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Chapter 1

The Standard Model of Cosmology

In the following sections we review the basic elements of standard cosmology needed for the
remainder of the course. The majority of the results presented here can be found in many
textbooks of cosmology, e.g. in Refs. [18, 61, 65, 75, 76, 79,80].

1.1 The basis of the standard model of Cosmology

The standard model (SM) of cosmology is presently based on the Hot Big Bang paradigm. The
universe is expanding and cooling from an initial ultra dense state, where matter and radiation
were prisoners in a gaseous hot plasma of fundamental particles. The basic mathematical
framework of the SM is set by the following assumptions:

• The universe is homogeneous and isotropic when observed on large scales.

• The dynamics of space-time is described by Einstein’s theory of general relativity.

The first of these assumptions derives from the cosmological principle, which states that the
universe on large scales should have no privileged positions or directions and therefore at a
given time should look the same to all observers. The most general homogeneous and isotropic
solution of the Einstein equations of GR is the FLRW line element,

ds2 = c2dt2 − a2(t)

[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (1.1)

where c is the speed of light, t is the universal time, r, θ, φ are the comoving spatial coordinates
and a(t) is the scale factor, which describes the overall expansion (or contraction) of the
three-dimensional space. The constant k gives the spatial curvature of the universe. It can be
negative, zero or positive depending on whether the universe is open, closed or flat. If k ≤ 0
the universe has an infinite extension and the r coordinate ranges from zero to infinity. If k
is positive the universe is finite in size and r ranges from 0 to 1/

√
k. With an appropriate

rescaling of coordinates it is always possible to make k to take the values: −1, 0, +1. Observers
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with fixed coordinates in the comoving coordinate system experience no external forces and are
said to be fundamental comoving observers as they move with the expansion (or contraction)
of the cosmological fluid. The proper distance between two of these observers scales as:

ℓ(t) =
a(t)

a0
ℓ0, (1.2)

where a0 and ℓ0 are the scale factor and the proper distance at some initial time t0. Taking
the derivative of this expression with respect to time we obtain the relative speed between
fundamental observers:

v(t) =
dℓ

dt
=

ȧ(t)

a0
ℓ0 =

ȧ(t)

a(t)
ℓ(t) ≡ H(t)ℓ(t). (1.3)

This expression shows that in an expanding universe (ȧ(t) > 0) the further away any two
observers are, the faster they recede from one another due to the cosmic expansion. This is
known as the Hubble law, first derived from observations by Edwin Hubble in 1929. The
proportionality factor between velocity of recession and distance,

H(t) =
ȧ(t)

a(t)
, (1.4)

gives the expansion rate of the universe at a given time. Its present value is usually parametrized
as H0 = 100 h km s−1 Mpc where h is the so-called Hubble parameter. H0 is also known as
the Hubble constant and has units of an inverse of time.

The cosmological expansion produces a redshift in the spectrum of the light emitted from
distant objects. This redshift is defined as the change of energy of a photon measured by
fundamental observers between the epochs of emission of the radiation, at t, and the present
time, t0,

z =
E − E0

E0
=

ν

ν0
− 1 =

λ0

λ
− 1 =

a (t0)

a (t)
− 1. (1.5)

Here E, ν and λ are the photon’s energy, frequency and wavelength at t and the subscript
‘0’ denotes the same quantities at the present. To obtain this expression we use the quantum
mechanics’ proportionality between the energy and frequency of a photon E = hν = hc/λ (h
is the Planck’s constant) and the fact that the wavelength of a free photon stretches as the
other lengths with a(t).

1.2 Fundamental equations

In GR the dynamics of space-time is set by Einstein’s field equations,

Gab = Rab −
1

2
Rgab =

8πG

c4
Tab + Λgab, (1.6)

where G and Λ are the gravitational and cosmological constants, gab is the metric of space-
time, Gab is the Einstein tensor, Rab is the Ricci tensor and R is the Ricci scalar (this last



two quantities result from successive contractions of the Riemann tensor and are functions of
the metric and its derivatives). The inclusion of the cosmological constant term in Eq. (1.6),
originally introduced by Einstein in order to describe a static universe, is presently supported
by observations of distant Type Ia supernovae [83, 84, 89]. Finally Tab is the stress–energy
tensor, which describes the gravitational contributions from all forms of energy in the universe.
To satisfy the requirements of homogeneity and isotropy implied by the cosmological principal,
the stress–energy tensor has to be that of a perfect fluid:

Tab = (ρ +
p

c2
)UaUb −

p

c2
gab (1.7)

where ρ = ρ(t) and p = p(t) are the fluid’s energy density and pressure and Ua is the four
velocity field of a fundamental observer. In this case the solution of Einstein’s field equations
is the metric (1.1). The energy–momentum conservation law is expressed by the condition

T ab
;b = 0 (1.8)

where the symbol ‘;’ denotes covariant derivative. This is a set of four equations giving the
conservation of the energy density and the 3-momentum. The ‘temporal component’ equation
gives,

ρ̇ = −3
ȧ

a

(

ρ +
p

c2

)

