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Chapter 2
2. The Standard Model of Cosmology (SMC)

* Fundamental assumptions;
* The GR equations and the Friedmann-Lemaitre-Robertson-

Walker solution;
*  FLRW models:
*  Dynamic equations;
*  Energy-momentum conservation;
*  Fluid components and equations of state;
*  Cosmological parameters;
*  The Friedmann equation: the evolutionary phases of the
Universe; exact solutions: age of the Universe;
* Distances; horizons and volumes;
*  The accelerated expansion of the Universe;
*  Problems with the SMC: Horizon; Flatness; Relic particles;
origin of perturbations; primordial Isotropy and homogeneity

* The idea of Inflation
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Standard Model of Cosmology
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SMC: Mathematical framework
Fundamental assumptions:

* The Universe is homogeneous and isotropic when
observed on large scales and expands uniformly
with respect to any position

* The dynamics of space-time is described by
Einstein's theory of general relativity (GR).
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for the Universe to be homogeneous and isotropic the stress-
energy tensor has to be that of a perfect fluid
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SMC: Mathematical framework

The cosmological constant in the GR equation:

G#U + Ag#,, = SWGTFV (A as “cosmological constant”)
?

A ~
Gu = 871G (T#l’ — %gw,> =81GT . (A as “vacuum energy”)
The Einstein tensor, Riemann tensor and Ricci scalar are:

1
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Fl:A = Eg‘w(gau,,\ + oy — gw\,a) Juv A = agau/ax,\
where,
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SMC: Mathematical framework
Einstein Equation:

Gu + Aguy = 87GT,,,

Albert Einstein
1879-1955

SMC: Mathematical framework

Geodesic Equation:

In the absence of non-gravitational forces, free falling
particles move along “geodesics”, described by the so
called Geodesic equation.

dU*
i arrf __
T Th U U =0
where,
UH = ax# four-velocity of the particle along its
~ ds free-falling path X*(s)
B
S=-m / ds .
Ja

/ XH(A)

Figure 1.4: Paramecterisation of an arbitrary path in spacctime, XH(\).
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SMC: Mathematical framework

Fundamental assumptions:

* The Universe is homogeneous and isotropic when
observed on large scales and expands uniformly
with respect to any position

* The dynamics of space-time is described by
Einstein's theory of general relativity (GR).
87G
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In these conditions the solution of the Einstein equation is the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:
.2
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ds® = c*dt* — a“(t) T

+ 1% (d6? + sin® 0d¢?)

SMC: Mathematical framework

* Dynamical equations:
(result from the Einstein equations and govern the time evolution of a(t))

a\? 8r¢ A2 ke? Friedmann equation
o) T3P @
a _ 4nG () 3 P ) + E Raychaudhuri
- 3 f 2 3 (or acceleration) equation

* Energy momentum conservation: v, 7%, = T* . =0
the covariant derivative reads: v, 7%, = 9, 7", + FZ AT'\,, B O

ng

the v = 0 (time) component of this equation gives:

p= _32 (p + 1_)2) = d (pc'l(ﬁ) = —pd ((13) Energy conservation
Qa c equation

— 2 .
p=wpc —l<w<l1 Equation of State (EoS)

for fluids with constant EoS parameter, w, the solution is:

—3(1+w)
p(t) = p; (ﬂ) ”+ 10

a;




SMC: Mathematical framework

Covariant derivative:

Covariant derivative.—The covariant derivative is an important object in differential geometry and it

is of fundamental importance in general relativity. The geometrical meaning of V,, will be discussed
in detail in the GR course. In this course, we will have to be satisfied with treating it as an operator
that acts in a specific way on scalars, vectors and tensors:
e There is no difference between the covariant derivative and the partial derivative if it acts on
a scalar

Vuf=0.f. (1.3.83)

Acting on a contravariant vector, V", the covariant derivative is a partial derivative plus a

correction that is linear in the vector:
V.V =9,V + T,V (1.3.84)

Look carefully at the index structure of the second term. A similar definition applies to the

covariant derivative of covariant vectors, w,,
) ( 3 A ) K 159
Vuwy = Quwy — T wa . (1.3.85)

Notice the change of the sign of the second term and the placement of the dummy index.

