description of the spatial distribu-
tion of bubbles there exists the potential to distinguish between
homogeneous and heterogeneous nucleation mechanisms beyond
simple visual observations (e.g., Hurwitz and Navon, 1994;
Mangan and Sisson, 2000). This approach may also enable
researchers to separate multiple nucleation events that occurred
within one experiment. Since this technique highlights clustering
or spatial regularity in nucleation sites it may prove useful in
elucidating the underlying melt structure or point to the locations
of sub-microscopic crystallites. The ability to make quantitative
comparisons between and within samples, gives insights into the
ll rights reserved.

org/CGEditor/index.htm.
spatial controls on nucleation unattainable through any other
current methods applicable to experimental samples.
2. Background

Classical nucleation theory describes the thermodynamics of
fluid-phase separation, and is commonly applied to gas–vapor
exsolution in silicate melts. Following Hurwitz and Navon (1994),
the nucleation rate, J, at DP – the difference between the melt
pressure and the internal pressure in the critical nucleus – can be
calculated using Eq. (1) (e.g., Hirth et al., 1970)

J ¼ J0 exp �
16ps3

3kTDP2

� �
(1)

where J0 is a pre-exponential factor related to the concentration and
molar volume of dissolved H2O molecules in the melt, k is the
Boltzmann constant, T is the temperature, and s is the surface
tension. Derivation of J0 is detailed in Hurwitz and Navon (1994) and
Toramaru (1989). According to the kinetic model of Kolmogorov–
Johnson–Mehl–Avrami (Avrami, 1940; Johnson and Mehl, 1939;
Kolmogorov, 1937), the nuclei result from random volatile fluctua-
tions. Therefore, the spatial distribution of homogenously nucleated
bubbles should approximate a spatially random Poisson distribution.
In contrast, heterogeneous bubble nucleation may occur at much
lower DP, because of the reduction in excess free energy associated
with nucleation on a crystal surface (Hurwitz and Navon, 1994). In
this case, the spatial arrangement of bubbles may be homogeneous or
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Fig. 1. Workflow illustration for creation of spatial point patterns from experimental nucleated samples. (A) Overview Photomicrograph. (B) Sample Photomontage. (C)

Threshold Image. (D) Spatial Point Pattern.
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heterogeneous and reflects the spatial distribution and number of
crystals (Hurwitz and Navon, 1994; Mangan and Sisson, 2000; Cluzel
et al., 2008).
1 ImageJ. http://rsb.info.nih.gov/ij/.
3. Methods

3.1. Sample image preparation

To apply spatial statistics analyzes to experimental samples, a
well-polished sample surface for high-quality photomicrographs
are required. Thin sections of the experimental samples are
prepared by embedding the samples in epoxy, mounting on
microscope slides, and polishing finely. A series of photomicro-
graphs are taken in reflected light of the finely polished sample in
an overlapping grid fashion using a micrometer slide holder,
ensuring that each photomicrograph overlaps its neighbor by 40%.
The images in this study were taken at 100� with a Leica DM LM/
P petrographic light microscope and Leica DF320 digital camera
with a 2.98 pixels /micron resolution. The images are then
imported into Adobe Photoshop and a photomontage created
using the photomerge function. This process recreates an image
of the entire sample but at a higher resolution than would
be allowed by using fewer images collected using a lower
magnification.
3.2. Point pattern generation

The photomontage is imported into the ImageJ1 and the
global scale set to the correct pixel/micron ratio calibrated
from the camera used to collect the photomicrographs. The
perimeter of the sample can be traced using the multi-select
tool and the coordinates of the perimeter exported as a text
file. Using image thresholding to highlight the bubbles, the
coordinates of the centroids of the bubbles intersecting the
surface are determined by selecting centroid and limit to

threshold in the Set Measurements menu and then selecting
Analyze Particles. These can be exported as a text file from
the Results and saved with the extension .tab. Depending on
the image quality some manual thresholding may be required.
Fig. 1 shows examples of a bubble nucleation experiment
image, photomontage, thresholded image, and centroids
analyzed by ImageJ plotted as a point pattern in panel D. The
bubble centroid dataset is then imported into a suitable spatial
analysis package for derivation of the spatial distribution
functions.

