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PREFACE TO THE CLASSICS EDITION

This edition of the book is the same as the initial one, except for a few corrections and
the addition of a small number of references.

Several parts of the book cover basic material which turns out to be useful in a number
of applications and which is not expected to evolve; as far as we know this material has
not appeared elsewhere in book form since it was published in this book.

Here are some of the topics developed in this book, and their present standing in
theoretical and applied research; references are provided in the “Additional References” at

the end of the book:

1. Duality in the calculus of variation (convex variational problems in infinite
dimension).

Duality has important applications in mathematical economy, in continuum
mechanics, in numerical analysis (mixed finite elements), and in control theory.
New developments have occurred in convex analysis in finite dimension: we refer,
for instance, to semi-definite programming. Duality for some (finite or infinite
dimensional) nonconvex problems has been developed. Systematic use
of duality in solid mechanics for plasticity related problems has been made. The
(infinite dimensional) nonconvex problems of calculus of variation appearing in
nonlinear elasticity have attracted much attention and effort (with little or no
reference to duality).

2. Generalized solutions of minimal surface problems. Important developments have
occurred in the parametric case (not considered in this book) with geometrical ideas
totally different from those used here. Extensions of the methods of this book have
been developed and studied for the time dependent (evolution nonparametric)
minimal surface problem.

3. The minmax theorems stated in this book have also many useful applications—
in particular in relation with duality for the same topics as in point 1 and most
recently for control theory, namely the robust control of partial differential equations
in finite time horizon.

Ivar Ekeland

RogerTémam
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PREFACE

In recent years, there has been a considerable expansion in the field of Convex
Analysis, in conjunction with the development of various mathematical tools,
certain of which have become standard. The initial motivation was provided
by operations research: the success of linear programming, due to the duality
theorem and the simplex method, has aroused the interest of managers and
engineers in this type of problem, and similar results have therefore been
sought for non-linear optimization. To this primary objective of Convex
Analysis, others have been added, ranging from mathematical economics to
mechanics, and encompassing more strictly mathematical problems such as
the study of functional equations of monotone type. The result has been a
deeper understanding of convex functions, together with the introduction of
new concepts such as those of subdifferentiability and conjugate convex
functions. The subdifferential of a convex function is a generalization of the
notion of derivative, and has provided the theory of maximal monotone
operators, so useful in the study of partial differential and integral equations,
with its first examples. The concept of conjugate convex functions has
emerged as an elegant and general formalization of duality in optimization.

However, it does not seem to us that these methods have been used to their
full advantage in the study of variational problems, that is, optimization
problems in concrete functional spaces. The object of this book is to fill this
gap in two main directions:

by dualization of convex variational problems,
by relaxation of non-convex variational problems.

Duality allows us to associate a dual problem with a variational problem
and to study the relationship between the two problems. This is useful in
mathematical economics where the dual problem can be stated in terms of
the price; in mechanics where the primal and the dual problems are two
well-known forms of the conservation principles, characterizing the displace-
ments and the constraints respectively; in numerical analysis where the dual
problem may help us to solve the primal problem. In addition to these standard
applications of duality, we have a new use for the calculus of variations in
mind: the dual problem enables us to define the generalized solution of a
variational problem which has no classical solution.

Xt
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The relaxation consists in associating a “convexified” problem with a
non-convex variational problem. This approach to non-convex problems has
been considerably developed for optimal control problems; the study is
developed here in a more general framework, adapted to problems in the
calculus of variations, The solutions of the “convexified” problem arise as
generalized solutions of the initial problem.

Thus we see that these two directions meet in the concept of generalized
solutions: these are the cluster points of the minimizing sequences of the
problem under consideration.

The book is divided into three parts, dealing with a summary of convex
analysis, duality for convex variational problems, and the relaxation of non-
convex variational problems respectively. We shall now describe the contents
of the various chapters in more detail.