⇒ d
(

ρc2a3
)

= −pd
(

a3
)

. (1.9)

This expression has a simple physical interpretation. It translates the first law of thermo-
dynamics applied to a comoving volume element: in an adiabatical process the variation of
energy is given by the work produced by the pressure forces. It is often assumed that during
several periods of the history of the universe the energy density and pressure can be related
by an equation of state with a simple form:

p = wρc2 − 1 ≤ w ≤ 1, (1.10)

where w is a constant. In this case the integration of (1.9) gives

ρ(t) = ρi

(

a(t)

ai

)−3(1+w)

, (1.11)

where ρi = ρ (ti), ai = a (ti) are the energy density and the scale factor at some initial time
ti. The cases w = 0, w = 1/3 and w = −1 are classical examples which are appropriate to
describe the phases when the universe is dominated by a fluid of (non relativistic) matter,
radiation (and relativistic matter) and vacuum energy associated with the Λ term in (1.6).

1.2.1 The dynamical equations

Using Eqs. (1.1) and (1.7) in (1.6) one can derive two equations which give the expansion and
acceleration rates of the universe as a function of its matter contents and geometry:

(

ȧ

a

)2

=
8πG

3
ρ +

Λc2

3
−

kc2

a2
(1.12)

ä

a
= −

4πG

3

(

ρ + 3
p

c2

)

+
Λc2

3
. (1.13)



These are known as the Friedmann and Raychaudhuri (or acceleration) equations, respectively.
If we set Λ = 0 we find that ä is negative whenever p > −ρc2/3 (a(t) is always positive). In
this case both radiation (w = 1/3) and matter (ω = 0) dominated epochs are periods of
decelerated expansion (if the universe has a flat or open geometry) or decelerated contraction
(only possible with closed geometries).

If we take as an observational fact that the universe is expanding (ȧ > 0) and assume that
in the past ä was always negative (ä < 0) then going backwards in time there’s a moment,
ti, where a(ti) = 0. This is the Big Bang event. The instant ti is usually redefined as the
origin of time, ti = 0. The FLRW models are Big Bang universes for many combinations of
energy densities, cosmological constant and geometries. However one should note that there
are FLRW models (with Λ > 0, k = 1), which do not “start” from a Big Bang. This is the
case of the Eddington–Lemaitre and Einstein universes (see e.g. Ref. [22]). Because equations
(1.12), (1.13) and (1.9) are related by the Bianchi identities (see e.g. Ref. [97]) we only need to
consider two of these equations to describe the dynamics of FLRW models. These are usually
taken to be the Friedmann and energy conservation equations (the later usually in the form
Eq. (1.11)).

We can re-write the Friedmann equation as a “conservation law of densities”,

8πG

3H2
ρ +

Λc2

3H2
−

kc2

a2H2
= 1 ⇔ Ω + ΩΛ + Ωk = 1 (1.14)

where,

Ω =
ρ

ρc
, ΩΛ =

Λc2

3H2
, Ωk = −

kc2

a2H2
, ρc =

3H2

8πG
(1.15)

are the matter (Ω), vacuum (ΩΛ) and curvature (Ωk) density parameters and ρc is the crit-
ical energy density of the universe. All these quantities evolve in time satisfying Eq. (1.14).
Therefore only two of the above density parameters are independent. For Λ = 0 (ΩΛ = 0)
models, the universe is geometrically closed (k = 1), flat (k = 0) or open (k = −1), depending
on whether its total energy density, ρ, is greater, equal or smaller than the critical density, ρc.
The acceleration rate of the universe is often expressed in terms of the deceleration parameter
which is defined as:

q ≡ −
äa

ȧ2
= −

ä

a

1

H2
=

1 + 3w

2
Ω − ΩΛ (1.16)

where the last equality results from combining Eq. (1.15) with Eqs. (1.13) and (1.11).

1.2.2 Epochs

In general the cosmological fluid can be regarded as a mixture of ideal fluids describing different
matter components, each of these having a particular energy density, ρi, and pressure, pi.
Considering that we have only two components consisting of non-relativistic matter, ρm, and
radiation, ρr, (ρ = ρr + ρm) we can write the Freedmann equation as:

H2(t) =
8πG

3
(ρr + ρm) −

kc2

a2
+

Λc2

3



= H2
0

[

Ωr0

(a0

a

)4

+ Ωm0

(a0

a

)3

+ Ωk0

(a0

a

)2

+ ΩΛ0

]

. (1.17)

The second equality results from using Eq. (1.11) for matter (w = 0) and radiation (w = 1/3),
with ti = t0 being the present time (a(ti) = a(t0) = a0). The quantities H0, Ωr0, Ωm0, Ωk0

and ΩΛ0 are respectively the Hubble constant, H0 = H(t0), the matter, radiation, vacuum
and curvature density parameters evaluated at the present time (Ωr0 = 8πGρr (t0) /3H0

2,
Ωm0 = 8πGρm (t0) /3H0

2).