http://rsb.info.nih.gov/ij/
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3.3. Point pattern loading

Spatstat2 is a package developed by Baddeley and Turner
(2005) for the R statistical computing platform (R Development
Core Team, 2007). R compiles and runs on UNIX, Windows and
MacOS. Where other packages require the window to be of a
regular shape, Spatstat is unique in the use of an arbitrary
window. This allows analysis of the entire sample at once, which
is a more rigorous statistical approach and particularly useful for
examination of experimental samples where the nucleation
pattern may differ between the edge and center of the sample.
After installing the two packages, the bubble centroid point
pattern dataset created in ImageJ is loaded into Spatstat for
statistical analysis. The appendix contains detailed instructions
for processing a bubble centroid point pattern along with a simple
sample dataset and the corresponding generated plots.

To load the point pattern data (i.e., bubble centroids), open the
R GUI and load the Spatstat package using the command
library(spatstat). Set the working directory to the folder containing
your point pattern files File4Change dir. The user should be aware
that all commands are case sensitive.

Before importing the sample point patterns, a sample window
must be created using the coordinates of the sample perimeter. To
create the window object, window, use the command

windowo� owinðpoly ¼ listðx ¼ cð0:5; 1; 0:2; . . . . . . . . .Þ,

y ¼ cð0; 1; 2; . . . . . .ÞÞÞ

where the x and y coordinates are the exported sample perimeter
coordinates. The sample point pattern is then imported and
associated with this window.

To create the point pattern object, Example, using points
collected in the file sites_example.tab, within the newly created
window object, window, use the following command:

Exampleo� scanppð‘‘sites_example:tab’’;window; dir ¼ ‘‘ ’’,

header ¼ FALSE;multitype ¼ FALSEÞ

To check that the point pattern object, Example, reproduces the
point pattern correctly use plot(Example) to generate a plot of the
point pattern within its associated window (Fig. 1) and compare
with the original photomontage, and threshold images. The
orientation of the point pattern is a mirror image of the original
photomicrograph due to differences in the point of origin location
between ImageJ and Spatstat.

3.4. Spatial statistics

3.4.1. Point pattern summary

Spatstat provides a number of ways to observe and derive
fundamental data from a point pattern containing experimental
bubble centroids. The number of bubbles within the analytical
window and the 2D bubble number density (the number of
intersected bubbles per unit area) can be found using the function
summary(Example). The spatial homogeneity of the point pattern
can be assessed using a kernel smoothed intensity plot or shaded
relief contour map image of bubble density across the surface of
the sample. To generate this plot use the command below. The
second parameter within the brackets is the kernel size, which is
defined as the standard deviation of the Gaussian smoothing
kernel. The computation is by Fast Fourier Transform (FFT) where
the pixel resolution is defined by the parameter, dimyx.

plotðdensity:pppðExample;100;dimyx ¼ cð300;300ÞÞÞ
2 Spatstat. http://www.cran.rproject.org/src/contrib/Descriptions/spatstat.

html.
Fig. 2B shows this plot function applied to rhyolite experiment
RN1B, which underwent homogeneous bubble nucleation after
large DP, demonstrating the variation in bubble number density
across the surface of the sample. A plot of the bubble centroid
locations can be created using plot(Example) and compared with
the density plot (Fig. 2C).

Since bubbles nucleated around the edges of the sample may
not be controlled by the same processes as bubbles in the center,
we may wish to remove them to allow analysis of ‘‘internally’’ i.e.,
homogeneous; (Mangan and Sisson, 2000) nucleated bubbles
only. This can be achieved in an objective manner using the
following function, which reduces the window of analysis by a
given distance:

new_300o� erode:owinðwindow;300Þ

The subset of points from the previously defined point pattern,
Example, falling within this window (new_300) can be expressed
as a new point pattern object for separate analysis using the
following function where the new window is defined within
square brackets.

int_300o� Example½new_300�

This allows statistical analysis for the whole sample and
internal sections of the sample to be compared.

3.4.2. Point pattern analysis

Before describing the application of statistical spatial point
pattern analysis, it is important to recognize two assumptions
about the underlying point process. The process is stationary
(invariant under translations) and isotropic (invariant under
rotations). In addition, it is often assumed for planar sections
that the statistical averages for the sample (i.e., multiple sections)
as a whole can be expressed as the spatial average in just one. This
allows statistical inference for the whole sample to proceed from a
single section.