Chapter I summarizes the essentials of the theory of convex functions. We
have omitted those points which are not directly useful to us, such as the
inf-convolution, so that we can concentrate on the fundamental concepts of
conjugate convex functions and of subdifferentiability.

Chapter II deals with the minimization of convex functions. Here we recall
the principal results which guarantee the existence and uniqueness of the
point where a convex function attains its minimum, characterizing it as the
solution of a variational inequality.

Chapter II1 develops the theory of duality in convex optimization following
R. T. Rockafellar. Given a convex optimization problem, we embed it in a
family of perturbed problems, and by using conjugate convex functions we
associate a dual problem with it. This very flexible abstract theory can be
adapted to a wide variety of situations.

Chapter IV describes the application of duality to several problems in the
calculus of variations, of mathematical physics, of mechanics and of flltering
theory. In each case, we state the dual problem explicitly together with its
relationship to the primal problem,

Chapter V describes the application of duality to the classical problem of
minimal hypersurfaces and to problems of related type. The dual problem
still has a unique solution, and the primal-dual relationship enables us to
associate a generalized solution of the primal problem with it. Hence we
obtain the existence of a generalized solution to the problem of minimal
hypersurfaces, for which it is well known that there is generally no classical
solution. In addition to the systematic use of duality, we here have an
unexpected application of ¢-subdifferentiability.

Chapter VI describes a different theory of duality, based on the minimax
theorems. This approach, which is older than Rockafellar’s, adds nothing
new and we develop it briefly for completeness.
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Chapter VII describes the application of duality to problems of numerical
analysis, optimal control, mechanics and mathematical economics. All these
applications of duality are still being developed at the present time and we
do not pretend to be exhaustive. We have restricted ourselves to illustrating
some typical methods with specific examples.

Chapter VIII tackles non-convex variational problems, by studying those
cases where the existence of a classical solution is assured. The existence
theorem which we obtain is illustrated by examples taken from optimal
control and the calculus of variations.

Chapter IX considers variational problems devoid of a classical solution.
We then define, by partial convexification, a relaxed problem, which can be
shown to be near to the initial problem. In particular, the relaxed problem
possesses classical solutions which are none other than the generalized
solutions of the initial problem. These results are applied to a number of
problems of optimal control and of the calculus of variations.

Chapter X deals separately with the fundamental problem of the calculus
of variations in dimension n > 1. Although it is not amenable to the methods
of the preceding chapter, the results obtained are similar: obtaining the
relaxed problem by partial convexification, characterizing the classical
solutions of the relaxed problem as generalized solutions of the initial problem.
Finally, we conclude with a study of variational equations. Clearly, if a
problem in the calculus of variations has no classical solution, the corre-
sponding Euler equation has no solution in general. However, we show that
approximate solutions always exist.

Chapters 1 to VII were the subject of a postgraduate course given by the
second author at the Université de Paris XI in 1970-71 and 1971-72. They
contain some new results and others which have only recently been published
(see R. Temam [1]-[4]). Chapters VIII to X continue and develop previous
work of the first author (see I. Ekeland {1]) and also contain large borrowings
from the work of H. Berliocchi and J. M. Lasry (see [1]). Obviously all the
first part of this book owes much to J. J. Moreau and R. T. Rockafellar. We
offer them our thanks.

Our purpose was not to produce a systematic exposition of the topics
considered here. We have only attempted to describe some methods linked
with convex analysis, methods which have already been found to be productive
and still seem to be promising. This should be the subject of future research.

We dedicate this book to J. L. Lions who has profoundly influenced our
mathematical thinking and to whom we owe much.

We thank M. P. Lelong for welcoming our work into the series of which
he is the general editor and also for his advice and suggestions.
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Our thanks also go to Mme Cartier and Mme Maynard who typed the
greater part of the manuscript.

Finally, we wish to thank Editions Dunod for their excellent typographic
work

Paris, November 1973.