Equation (1.17) shows the relative contribution from the different fluid components to the
expansion rate of the universe. In a Big Bang scenario a → 0 in the limit t → 0. The expansion
rate is therefore initially dominated by the radiation component, Ωr. As the universe expands,
the contribution from the other terms becomes progressively important and can dominate the
expansion. When matter becomes the dominant component, H(t) is driven by the Ωm term
in Eq. (1.17). If the universe keeps on expanding and has a non-zero cosmological constant
the dynamics of the expansion becomes dominated by the vacuum term, ΩΛ. By comparing
the first with second term inside the square brackets of Eq. (1.17) we obtain the redshift at
which matter and radiation contribute equally to the expansion rate. This is

1 + zeq = Ωm0/Ωr0 ≃ 2.4 × 104 Ω0h
−2,

where the last equality derives from the observed energy density of radiation (see next section).
The redshift 1+ zeq gives the time when the universe changes from being radiation dominated
to became dominated by matter. It is usually referred to as the matter–radiation equality
redshift.

Going back enough in time we find the universe in a stage where photons, electrons and baryons
are tightly coupled in a collisional plasma. When the temperature dropped to about 3600
Kelvin (zrec ≃ 1300) [61], electrons and baryons recombined to form the first neutral Hydrogen
atoms. Soon after this short period, known as recombination, the number of free electrons
drops dramatically and the scattering between the remaining free electrons and photons is
no longer sufficient to keep matter and radiation in contact. At this point (zdec ≃ 1100) the
CMBR photons decoupled from the fluid. Present observations of Ω0 and h indicate that the
matter–radiation equality happens before recombination (zeq ≃ 14300, see next section).

1.2.3 The observed universe

Our understanding of the universe relies ultimately on our ability to make measurements
and to compare those measurements with theoretical models. As (1.17) indicates, the key
observational parameters in the FLRW Big Bang models are the Hubble parameter and the
present-day densities of the mass–energy contents of the universe. Despite great progress in
the past decades there is still a considerable amount of uncertainty regarding the majority of
these parameters.

• Hubble parameter: The quest for the measurement of the Hubble parameter, h, is
the oldest among the cosmological parameters. It started soon after the discovery of the



universal expansion and today it is still not known to high accuracy (see Refs. [47, 54]
for reviews). There are two basic ways of measuring h. One involves the measurement
of distances to nearby galaxies, typically by observing the periods and luminosities of
Cepheid stars within them, and then use these determinations to calibrate other methods
of measuring distances to more distant galaxies. This strategy is known as the cosmic
distance ladder [92]. The second way consists of using fundamental physics methods,
which permit the direct measurement of distances to faraway objects without using
the cosmic distance ladder approach. This is the case of methods involving Type Ia
or Type II supernovae, gravitational lensing, and the Sunyaev–Zel’dovich effect (see
Section ??). Although different approaches can still lead to different results, the range
of h determinations has been shrinking with time. Presently different observational
techniques seem to start to converge inside the range h ∈ [0.5, 0.9] to a mid-value of
h ≃ 0.7. This is the case of the methods based on the observation of distant Cepheids
using the Hubble Space Telescope [36, 37] and the observation of Type Ia supernovae
[56, 90].

• Total matter/energy density: The total matter or energy density of the universe,
Ωtot,0 = Ωr0+Ωm0+ΩΛ0+Ωk0, is presently most accurately constrained from observations
of the angular scale (or multipole) of the first acoustic peak in the angular power spec-
trum of the CMB anisotropies. The position of the peak is highly sensitive to Ωtot,0. Ac-
cording to recent determinations from different CMB experiments its position is located
at a multipole value of lp ∼ 210. Assuming Gaussian adiabatic initial perturbations,
the Boomerang, MAXIMA and DASI experiments provide the following constraints on
the total matter/energy density: Ωtot,0 = 1.02+0.06

−0.03 [21, 74]; Ωtot,0 = 0.9+0.18
−0.16 [103]; and

Ωtot,0 = 1.04±0.06 [88], respectively. These estimates are remarkably consistent with an
Ωtot,0 = 1 (flat) universe.

• Radiation density: The energy density in all forms of electromagnetic radiation, Ωγ0,
is dominated by the contribution of the CMB, ΩCMB,0 (see e.g. Ref. [96]). This can be
computed accurately from the observed CMB mean temperature, TCMB = 2.725±0.001
K [33], by using the Stefan-Boltzmann law, Ωγ0 ≃ ΩCMB,0 = 2.48×10−5 h−2. To estimate
Ωr0 we need also to consider the contribution from the other relativistic species. Of
particular importance is the neutrino background. If in addition to radiation we assume
the existence of three families of massless neutrinos we obtain [18], Ωr0 ≃ 4.17×10−5 h−2.