For tensors with many indices, you just repeat (1.3.84) and (1.3.85) for each index. For each
upper index you introduce a term with a single +I', and for each lower index a term with a

single —I':

Vo THH B, e = Qg TP,
T A g Ty A
-Illﬂ’\l Ha “l‘,t"- p,"l“n,\l‘] ‘Ap]y»_; ":-,..
<A 2 A 2 QQp
= DA, THbie gy = DA TP = (1.3.86)

This is the general expression for the covariant derivative. Luckily, we will only be dealing
with relatively simple tensors, so this monsterous expression will usually reduce to something

managable.

SMC: Mathematical framework

» EoS for different energy density components:

e w=1/3 (radiation)
2

ap\4 (1
P’r:P'yO(ZO) B (%) « — axt'/?

Q|8
g.xl -

'w=0 (matter)

2
x — — axt3

ao\3 (2
) =

Pm = Pmo0 (;

ISEISE

*w=-1 (cosmological constant)

pr = A/8TG = —Py 8 a oc eVAt

(1) after integration of the Friedmann equation with k =0, A=0, p =p,.
(2) after integration of the Friedmann equation with k =0, A=0, p = pp,.
(3) after integration of the Friedmann equation with k =0, A = 8rnGp,, p =0

1
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SMC: FLRW models

* Cosmological parameters:

871G Ac? kc?
st am em = ¢ Dt =1

a(t
H(t) = a(t) Hubble parameter
a(t)
H'Z
Pe = 3— Critical energy density
- 887G
total mater M
Znergir Vacuum or Curvature ’
:}zn}ét or dark energy density
p density parameter
parameter Q<1
k=-
p =D pi includes all matter and
¢ radiation components
Di (baryons, dark mater,
= radiation, ...) o
Perit > k=0

SMC: FLRW models

* Friedmann equation revisited

) 8rG k2 Ac?
H2(t) = 2 (pr + pm) — g + -
3 a 3

— H? [nﬁ, (“")4 + Qo (“")3 + Q0 (%")2 + sz,m]

a a

4 T T T T

Dark Matter + Dark Energy (Qy = 0)
effect the expansion of the universe
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The evolutionary 03 0.0
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Universe is
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cosmological
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SMC: Concordance Cosmology

Combination of different observational datasets...

WMAPS3 parameters

Parameter Value Description

Buasic parameters

Ho 70.9t§ ,J_,‘ kms! Mp(:'1 Hubble parameter
QO ‘0.0444t3ﬁﬁ§ Baryon density
++0.025 Total matter density (baryons +
{n 0.266%0.019 dark matter)
1 0079tg&2;2) Optical depth to reionization
. all OW us t o Ag 0813t38§§ Scalar fluctuation amplitude
. ng 0948fgg}: Scalar spectral index
lmp 0ose Derived parameters
i % 0.9475% x 1077
ConStralntS on 78% Bark Energy PO ;D o Critical density
. kg/m’
CO SmO]'Oglca]' QA 0.732fg:g§g Dark energy density
p arame te rs Zion 10 Stg g Reionization red-shift
08 0.772fg gig Galaxy fluctuation amplitude
1013 9
to 13.78%5 17 x 10 Age of the universe
years

SMC: Exact solutions of the Friedmann equation

Scale factor:

I -1 -2 2
d m\t) = HUJ - Qu -+ Qmu ( . ) T Qv'l’l ( . ) - Q.\n {l - ( . ) :|
dt ay Qg ag Qg

for a critical density (Qx = O, = 0) universe, gives:

y 2/(3(1+w))
a(t) (3(l+w)HUt)
g 2

2

a
HO = 0= 3wy

» Age of the Universe:

D =(1+2)7! 1
0 \/l - SzU + SImU:I:_l + 527'(]:‘:—2 - S?,\ (l — fl:z) 16



SMC: distances, horizons and volumes

* Coordinate distance:

(can be computed using photons that travel along null geodesics: ds? = 0)
Te t ! 2
/ L p— Cf d—t = cn(t) «— ds? =c%dt? —az(t) [1 drk 5 +7? (d02 +Sin20d¢2)]
o V1—kr? o a(t') R

* Proper (physical) distance / particle horizon:

aut) = [ Viarldr = a(t) [ - = cattin(e)

for a Q, = 0 universe this gives:

2 C ¢ 1/2 ( a )S(l*w)"’z -3 14+w

dy(t) ~ =
u(t) 3w+ 1Hy, " \ag 14 3w

SMC: distances, horizons and volumes

* Angular size of a region at a given time:

D (II)H[‘I‘\'(‘l'
0=—— :
dy(t)
where _
N\
Y o dr T \0
dy(t) = wrldr = alt ——— =ca(t)y(t
4 (t) / Vgnrldr = aft) f S = caltn(®)
t ‘/l')

Angular size of the particle horizon at a given time for a critical
density universe (Q, = 0)
age of universe

We can see gas at

points A and B before

they knew about each
/% other.

Y,
)
3

0y Q1+ 2

Oy ~ 2tan —

27 Qe+ (% —2) (VIF+ Q2 1)

.................... 500,000 yr

_ distance

Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.
Copyright © Addison Wesley.



SMC.: distances, horizons and volumes
* Hubble length:

¢ 3w+1)

where the last equality holds for a critical density universe Q=1

* Physical volume element:

‘ . adr
dV = drdf d¢ = (ar)? ——— d)
Vgl (@r) =
v ¢ (ar)® _ c d
dQdz  H(z) (14 2)3 HyH#(2)(1+2)

where:

19
H(z) = H(z)/Ho
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Problems of the FLRW models
as the sole ingredient of the
SMC
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The Horizon Problem
At high redshift (z » 1):

; 180 [Qq :
= \' — deg

there are ~54000 causal disconnected areas in the CMB
sky. Why the CMB has a thermal spectrum with a so
uniform temperature in all directions (2.725 °K)

CosMIC MICROWAVE BACKGROUND SPECTRUM FROM COBE

age of universe

We can see gas at
points A and B before
they knew about each

\\\\\\

'%, other.
%,
)
(>
K
%
%
&
> 500,000 yr
i 9 distance
Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.

Copyright © Addison Wesley

The Flatness Problem

From the Friedmann Equation, written at early times:

) ) is a decreasing
A | _ A function of
a?(t)H?(t) (a?(t))— time

Qt) - 1] =

decreases as time approaches the big bang instant.

This means that as we go back in time the energy density
of universe has to be extremely close to critical density.
For t=1e-43 s (Planck time) QQ should deviate no more
than 1e-60 from the unity.

Why has the universe to start with (t) so close to 1?
22



The Monopoles & other relics Problem

Particle physics predicts that a variety of “exotic” stable
particles, such as the magnetic monopoles, should be
produced in the early phase of the Universe and remain
in measurable amounts until the present.

No such particles have yet been observed. Why?
This either implies that the predictions from particle
physics are wrong, or their densities are very small and

therefore there's something missing from this
evolutionary picture of the Big Bang.
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The Origin of Perturbations Problem

Locally the universe is not homogeneous. It displays a
complex hierarchical pattern of galaxies, clusters and
super clusters.

What’s the origin of cosmological structure?
Does it grew from gravitational instability?
What is the origin of the initial perturbations?

Without a mechanism to explain their existence one has
to assume that they ~“were born" with the universe
already showing the correct amplitudes on SN g
all scales, so that gravitaty can correctly
reproduce the present-day structures?




The homogeneity and isotropy Problem

Why is the universe homogeneous on large scales? At
early times homogeneity had to be even more “perfect”.

The FLRW universes form a very special subset of
solutions of the GR equations. So why nature “prefers”
homogeneity and isotropy from the beginning as
opposed to having evolved into that stage?

CMB T=2.725 K

The Theory of Inflation...

Inflation can be defined as

/
Inflation < i > 0 < % (cH ' /a) < 0.
(4]

This happens when

g:‘T(f’”c—z) ~ =m) p<-pc/3
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