The English translation has been updated by incorporating recent work of
the authors (Appendixes 1 and II) and their students. It has also benefited
from the improvements suggested by the readers of the French edition.
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CHAPTER 1

Convex Functions

Introduction

This chapter assumes a basic knowledge of topological vector spaces.
Moreover, we shall recall in Section 1 several fundamental aspects of this
theory which will be constantly used in what follows. These reminders are in
no way systematic and are centred on the notion of a convex set. We go on
to consider convex functions (Sections 2-4) and their differentiability
(Sections 5 and 6). All the vector spaces studied here are real.

1. CONVEX SETS AND THEIR SEPARATION

1.1. Convex sets

Let ¥ be a vector space over R. If » and v are two points of ¥, v and v are
called the endpoints of the line-segment denoted by [v,v] where

[u,0] = {Au+ (1 —Aw|0 <A <1}

A set o < Vis said to be convex if and only if for every pair of elements (u,v)
of & the segment [u,v] is contained in V. We know that a set & < V is convex

if and only if for every finite subset of elements u,, . . ., u, of &, and for every
family of real positive numbers 4,, . . ., 4, with sum unity, we have

n

Y Aued.

i=1

The whole of the space V is convex and, conventionally, so is the empty
set. Every intersection of convex sets is convex, but in general the union of
convex sets is not convex.

If o is any subset of V, the intersection of all the sets containing & is a
convex set, and it is the smallest convex set containing . It is called the
convex hull of o/ and is denoted by co o/. It is also the set of all the convex
combinations of the elements of &, i.e.,

i=1

COM= ZliuiIneN’Zli=l7ii>O,uieﬂ,lsisn}.
i=1

3



4 FUNDAMENTALS OF CONVEX ANALYSIS

Let o be an affine hyperplane with equation #(#) = « where £ is a non-zero
linear form on ¥ and « € R. The sets

{ueV|fu) <a}, {ueV{fu) > al,
fueV|fu) <al, {ueV|fu)>a}

are called respectively open and closed half-spaces bounded by #°. These are
two convex sets which depend only on 5, and not on the particular # and «
chosen for its equation.

1.2. Separation of convex sets

We recall that a topological vector space (t.v.s.) is defined as a vector space
¥ endowed with a topology for which the operations

(u,v) »u +v of ¥ x Vinto V,
(4, u) > Au of R x V into V

are continuous, The neighbourhoods of any point may then be deduced from
those of the origin by translation. A t.v.s. is said to be a locally convex space
(1.c.s.) if the origin possesses a fundamental system of convex neighbourhoods.
This is the case with normed spaces : it is sufficient to take the set of neighbour-
hoods formed by the balls centred on the origin. All the usual t.v.s. encountered
in analysis are locally convex.

Now let ¥ be a t.v.s. and # an affine hyperplane with equation /(u) = «
where £ is a non-zero linear functional on V and « € R. It can be shown that
the set 2 is topologically closed if and only if the function ¢ is continuous.
Under these conditions the open {(closed) half-spaces determined by 3 will
be topologically open (closed).

In a t.v.s. V, the closure of a convex set is convex and the interior of a
convex set is also convex (possibly empty). More generally, if &/ <V is
convex, if u € o (the interior of &) and if v e & (the closure of &), then
[u,v[< o, from which we deduce that of = whenever o # @. This
suggests to us the introduction of the following definition: a point u € & will
be called internal if every line passing through u meets & in a segment [v,,2,]}
such that u € Jvy,v,[. Hence every interior point is internal, and by the above
argument, if o E D every internal point is interior.

If & is any subspace of V, the intersection of all the closed convex subsets
containing o is the smallest closed convex subset containing <. It is also the
closure of the convex hull of & (and not the convex hull of the closure!); it
is called the closed convex hull of o and is denoted by 3o «.
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An affine hyperplane o is said to separate (strictly separate) two sets &
and & if each of the closed (open) half-spaces bounded by # contains one
of them. This may be written analytically as follows. If /() = « is the equation
of o, then we have

Au) < a, YVued, (v)=a, Vved,
for separation,
Au) < a, Vue s, HAv)>a, Yved
for strict separation.
We now recall the Hahn-Banach theorem in its geometric form, and its
consequences for the separation of convex sets. Naturally it is in the context
of l.c.s. that the most precise results are obtained.