• Matter density: Many different techniques have been used to infer constraints on the
present day value of the matter density parameter, Ωm0. These include methods based
on observations from CMB anisotropies, Type Ia supernovae, gravitational lensing, the
evolution of the abundance of X-ray clusters with redshift, gas mass fraction in galaxy
clusters, observational fits to the matter power spectrum of extra galactic objects, and
measurements of large scale peculiar velocities of galaxies (for an overview on these and
other methods see e.g. Ref. [91] and references therein). Results indicate that we are still
far from having an accurate determination of Ωm0. In some cases different techniques



can even show some degree of inconsistency.1 However, combined data analysis using
results from many of these methods give evidence in favor of a matter density parameter
of about Ωm0 = 1/3. For example, the authors in Ref. [44] have performed a likelihood
analysis using results from six independent data sets and found Ωm0 = 0.31±0.04±0.04,
assuming a flat Universe. In this determination the first error is mainly statistical and
the second is systematical. The observational data included constraints from recent
CMB observations made with Boomerang and MAXIMA, Type Ia supernovae, double
radio galaxies, lensing and large scale structure formation data.

• Cosmological constant: The strongest evidence for a positive cosmological constant
derives from observations of high-redshift Type Ia supernovae, which indicate that the
universe is currently evolving in accelerated phase of expansion. Independently, a posi-
tive Λ is also supported from a combination of observations indicating that Ωm0 < 1 in
conjunction with the CMB results which show that the universe is approximately flat.
Under the assumption of a flat Universe, with matter density Ωm0 ∼ 0.3, the energy
density associated with a cosmological constant term is ΩΛ0 ∼ 0.7.

Although there’s still a considerable amount of uncertainty in the determination of many of
the above parameters, the combination of data from present observations seem to indicate
that the Universe is consistent with being flat, and the ratio between the vacuum and matter
densities, ΩΛ/Ωm0, is of the order of 2. For discussions on the current status of measurements
of cosmological parameters see e.g. Refs. [35, 87].

1.3 Exact solutions

The time dependence of the scale factor and the age of the universe result from the integration
of Eq. (1.17). The usual way to proceed is first to multiply Eq. (1.17) by (a/a0)2 and use
Ωk0 = 1 − Ω0 − ΩΛ0,

d

dt

a(t)

a0
= H0

√

√

√

√1 − Ω0 + Ωm0

(

a

a0

)−1

+ Ωr0

(

a

a0

)−2

− ΩΛ0

[

1 −
(

a

a0

)2
]

. (1.18)

1.3.1 The age of the universe

The integration of this expression, with the condition a(t = 0) = 0, gives

t = H−1
0

∫
a(t)
a0

=(1+z)−1

0

1
√

1 − Ω0 + Ωm0x−1 + Ωr0x−2 − ΩΛ (1 − x2)
dx, (1.19)

1For example, preliminary constraints from the Cosmic Lens All-Sky Survey (CLASS) [46] appear to be in
strong conflict with the results from the Type Ia supernovae data [83, 84, 89].



where we have put x = a(t)/a0 = 1/(1 + z). This gives the age of the universe as a function
of the scale factor and the present day density parameters, t = f(a, Ω0, Ωm0, Ωr0, ΩΛ0). Ob-
servationally we know that Ωr0 ≪ Ωm0 ≃ Ω0 but at early times the radiation term dominates
Eq. (1.19). Using current estimations of the density parameters it is easy to see that the
radiation-dominated period is very short when compared to the present age of the universe,
t0. This means that in practice t0 can be calculated to a very good approximation by setting
Ωr0 = 0 in Eq. (1.19). Analytical expressions for the age of the universe can be found in
many textbooks for a range of cosmologies. Three cosmological scenarios of historical interest
are the flat universe with cosmological constant (Ω0 + ΩΛ0 = 1), the critical density universe
(Ω0 = 1) and the open universe without Λ (Ω0 < 1; ΩΛ0 = 0). The integration of Eq. (1.19)
for these models is also analytical and can be found for example in Ref. [61].

In some situations of interest is useful to define time in terms of the so-called conformal time,
dη = dt/a. This gives,

η(t) =

∫ t

0

dt′

a(t′)
=

∫ a(t)

0

da

a(t′)ȧ(t′)
. (1.20)

1.3.2 Scale factor

The inversion of t = f(a, Ω0, Ωm0, Ωr0, ΩΛ0) with respect to a gives the dependence of the scale
factor with time. However since the expansion rate of the universe is dominated at different
phases by different fluid components (see Eq. (1.17)) it’s quite useful to examine the solutions
of the Friedmann equation for each of these phases. Restricting ourselves to the case Λ = 0,
the Friedmann equation for a single component fluid reads,

ȧ2 = a2
0H

2
0

[

1 − Ωw0 + Ωw0

(

a

a0

)−(1+3w)
]

, (1.21)

where Ωw0 is the present-day density of the fluid and w is the equation of state parameter in
Eq. (1.10). The solution of Eq. (1.21) is straightforward in the case of Ωw0 = 1 (flat geometry)

a(t)

a0
=

(

3(1 + w)

2
H0t

)2/(3(1+w))

(1.22)

H(t) =
ȧ

a
=

2

3(w + 1)t
(1.23)

q(t) = −
äa

ȧ2
=

1 + 3w

2
= const . (1.24)

These expressions are particularly useful for fluids dominated by matter (w = 0) and radiation
(w = 1/3). General solutions of Eq. (1.21) for this type of fluids are also not difficult to derive
and can be found in many cosmology textbooks (see e.g. Ref. [61]).