To aid in quantifying differences between samples, the
observed spatial point patterns are usually compared to a
reference model that corresponds to complete spatial random-
ness, the stationary Poisson Point Process. Point patterns can then
be classified as being more aggregated/clustered or more regular
than a distribution arising from a Poisson process with the same
intensity, the number of events per unit area. Following from this,
there are a number of useful distribution functions that can be
derived from the point pattern of interest, and applied specifically
to decipher bubble nucleation processes, as follows.

3.4.2.1. Nearest neighbor distribution function G(r). A simple de-
scription of the spatial distribution of the intersected bubbles is
based on the measurement of the distance from the center of the
intersection of a typical bubble to the center of its nearest
neighbor. The nearest neighbor cumulative distribution G(r) at a
radius r is defined as follows, where P() denotes probability.

GðrÞ ¼ Pðdistance from a typical point to the nearest

point of processprÞ (2)

For the stationary Poisson point process of intensity l, the G

function GPoiss(r) is given by

GPoissðrÞ ¼ 1� eð�lpr2Þ (3)

Comparing G(r) for the sample with GPoiss(r) highlights any
clustering or spatial regularity in the intersected bubble popula-
tion (e.g., Fig. 3). As G(r) is a cumulative function, point patterns,
which are more regularly spaced than the point pattern derived
from a Poisson process should plot below GPoiss(r) whilst clustered

http://www.cran.rproject.org/src/contrib/Descriptions/spatstat.html
http://www.cran.rproject.org/src/contrib/Descriptions/spatstat.html
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Fig. 2. Sample RN1B images. (A) Overview photomicrograph. (B) Spatial point pattern. (C) Bubble number density plot, kernel size is 100.
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patterns will plot above. Calculations of G(r) can be affected by
biases introduced through edge effects. Spatstat corrects for this
bias using either the Kaplan–Meier or a reduced sample estimator.
The reduced sample estimator excludes points that lie within a
certain distance from the sample edges. The Kaplan–Meier
estimator, detailed in Baddeley (1998), utilizes G(r) to correct for
edge effects.

To create the object G_Example, which is a function value
object containing the estimated values of G(r) for the point
pattern, Example, use the Gest command as follows:

G_Exampleo� GestðExampleÞ

3.4.2.2. Ripley’s K-function. Ripley’s K-function K(r) or the reduced
second moment distribution of a point process is a good first-
order test of homogeneity highlighting over what length scale the
point pattern can be said to be homogeneous, where E() is the
estimator function

KðrÞ ¼
EððNumber of points within r of typical pointÞ � 1Þ

l
(4)

For the Poisson process, which has an intensity, l,

KPoissðrÞ ¼ pr2 (5)
A commonly used transformation of K(r) is the L-function given
by Eq. (6), which transforms the Poisson K-function to the straight
line LPoiss(r) ¼ r, making visual assessment of the graph much
easier (e.g., Fig. 3). Clustered patterns will plot above LPoiss(r).
Regular patterns will plot below LPoiss(r) for some minimum r. The
command Lest will generate L(r) for a point pattern.

LðrÞ ¼

ffiffiffiffiffiffiffiffiffi
KðrÞ

p

r
(6)

Standard errors for the summary statistics cannot be calculated
in Spatstat (Baddeley and Turner, 2005). Whilst this is a weakness
of the approach, there are currently no simple expressions in the
literature for real datasets, particularly with irregular shaped
windows. Acknowledgement of this drawback should not restrict
the use of Spatstat in analyzing bubble nucleation datasets.
3.4.2.3. Choice of reference model. A 2D Poisson point process
generates a completely spatially random (CSR) point pattern of
defined intensity, l. The CSR model is commonly used in ex-
ploratory spatial analysis as a reference model. A common re-
ference model eases the comparison of differing point patterns as
the effect of the intensity is removed. Therefore, point patterns
derived from processes, which have the same underlying me-
chanism but operate on different scales can be recognized. For this
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Fig. 3. Three example point patterns illustrating random, clustered, and ordered patterns and summary statistics L(r) and G(r) for each. Point patterns were generated