Hahn-Banach Theorem. Let V be a real t.v.s., & an open non-empty convex
set, and .# a non-empty affine subspace which does not intersect o . Then there
exists a closed affine hype:-plane H# which contains M and does not intersect 4.

Corollary 1.1. Let V be a real t.v.s., of an open non-empty convex set, # a
non-empty convex set which does not intersect sf. Then there exists a closed
affine hyperplane # which separates of and 8.

Corollary 1.2. Let V be a real l.c.s., ¥ and % two non-empty disjoint convex
sets with one compact and the other closed. Then there exists a closed affine
hyperplane 3# which strictly separates € and 3.

Here is an example of application of Corollary 1.1. Let & be a subset of V'
and s a closed affine hyperplane which contains at least one point v € &7,
such that & is completely contained in one of the closed half-spaces deter-
mined by 3¢; we say that # is a supporting hyperplane and v a supporting
point of of . Then

Corollary 1.3. In a real tw.s. V, let o/ be a convex set with non-empty
interior. Then every boundary point of o is a supporting point of .

An application of Corollary 1.2 is:

Corollary 1.4. In a real l.c.s. V, every closed convex set is the intersection
of the closed half-spaces which contain it.

All these results have a fundamental importance in analysis because they
allow a convenient theory of duality. Thus, if ¥ is a Hausdorff L.c.s., the
Hahn-Banach theorem allows us to assert the existence of non-zero continuous
linear forms over V: it is sufficient to consider two points u, and u, of V, and to
separate then by a closed affine hyperplane 5 (Cor. 1.2); if the equation of
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X is £(u) = a, the non-zero linear form ¢ is continuous since # is closed and
£(uy) # £(u,). The vector space V* of continuous linear functionals over V is
said to be the topological dual, or more simply the dual of V. The elements of
V* will be, in general, denoted by u* or v*, and {u,u*) will denote the value
at u of the continuous linear functional u* € V*.

These new notations emphasize the fact that ¥ and V* play symmetrical
roles. In (u,u*)— <(u, u*) we have a bilinear form over ¥ x F* which can be
considered either as a family of linear forms on ¥ depending on the parameter
u* € V'*, or as a family of linear forms over V* depending on the parameter
u e V. Thus V* (resp. V) is a vector space of linear forms over V (resp. V*),
the point u* € V* being identified with the function ¥ — {u,u*) (or the point
u € V being identified with the function u#* — <u,u*}). We can thus introduce
over V* (resp. V) the topology of weak convergence over ¥ (resp. ¥'*). This will
be termed weak topology of V* (resp. V) associated with the duality between
V and V* and will be denoted a(V*,V) (resp. o(V,V*)). It is a topology of
Hausdorff L.c.s. and o(¥, V'*) is the coarsest of the Hausdorff L.c.s. topologies
over V with dual V*; in particular it is coarser than the original topology over
V. The weakly closed subsets of ¥ will thus be closed, while the converse is
generally false.

From Corollary 1.4, however, every closed convex set is weakly closed. In a
Hausdorff l.cs. the weakly closed convex sets are identical with the closed
convex sets. In the context of normed spaces we shall sometimes use this
result in the following form:

Mazur’s Lemma. Let V be a normed space and (#,).n a Sequence converging
weakly to ii. Then there is a sequence of convex combinations (v,),.x Such that

N N
v"=k‘; Aty wherekz A=1land 24,20, n<k<N

which converges to #@ in norm.
Proof. For every ne N, i belongs to the weak closure of g, {u:}, and
a fortiori, to the weak closure of co ., {u,}. But this is exactly the weakly

closed convex hull of UL, {u,} which coincides with its closed convex hull
by Corollary 1.4, Finally,

iec |J {u}, VneN,
k=n

and it suffices to choose v, € co Uy, {u) such that v, — &,/ <1/n. &
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1.3. Analytical form of the Hahn-Banach theorem

The analytical form of the Hahn-Banach theorem is more precise than the
geometrical form. We consider a real vector space ¥ and a sub-linear function
j over V, i.e. a mapping j of ¥ into R which satisfies

(lu) = Ajlu), YueV, Vi >0,
Ju + ) < ju) +jl), Vwov)eV x V.