1.3.3 Distances, horizons and volumes

Of particular importance to the study of physical processes acting on different cosmological
scales is to determine the size of the largest causally connected regions at a given time. In a
universe described by Eq. (1.1) the regions in causal contact with an observer of coordinates
O = (t, r0, θ0, φ0) are those for which light rays emitted at the instant te reach O before or at
the instant t. Light rays arriving at (r0, θ0, φ0) later than t are beyond the horizon of O. Since
light rays travel along null geodesics (ds2 = 0), the coordinate distance travelled by light
between te = 0 and t is easily obtained from Eq. (1.1)

∫ re

0

dr√
1 − kr2

= c

∫ t

0

dt′

a (t′)
= c η(t), (1.25)

where re is the radial coordinate at emission. Without loss of generality we set r0 = 0 and
assumed radial dθ = dφ = 0 geodesics. The corresponding (physical) proper distance is

dH(t) =

∫ re

0

√

|grr|dr = a(t)

∫ re

0

dr√
1 − kr2

= c a(t)η(t). (1.26)

This forms a spherical surface centered at (r0, θ0, φ0) known as the particle horizon of
O. For any observer, dH(t) separates the regions which can establish causal contact with
the observer at t (regions within the horizon) from those which cannot (regions beyond the
horizon). Using Eqs. (1.20) and (1.21) in Eq. (1.26) one obtains the following expression, valid
for 1 + z ≫ (1/Ωw0 − 1)1/(1+3w) and w > −1/3 (see Ref. [18])

dH(t) ≃
2

3w + 1

c

H0
Ω1/2

w0

(

a

a0

)3(1+w)/2

= 3
1 + w

1 + 3w
ct . (1.27)

For Ωw0 = 1 this is in fact an exact solution of Eq. (1.26), whenever w > −1/3 (see e.g.
Ref. [61]). For universes with w < −1/3, the distance to the particle horizon becomes infinite.
This is the case of the vacuum-dominated de Sitter universe (w = −1), for which there’s no
particle horizon.

Another important length scale is the Hubble length, RH (also referred to as Hubble radius
or speed of light sphere). This is defined as the distance to the spherical surface (centered in
O) made by all points that at the time t have cosmological recessional velocities equal to the
speed of light. Setting v = c in the Hubble expansion law (1.3) one finds,

RH(t) =
c

H(t)
=

3(w + 1)

2
ct, (1.28)

where the last equality results from Eq. (1.23) and therefore it is only true for Einstein–de Sitter
universes. The Hubble length can be thought as the proper distance travelled by light during
the characteristic time scale of expansion, H−1. Comparing Eq. (1.28) with Eq. (1.27) we see
that RH and dH only differ by a factor of the order of the unity (in particular for w = 1/3,
RH = dH). This explains why both of these quantities are often used interchangeably and
referred to as the horizon. In practice the largest distance one can observe with electromagnetic



radiation is limited by what is called the visual horizon. This is defined as the distance to
the surface where the Cosmic Microwave Background Radiation was last scattered. Beyond
this last scattering surface (LSS) the universe becomes opaque due to the strong interaction
(Compton scattering) between matter and radiation. The CMB photons we observe today
suffered their last scattering at z ∼ 1000 when they were at a distance of about 6h−1 Mpc.
This corresponds to a present distance to the LSS of ∼ 6000 h−1 Mpc.

Let us now briefly examine how angular sizes and distances to faraway objects are defined.
Light emitted from the edges of an object (e.g. a galaxy cluster) located at a coordinate
position r and time t, occupies an angular size in the sky given by

θ =
D

dA
=

D

a(t)r
=

D(1 + z)

a0r
, (1.29)

where D is the object’s proper diameter and dA(t) = a(t)r is the proper distance to the
object at the moment of light emission. The second equality results from the fact that the
object is observed presently with redshift z. The quantity dA is called the angular diameter
distance. The present distance to the object is,

a0r = a0

∫ 0

re

dr√
1 − kr2

= a0c

∫ a0

a(t)

da

aȧ
=

c

H0

∫ a0

a(t)

da

aH (a)
. (1.30)

where H = H/H0 = (1−Ω0+Ωm0x−1+Ωr0x−2+ΩΛ0(1−x2))0.5 and x = a/a0 = 1/(1+z) (see
Eq. (1.18)). The relation between the angular size of objects and their redshifts is therefore
dependent on the underlying cosmological model and can in principle be used to constrain
cosmological parameters, provided one can find “standard rulers” (see e.g. Ref. [96] for a review
on “the standard tests of classical cosmology”). The evaluation of Eq. (1.30) is of particular
interest for matter-dominated universes (the phase we believe structures like galaxies and
clusters form). For Λ = 0 the expression Eq. (1.30) can be computed analytically (it was first
derived by Mattig in 1958 [70]). One obtains,

a0r =
2c

H0

Ω0z + (Ω0 − 2)
(√

1 + Ω0z − 1
)

Ω2
0(1 + z)

. (1.31)

In the case Λ ≠ 0, the evaluation of Eq. (1.30) has to be done numerically. A widely used
fitting formula for flat cosmologies with Λ was derived by Ref. [82]:

a0r =
c

H0
[η(0, Ω0) − η(z, Ω0)] , (1.32)

where

η(z, Ω0) = 2
√

s3 + 1
[

(1 + z)4 − 0.1540s(1 + z)3 + 0.4304s2(1 + z)2

+ 0.19097s3(1 + z) + 0.066941s4
]−1/8

(1.33)

and s3 = 1/Ω0−Ω0. This fitting formula shows an accuracy better then 0.4% for 0.2 < Ω0 < 1
and any z.



