UNIVERSO PRIMITIVO: INFLAÇÃO E ESTRUTURA DE LARGA ESCALA Mestrado em Física Astronomia 2018-2019

Exercise Sheet 1

- 1. In a FRLW universe, fundamental observers experience no external forces and have fixed coordinates in the comoving coordinate system. The proper distance between two of such observers scales as r(t) = a(t) x, where a(t) is the scale factor and x is their comoving separation.
 - 1.1. Derivate this expression to prove the Hubble law, v(t) = H(t) r(t), where $H = \dot{a}/a$.
 - 1.2. Derive a similar expression for a pair of non-fundamental observers that have a relative peculiar velocity, $v_p = \dot{x}$, in the commoving coordinate system.
- 2. Consider a homogeneous and isotropic fluid with an energy-stress tensor $T_{\nu}^{\mu} = (\rho + p) U^{\mu} U_{\nu} p g_{\nu}^{\mu}$ of a perfect fluid.
 - 2.1. Prove that $\dot{\rho} = -3H(\rho + p)$ where $H = \dot{a}/a$ is the Hubble factor. [Hint: apply the conservation law, $T^{\mu}_{\nu,\mu} = 0$ to the $\nu = 0$ component].
 - 2.2. Use this continuity equation to prove that dE = -pdV, where $dE = d(\rho a^3 L^3)$ is the energy inside a volume element, $dV = a^3 L^3$, of comoving size L^3 .
 - 2.3. Integrate the equation in 2.1 to prove that $\rho(t) = \rho_i \left(\frac{a(t)}{a_i}\right)^{-3(1+w)}$ where w is the equation of state parameter of a given fluid component and ρ_i , a_i are integration constants;
 - 2.4. Use the expression in 2.3 to derive the time dependence of the scale factor for the following components: radiation (w = 1/3), collisionless matter (w = 0) and cosmological constant (w = -1) [Hint: assume no curvature term in the FRLW dynamic equations].
- 3. Consider the FLRW dynamic equations
 - 3.1. Use the Friedman equation and the continuity equation (2.1) to derive the acceleration equation.
 - 3.2. Use the definition of the cosmological density parameters to prove the following form of the Friedmann equation.

$$\begin{aligned} H^{2}(t) &= \frac{8\pi G}{3} \left(\rho_{r} + \rho_{m} \right) - \frac{kc^{2}}{a^{2}} + \frac{\Lambda c^{2}}{3} \\ &= H_{0}^{2} \left[\Omega_{r0} \left(\frac{a_{0}}{a} \right)^{4} + \Omega_{m0} \left(\frac{a_{0}}{a} \right)^{3} + \Omega_{k0} \left(\frac{a_{0}}{a} \right)^{2} + \Omega_{\Lambda 0} \right] \end{aligned}$$

- 3.3. Estimate the value of a/a_0 at matter-radiation equality if the radiation and matter density parameters at present are $\Omega_{r0} = 0.0001$ and $\Omega_{m0} = 0.25$, respectively.
- 4. Use the Friedmann equation in 3.2 to compute the Age of the universe for
 - 4.1. A critical density universe, $\Omega = \Omega_{r0} + \Omega_{m0} = 1$, with $\Omega_{r0} \simeq 0$.
 - 4.2. A flat, Λ –Universe with $\Omega_{r0} \simeq 0$, $\Omega_{m0} = 0.25$, $\Omega_{\Lambda 0} = 0.75$, $H_0 = 70 \ km \ s^{-1} \ Mpc^{-1}$

[Hint: integrate the Friedmann equation with respect to the scale factor]