Hahn-Banach Theorem. Let V be a real vector space, j a sub-linear function
over V, M a vector subspace of V, ¢ a linear functional over M which is every-
where less than j. Then there exists a linear functional £ over V which extends ¢
and is everywhere less than j.

Corollary 1.5. Let V be a normed space, # a topological vector subspace, ¢ a
continuous linear functional over M. Then ¢ can be extended into a continuous
linear functional over V with the same norm.

2. CONVEX FUNCTIONS
2.1. Definitions

As before, we take a real vector space V and consider mappings of & < V
into R, that is, the values +c and —« are allowed to the functions under
consideration.

Definition 2.1. Let of be a convex subspace of V,and Famappingof o intoR.
F is said to be convex if, for every u and v in o, we have:

(21)  FQu + (1 — W) < AF(w) + (1 — AF(v) vie[o,1]

whenever the right-hand side is defined.

The inequality (2.1) must therefore be valid unless F(u#) = —F(v) = + . By

induction, it can be shown that if Fis convex, for every finite set u,, . . ., u, of
points of ¥ and for every family 4,, . . ., 4, of real positive numbers with sum
unity, then

(22) F( y z,.ul.) <Y AFu)

i=] i=1

whenever the right-hand side is defined.
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It is easy to see that, if F: 7 — R is convex, the sections
(23) {u|Fi) <a} and {u|F(u) <a}

are, for each a € R, convex sets of V. The converse is, however, false. For

instance, if F is convex and if ¢: R —R is an increasing function then

¢ o F: ¥ — R will also have convex sections but will not be convex in general.
For every mapping F: ¥ — R, we call the section:

(2.4) domF = {u|Flu) < + o}

the effective domain of F. The effective domain of a convex function is thus
convex.

Why do we allow the value + ? If Fis a mapping of & < Vinto R, we can
associate with it the function F defined throughout ¥ by:

(2.5) F:(u)=F(u) if ued,
Fluy= + o if u¢.

Thus Fis convex if and only if & < ¥ is convex and F: & — R is convex. In
the theory of convex functions, because of this extension by +o, we need
only consider those functions defined everywhere.

There is a further advantage. If & is a subset of V, the indicator function
¥ Of & is defined as:

(2.6) AUy =0 if ued,
1AU) = + o if u¢d

Clearly 7 is a convex subset if and only if x,, is a convex function. Thus the
study of convex sets is naturally reduced to the study of convex functions.

On the other hand, convex functions which assume the value —w are very
special. If F(#7) = —w, then on every half-line starting from #, either F is
identically equal to —o, or Ftakes the value —o between i and a point 3, any
value at &, and +o beyond 5.

To distinguish these very special cases, we shall say that a convex function
F of V in R is proper if it nowhere takes the value —e and is not identically
equal to +o.

Definition 2.2. The epigraph of a function F: ¥V — R is the set:
(2.7) epi F = {(u,a)eV x R| f(u) <a}.

It is the set of points of ¥ x R which lie above the graph of F. The projection
of epi F on V is none other than dom F. The epigraph will be found a most
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useful concept in the study of convex functions because of the following
result:

Proposition 2.1. A function F: V — R is convex if and only if its epigraph
is convex.

Proof. Let F be convex and take (u,a) and (v,b) in epi F. Then, necessarily,
F(u) < a< +o and F(v) < b <+, and for all A € [0,1] from (2.1) we have

F(Au + (1 — A)v) < AF(u) + (1 — A)F(v) < da + (1 — A)b,

which means precisely that A(u,a) + (1 — A)(2,b) € epi F.