Also useful is the definition of the volume element in the FLRW universes. This is,

dV =
√

|g| dr dθ dφ = (ar)2 a dr√
1 − kr2

dΩ (1.34)

where |g| is the determinant of the metric (1.1) and dΩ = sin θ dθ dφ is the solid angle element.
Using Eq. (1.1) and the definition of redshift, one obtains the (physical) volume element per
unit of solid angle and unit of redshift,

dV

dΩ dz
=

c

H(z)

(a0r)2

(1 + z)3
=

c

H0

d2
A

H (z)(1 + z)
(1.35)

where H (z) = H(z)/H0 and a0r is given by Eq. (1.30).

Combining Eqs. (1.27) and (1.31) we can write an expression for the angular size of the horizon
scale at a given time in matter-dominated universes with Λ = 0. Setting D = dH we find,

θH ≃ 2 tan
θH

2
=

Ω3/2
0

√
1 + z

Ω0z + (Ω0 − 2)
(√

1 + Ω0z − 1
) . (1.36)

Although Eq. (1.27) is an approximate expression for non-flat universes, it’s possible to show
that Eq. (1.36) is in fact exact for all geometries (see e.g. Refs. [18, 106, 111] for general
expressions of dH and θ). At high redshifts Eq. (1.36) reduces to

θH ≃
180

π

√

Ω0

z
deg. (1.37)

This expression tells us that the size of the horizon at the time of last scattering (z ∼ 1000)
occupies today an angular area in the sky no larger then ∼ 2 degrees.

1.4 Initial conditions and Inflation

As a mathematical framework of the Big Bang theory, the FLRW models have the great
virtue of describing well the dynamical properties of the observable universe (in particular
its expansion rate and age). They also give the correct temperature dependence on redshift,
which allows Big Bang nucleosynthesis to reproduce the observed light element abundances
so well. However, as we will see next, these models alone show an extreme sensitivity to the
“initial conditions” required to explain why the universe is the way we observe today. This
extreme “fine tuning” of the initial conditions raises a number of important questions which
led to the development of the theory of inflation.

1.4.1 Problems with the Big Bang

Some of the main problems regarding the initial conditions of the Big Bang theory are:



• Horizon problem: According to Eq. (1.37) there are about 14000 to 65000 causally
disconnected regions in the CMB sky, assuming Ω0 ∈ [0.2 , 1]. If this is true why is the
CMBR very isotropic (showing blackbody spectrums with so similar temperatures in all
directions)? This is very difficult to understand if these regions were never in thermal
contact. Without any other mechanism to explain why the whole sky presents such
similar properties one is forced to impose this as an initial condition.

• Flatness problem: At early times the Friedmann equation can be written as:

|Ω(t) − 1| =
|k|

a2(t)H2(t)
=

|k|
ȧ2(t)

, (1.38)

where the quantity a2H2 = ȧ2(t) is a decreasing function of time in all matter or radiation
dominated Big Bang FLRW universes.2 This means that as we go back in time the energy
density of universe has to be very close to the critical density, Ω(t) → 1. Dividing
Eq. (1.38) by itself written at the present we find that in order to get Ω0 ∼ 1, the energy
density needs to be extremely fine tuned in the past. For instance, when the universe
was t = 1 second of age (nucleosynthesis period) |Ω − 1| as to be of the order of ∼ 10−18.
This becomes even more drastic at earlier times. At the Planck epoch (t ∼ 10−43 – a
time scale beyond which the classical GR equations should not be used) Ω can deviate
from the unity only one part in 1060! This shows Ω = 1 as an unstable critical point,
from which any initial deviation larger then what’s allowed by Eq. (1.38) leads to a
universe much different from that we observe today. So why has the universe to start
with an energy density so close to one?

• Monopoles and other relics problem: According to particle physics, the standard
Big Bang model meets the necessary conditions for variety of “exotic” particles (such
as the magnetic monopole, a very stable and massive particle) to be produced during
the early radiation dominated phase of the universe. Since these particles are diluted
by the expansion as a−3 they can very easily become the dominant component of the
universe. However no such particles have yet been observed. This either implies that
the predictions from particle physics are wrong, or their densities are very small and
therefore there’s something missing from this evolutionary picture of the Big Bang.