within Spatstat where (a) is generated from a Complete Spatial Randomness (CSR) model, (b) is generated from a Matern Cluster model and (c) is generated from a Matern II

model (ordered).
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reason, the Poisson model was chosen as the base reference model
allowing us to focus on differences in nucleation mechanism ra-
ther than sample intensity. A case may also be made that for our
samples, the CSR is particularly appropriate. Classical nucleation
theory tells us that the 3D distribution of homogeneously
nucleated bubbles assuming no coalescence or bubble growth
follow a Poisson distribution. Our analyzed samples differ in that
they are 2D sections of the 3D distribution and that bubble growth
and potentially coalescence has occurred. Should we expect that
the spatial pattern of intersected bubbles in 2D sections of a
homogeneously nucleated bubble population should also follow a
Poisson distribution? To address this issue, Jerram et al. (1996)
performed a large study on 2D sections through a cube filled with
randomly packed spheres. Taking a range of packing volumes,
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Fig. 4. G(r) vs. GPoiss(r) for sample R1NB. Edge corrected nearest neighbor

cumulative distributions, G(r), for sample RN1B plotted against expected

distribution from a Poisson distributed point pattern GPoiss(r) of same intensity.

Solid black line is GPoiss(r), solid light grey line is G(r) after reduced sample

correction, and dashed dark grey line is G(r) after Kaplan–Meier correction. Dashed

black line is distribution derived from a Matern II model with minimum separation

of 16mm.
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they calculated R, the ratio of the mean centroid-to-centroid dis-
tance, rA, to the predicted mean nearest neighbor distance for a
random distribution of points, rE, i.e., Poisson. They found that as
the percentage volume of spheres decreased, R approached 1. At
15% sphere volume, R ¼ 1.2, at 5% sphere volume R�1.1. In other
words, as the percentage volume of the spheres decreased, the
mean centroid-to-centroid distance approached that expected for
a random distribution of points with the same areal intensity. The
porosities in our samples are low 6.46(2.65) vol% for RN1B and
12.01(2.67) vol% for 79VB2C, where the number in brackets are
standard deviations. Experimental bubble studies (Burgisser and
Gardner, 2004; Larsen et al., 2004; Mongrain and Larsen, 2008)
suggest that coalescence is limited at these porosities. We there-
fore expect that if the bubble centers exhibit a 3D Poisson dis-
tribution in 3D this will be expressed in 2D, using the 2D bubble
number density, as close to a random distribution. Large devia-
tions from the CSR curve will indicate clustering/spatial regularity.

An advanced analysis would take into account the finite size of
the bubbles, which results in a minimum separation distance
between bubble centers. The effect of finite bubble size has a clear
effect on the summary statistics G(r) and L(r). In both cases, the
effect of the finite bubble size will be to depress G(r) and L(r)
below the respective Poisson curves for small values of r. If we
know the true bubble sizes, we can modify our approach. In this
study, we used point patterns derived from a Matern II model as
an additional comparison curve. In this model, the points of a
homogeneous Poisson process are marked by ‘arrival times’,
which are independent and uniformly distributed. Any point that
lies closer than a distance, r (set to the smallest measured true
bubble diameter), from another point that has an earlier arrival
time, is deleted. In this way, we can generate a point pattern for
comparison with our samples that accounts for the minimum
interbubble distance but assumes that the bubbles are otherwise
randomly distributed.

To create the object rmII for a point pattern with intensity,
kappa, with an inhibition distance of r, use the following
command line

rmIIo� r MaternIIðkappa; r;win ¼ owinðcðo;1; . . .Þ; cðo;1; . . .ÞÞÞ (7)

3.4.2.4. Data export. To export the distribution data to a table,
which can be opened in a plotting program such as excel, use the
following

write:tableðF_Example; file ¼ ‘‘F_Example:txt’’; append ¼ FALSE,

quote ¼ TRUE; sep ¼ ‘‘ ’’; row:names ¼ TRUE; col:names ¼ TRUEÞ
Fig. 5. L(r) vs. LPoiss(r) for sample RN1B. Edge corrected nearest neighbor

cumulative distributions, L(r), for sample RN1B plotted against expected distribu-

tion from a Poisson distributed point pattern LPoiss(r) of same intensity. Solid black

line is GPoiss(r), solid light grey line is G(r) after reduced sample correction, and

dashed dark grey line is G(r) after Kaplan–Meier correction. Dashed black line is

distribution derived from a Matern II model with minimum separation of 16mm.
4. Application of spatstat to bubble nucleation experiments