• Origin of structure problem: Locally the universe is not homogeneous. It displays a
complex hierarchical pattern of galaxies, clusters and super clusters. The general view
is that structure forms via gravitational instability from very small “initial” density per-
turbations. But, what is the origin of these initial perturbations? Without a mechanism
to explain their existence one has to assume that they “were born” with the universe
already showing the correct amplitudes on all scales, so that gravitational instability can
correctly reproduce the present-day structures.

• Homogeneity and isotropy problem: Why is the universe homogeneous on large
scales? At early times this “homogeneity” had to be even more “perfect”. The homoge-
neous and isotropic FLRW universes form a very special subset of all types of solutions

2This can be easily verified by noting that for both matter and radiation dominated universes the second
member of Eq. (1.13) is always negative.



of the GR equations. So why would nature “prefer” homogeneity and isotropy from the
beginning as opposed to, e.g., having evolved into that stage?

1.4.2 The theory of inflation

The theory of inflation (or simply inflation) was originally proposed by Guth [40] in an attempt
to solve some of the above difficulties of the standard Big Bang model. This theory does not
replace the Big Bang scenario. It’s rather an additional mechanism attached to the early
phases of the universe (prior to the radiation-dominated period), which liberates the Big
Bang model from its extreme sensitivity to the initial conditions. The mechanism proposed
by Guth solves the horizon, flatness and monopole problems. With time it would turn out
that inflation is a powerful falsifiable theory for the origin of cosmic structure, which makes
predictions that can be confirmed or ruled out against observations.

Inflation is simply defined as any period of the universe’s history during which the scale factor
a(t) is accelerating,

Inflation ⇔ ä > 0 ⇔
d

dt

(

cH−1/a
)

< 0. (1.39)

These are all equivalent ways of defining inflation. From the last equality we see that during
an inflationary phase the comoving Hubble length always decreases. This is a necessary and
sufficient condition for inflation to happen. As we noted before, in the early phases of the
standard Big Bang scenario aH = ȧ is bound to decrease continuously. This leads to the
flatness problem. So if we reverse this situation (aH = ȧ > 0) i.e if the universe experiences a
period of accelerated expansion, the energy density parameter in Eq. (1.38) is forced to move
away from the critical value Ω = 1 instead of approaching it. This would solve the flatness
problem. But when and in what way can inflation occur within the Big Bang scenario?

In its simplest form, inflation is sourced by a homogeneous scalar field ϕ, known as the
inflaton, with a stress energy tensor given by Tab = ϕ;a ϕ;b − gabL (ϕ) and a Lagrangian
L (ϕ) = 1

2ϕ;a ϕ;bgab − V (ϕ). The shape of the potential V (ϕ) depends on the details of the
model of inflation under consideration. Scalar fields play a central role in describing spon-
taneous symmetry breaking phenomena in particle physics theories. They usually represent
particles with spin zero, such as the Higgs field which is the particle responsible for electro-
weak symmetry breaking. At this point and for the reminder of the chapter we adopt a unit
system where c = ! = 1.

When we include the contribution of the inflaton field into the second term of Eq. (1.6),
the FLRW metric is still the solution of the Einstein equations of GR. The Friedmann and
acceleration equations are now modified to:

(

ȧ

a

)2

=
8πG

3
(ρ + ρϕ) −

k

a2
(1.40)

ä

a
= −

4πG

3
(ρ + ρϕ + 3(p + pϕ)) . (1.41)

where ρϕ and pϕ are the density and pressure of the field, respectively given by ρϕ = ϕ̇2/2 +
V (ϕ) and pϕ = ϕ̇2/2−V (ϕ). One should note that although we are not assuming the existence



of the Λ term in Eq. (1.6), the above equations possess the same form of Eqs. (1.12) and (1.13)
if we have Λ = −8πGpϕ = 8πGρϕ ⇔ pϕ = −ρϕ.

By either applying the conservation law (1.6) to Tab(ϕ) or using the Euler–Lagrange equations
on L (ϕ), we can derive the following equation of motion for the inflaton field,

ϕ̈ + 3
ȧ

a
ϕ̇ +

dV

dϕ
= 0. (1.42)

This tells us that whenever the first two terms are negligible (ϕ̈ , ϕ̇ ≃ 0) the field experiences a
slow-roll period, during which its pressure and density are related by pϕ = −ρϕ ≃ V = const.
Moreover since ρϕ is approximately constant and initially ρ decreases as ρ ∝ a−4, after some
time ti from the Big Bang the energy density of the inflaton field dominates the dynamics of
the expansion. This is the beginning of the inflationary period, during which the solution of
the Friedmann equation (1.40) is,

a(t)

ai
=

⎧

⎨

⎩

cosh [H(t − ti)] if Ω > 1
exp [H(t − ti)] if Ω = 1
sinh [H(t− ti)] if Ω < 1

(1.43)

where ai = a(ti) = (3/8πGV )1/2 and the Hubble expansion rate H = (8πGV/3)1/2 ≃ const.
This is the same dynamical behaviour we find in the de Sitter universe. Regardless of the
geometry, after a time interval t − ti ≫ (3/8πGV )1/2 the scale factor begins to grow expo-
nentially and the universe rapidly behaves as flat (Ω = 1). This is sufficient to remove the
unpleasant fine-tuning condition on Ω required by the standard Hot Big Bang theory. How-
ever inflation cannot continue indefinitely. At some point the universe needs to re-enter in
a decelerating phase which allows primordial nucleosynthesis to reproduce the correct light
elements abundances. With an exponential expansion we would now be inhabitants of an
“empty” universe.