4.1. Homogeneous nucleation: sample RN1B

Sample RN1B was conducted to replicate homogeneous bubble
nucleation in rhyolite melt under similar conditions to those
employed by Mangan and Sisson (2000). It shows two populations
of bubbles: one nucleated around the edges and the other forming
a ‘‘cloud’’ with high bubble number density in the center (Fig. 2A).
Fig. 2C shows a contoured density map of the spatial point pattern
(Fig. 2B) derived from the bubble centroids from a thin section of
sample RN1B. The bubble number density varies by an order of
magnitude across the intersected sample from �5�103 to
�4�104 bubbles cm�2, with the highest bubble number density
in the center of the sample surrounded by a region containing the
lowest bubble number densities (Fig. 2C). Fig. 2B confirms that a
high bubble number density is found in the center of the sample
and is surrounded by an essentially bubble free area. The sample
edges have intermediate bubble number densities.

The spatial statistics functions G(r) and L(r) are shown in Figs. 4
and 5, compared to the distribution expected from a Poisson
process, GPoiss(r) and LPoiss(r), with the same average intensity and
a Matern II model with a minimum spacing of 16mm. In Fig. 4,
G(r), for the sample plots below GPoiss(r) for ro�40mm but shows
a similar distribution to the Matern II model for ro�35mm. Using
the isotropic corrected method, L(r) plots below LPoiss(r) for
ro36mm with L(r) ¼ 0 for ro18mm and above LPoiss(r) for values
of r436mm. The Matern II model distribution is again similar for
ro�35mm. Performing similar modeling using a subset of
bubbles in a window reduced by 500mm from the original
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Fig. 8. Bubble number density plot for 79VB2C. Kernel size is 100.

Fig. 6. Plot showing subset of points for sample RN1B within window reduced by

500mm.

Fig. 7. G(r) vs. GPoiss(r) for subsets of sample RN1B derived from 500mm reduction

in window size. Edge corrected nearest neighbor cumulative distributions, G(r), for

subsets of sample RN1B derived from 500mm reduction in window size plotted

against expected distribution from a Poisson distributed point pattern GPoiss(r)

with same average intensity of entire sample. Solid black line is GPoiss(r), solid light

grey line is G(r) after reduced sample correction, and dashed dark grey line is G(r)

after Kaplan–Meier correction.

J. Mongrain, J.F. Larsen / Computers & Geosciences 35 (2009) 1917–1924 1923
(Fig. 6) results in dramatically different calculated G(r) (Fig. 7).
Here, G(r) plots dramatically above GPoiss(r) for all r424mm with
95% of nearest neighbor distances occurring at less than 80mm
compared with less than 166mm for GPoiss(r).

Based on visual observations (Mangan and Sisson, 2000), RN1B
underwent homogeneous bubble nucleation, producing the high
bubble number density in the sample center. The bubbles at the
sample edge are assumed to have nucleated heterogeneously and
the two bubble populations are considered to be independent.
Spatstat allows further details to emerge beyond those derived
from visual recognition alone. For a clustered arrangement where
the distance between points is shorter than would be expected
from a Poisson distribution with the same overall intensity, G(r)
and L(r) are expected to plot above GPoiss(r) and LPoiss(r),
respectively. Analyzing the whole sample in RN1B results in the
G(r) curve (Fig. 4) crossing where part of the bubble population
can be classified as being more clustered and the other as being
more regularly spaced. In this case, we can clearly see that the
internal and edge bubbles represent two independent bubble
populations and that a description of the sample is not well served
by using a single point process model.

Considering only the internally nucleated bubbles (Fig. 7), G(r)
plots above GPoiss(r), indicating that the bubbles are more
clustered than would be expected from a Poisson distribution
with the same average intensity. However, the steep slope of G(r),
85% of the intersected bubbles have a nearest neighbor in the
range 25–55mm, also indicates that the bubbles are somewhat
regularly spaced within the cluster. This correlates well with the
observations of spatial regularity made by Mourtada-Bonnefoi
and Laporte (2004) from similar nucleation experiments. Inter-
estingly, we should not expect such spatial regularity in a
theoretical homogeneously nucleated melt, since the spatial
pattern should plot closer to the completely spatially random
Poisson distribution. The distinct signature in G(r) of the internal
nucleated bubbles in sample RN1B may be used to quantify
‘‘homogeneous’’ nucleation beyond simple visual recognition.
4.2. Heterogeneous nucleation: sample 79VB2C

The spatial bubble distribution in Sample 79VB2C is complex
(Fig. 1). The sample is not considered to have undergone a simple
homogeneous nucleation step. The complex spatial point pattern
may derive from multiple nucleation events, which could be
homogeneous and/or heterogeneous.

Fig. 8 shows a contoured density map of the spatial point
pattern derived from sample 79VB2C. The bubble number density
varies by an order of magnitude across the sample surface, from
�2�104 to �1.4�105 bubbles cm�2, yet without clear
organization between separate edge and interior bubble
populations as in RN1B. G(r) for sample 79VB2C is shown in
Fig. 9, compared to the distribution expected from a Poisson
process, GPoiss(r), with the same average intensity and a Matern II
model with a minimum spacing of 5mm. The observed G(r) is less
than GPoiss(r) for all r indicating that the points in general are more
regularly spaced that would be expected from a Poisson
distribution. In Fig. 9, plots of G(r) for subsets of points within
windows reduced by 50 and 200mm do not differ greatly from
G(r) for the whole sample.

Whilst it was clear in sample RN1B that the nucleation pattern
should be split into separate internal and edge nucleated bubble
populations, the complexities of the point patterns sample
79VB2C means that such a straightforward distinction is not
possible. Observation of the change in G(r) for a narrowing of the
window of observation away from the sample edge enables us to
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Fig. 9. G(r) vs. GPoiss(r) for sample 79VB2C. Edge corrected nearest neighbor

cumulative distributions, G(r), for sample 79VB2C plotted against expected

distribution from a Poisson distributed point pattern GPoiss(r) of same intensity.

Black line is GPoiss(r), light grey line is G(r) after reduced sample correction, and

dashed dark grey line is G(r) after Kaplan–Meier correction. Dashed black line is

distribution derived from a Matern II model with minimum separation of 5mm.
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differentiate further between the two samples. From Fig. 9, we see
that the spatial point pattern in sample 79VB2C is more regular
than we would expect from a Poisson distribution with the same
point intensity. Reducing the window of observation away from
the sample edge has little effect on G(r) even for a large reduction
of 200mm, (Fig. 9) suggesting that there is little difference in the
spatial distribution of points at the sample edge and in the center
and therefore that the controls on nucleation of bubbles close to
the sample edge are similar to those for nucleation of ‘‘internal’’
bubbles. This suggests the bubbles in 79VB2C are not clearly
separable into two distinct periods of nucleation, from two
different mechanisms. More likely, the bubbles in 79VB2C
represent heterogeneously nucleated bubbles, possibly from
several nucleation pulses.
5. Summary

Application of the 2D spatial statistics model Spatstat to
bubble nucleation experiments demonstrates a powerful method
that will enable researchers to quantify bubble nucleation
mechanisms and discriminate between samples with complex
bubble textures. This model offers an improvement over simple
visual recognition of bubble populations, used to discriminate
between nucleation mechanisms qualitatively. Application of an
eroding window can provide quantification of the length scales
over which bubble populations change within the experiments, a
clear step forward in quantification of complex textures, as seen in
79VB2C. Future applications could include quantification of
multiple nucleation events by applying a combination of the
eroding window technique with marked point processes. Bubbles
resulting from separate nucleation events may be distinguishable
by their size. By adding marks to each bubble according to a
specified size range, the spatial characteristics of each bubble
population may be analyzed separately, and in relation to other
subsets. This could provide a way to estimate the timing and
identify bubble number densities resulting from separate nuclea-
tion events within one experimental sample. Marked point
process models could also be applied to crystal nucleation to
understand the spatial dependence of crystal nucleation on prior
nucleated crystals. Proper application of point process modeling
could thus help transform our ability to interpret and apply
experimental studies to volcanic processes.
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