Inflation ends when the scalar field approaches the minimum of the potential, V . At this
point ϕ ends its slow-roll motion and starts to oscillate around the minimum, Vmin. As it
oscillates the particles described by the field annihilate and the resulting energy is transferred
to the cosmological fluid, which experiences a (very rapid) temperature increase. This process
is known as re-heating. After the re-heating phase the universe becomes radiation dominated
and returns to its standard evolution. In a typical inflationary scenario, inflation starts just
before the GUT (Grand Unified Theory) phase transition, for ti ∼ 10−34s, and finishes soon
after this at tf ∼ 10−32s. The “amount of inflation” generated during this very short period
is usually expressed in terms of number of e-foldings,

N = ln
a(tf )

a(ti)
≃
∫ tf

ti

Hdt ≃ −8πG

∫ ϕf

ϕi

V/V ′dϕ, (1.44)

where the last equality results from the use of Eqs. (1.40) and (1.42) under the slow-roll
approximation and ϕi and ϕf are the values of the inflaton field at the beginning and the end
of the inflationary phase. The amount of inflation produced during this period is therefore



dependent on the inflationary potential. The distance travelled by light during the same time
interval is then

d(tf , ti) = a(tf )

∫ tf

ti

dt

a(t)
= H−1

(

eH(tf−ti) − 1
)

≃ H−1eN , (1.45)

which shows that a causally-connected region with size equal to the Hubble volume is expo-
nentially expanded by eN at the end of inflation, whereas the Hubble radius itself remains
approximately constant during the same period, RH = H−1 ≃ const. After the end of infla-
tion the Hubble radius starts to grow again and eventually may enclose at some point regions
which were beyond the Hubble volume before inflation started. Another way of restating this
is to think in terms of comoving coordinates. During inflation the comoving Hubble length
decreases proportionally to ∼ e−N . Comoving scales of the size of the Hubble radius and
smaller are therefore pushed outside the comoving Hubble sphere. After inflation these scales
re-enter progressively the Hubble volume as the comoving Hubble radius starts to increase. If
the number of e-foldings is sufficiently large, scales that didn’t have time to establish causal
contact before inflation are still today beyond our observable horizon. This would explain the
high degree of isotropy and homogeneity we observe today.

This can also explain why magnetic monopoles and other Big Bang relics are unobservable
today. If inflation happens before or during the phase when these particles are created, their
density at the end of the inflationary period will decrease by a maximum factor of e3N . Again,
if N is big enough the density of these particles can still be very small today and therefore,
in practice, unobservable. Of course, this only works if inflation has enough time to dilute
these relics (see Ref. [65] for a discussion on the conditions required for this argument to hold
for different kinds of relics). It can be shown that the minimum amount of inflation needed
to solve these and other problems of the standard Big Bang model is about N ∼ 60 (see e.g.
Refs. [64, 65]).

Despite inflation’s success to bring the primordial universe towards homogeneity and a flat
geometry (as required by the standard Big Bang model), inflation’s most remarkable feature is
that it provides a theory for the origin of the primordial inhomogeneities. In the inflationary
scenario these inhomogeneities arise from quantum fluctuations about the vacuum state of
the inflaton field, which are always present due to the Uncertainty Principle (see Refs. [4, 41,
45, 65, 101]). The resulting irregularities can be of scalar (density perturbations) or tensorial
(gravitational waves) nature. Their amplitudes on a given scale can be fully specified by
the value of inflationary potential, and its derivative with respect to the inflaton field, at
the time the scale crosses outside the Hubble radius during the inflationary phase (see e.g.
Refs. [63, 64]).

Nowadays the title “standard model of cosmology” usually refers to the Hot Big Bang scenario
plus the theory of inflation as the mechanism responsible for the origin of cosmic structure.
Inflation generated perturbations are solely produced during the inflationary period and their
subsequent evolution is governed by the effects of gravity and cosmic expansion alone. For
this reason inflation-generated perturbations are said to be passive. Non-gravitational effects,
such as gas cooling and heating, only become important at later times when highly non-
linear structures (e.g. galaxy clusters) form. An alternative paradigm to inflation are the



theories which consider topological defects as the main source of cosmic structure (see e.g.
Refs. [25,49,60,110]. In this case, perturbations are said to be active as they can arise at any
time and evolve also under the effect of non-gravitational forces. This significantly complicates
their treatment. However topological defect theories have been recently excluded from being
the main source of cosmic structure as they fail to predict the observed features (namely a
pronounced first peak and the indication for the existence of secondary acoustic peaks) in the
CMB anisotropy spectrum (see Ref. [25]).
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