Conversely, let epi F be convex. Its projection dom F is therefore convex
and it is sufficient to verify (2.1) over dom F. Let us therefore take 4 and v in
dom F, a>» F(u) and b > F(v). By hypothesis, A(u,a)+ (1 — 2)(v,b) e epi F
for every A € [0,1] so that:

F(Au + (1 — A)v) < Aa + (1 — A)b.

If F(u) and F(v) are finite, it is sufficient to take g = F(u) and b= F(v). If
either F(u) or F(v) is equal to —e it is sufficient to allow a or & to tend to —
and (2.1) is obtained in both cases. =

It remains for us to consider the usual manipulations of convex functions.
The results, which are trivial, have been collected together in the following
proposition. In particular we infer from them that the set of convex functions
is a convex cone.

Proposition 2.2. (i) If F: ¥ — R is convex and if ) is a real positive number,
then \F is convex.

(ii) If F and G are convex functions from V into R, then F + G is convex. We
stipulate that (F + G)(u) =+ if F(u) = —G(u) = .

(iii) If (F))icq is any family of convex functions of V into R, their pointwise
supremum F = sup,_, F,; is convex.

Also, let us recall the concept of a strictly convex function.

Definition 2.3. Let & be a convex set of I and F a mapping of &« into R.
Fis said to be strictly convex if it is convex and the strict inequality holds in
@2.1),Vu,ve o, uvand Vie 0,1[.

2.2. Lower semi-continuous functions

We now pass on to topological properties, so F will be a real Lc.s. We
recall that a function F: ¥V — R is said to be lower semi-continuous on V (L.s.c.),
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if it satisfies the two equivalent conditions:

(2.8) VaeR, {ueV|F(u) <a} isclosed,

(2.9) YaeV, lim F(u) > F(a).

Naturally F will be called upper semi-continuous (u.s.c.) if —F is .s.c. Thus
for example the indicator function y(-) of a set & < V will be l.s.c. (or
u.s.c.) if and only if & is closed (or open). More generally, we can at once
state:

Proposition 2.3. A function F: V — R is Ls.c. if and only if its epigraph
is closed.

Proof. Let us define on ¥ x R a function ¢ by ¢(u,a) = F(u) — a. Then the
statements that Fis l.c.s. on V and that ¢ is L.c.s. on ¥ x R are equivalent to
each other. Now for every r € R, the section ¢([—cw,r]) is the set obtained
from epi F by the translation of vector (r,0) and it is therefore closed if and
onlyifepi Fisclosed. m

Let us further recall that a pointwise supremum of l.s.c. functions is L.s.c.
This then leads to the following definition: for every mapping F: V — R,
the largest l.s.c. minorant of F will be called the l.s.c. regularization of F and
will be denoted by F. It exists as the pointwise supremum of those Ls.c.
functions everywhere less than F, and is characterized by:

Corollary 2.1, Let F: V — R and F be its l.s.c. regularization. We have
(2.10) epi F = epi F,

(2.11) YueV, F(u) = lim F(v).

Proof. Since Fis a L.s.c. function everywhere less than F, epi F is a closed
set containing epi F, and hence epi F.

Conversely, epi F is an epigraph.> Let G be a function such that
epi G =epi F; it is a 1.s.c. function everywhere less than F, hence G < F and
epi G = epi F contains epi F. Thus (2.10) is proved and (2.11) follows directly
fromit. m

W If (4,a) € epi F, there exists a filter (4,,a,) € epi F which converges to (#,a). If b > a,
then for some suitable «, a. < & and since F(u,) < a, it follows that (4,,6) € epi F, and in the
limit («,b) € epi F.

The intersection of epi F with a straight line {i} x R is an empty set or an interval {a, + =[;
if we set G(u) = += in the former and G(x) = a in the latter case, we see that epi G=epi F.
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The case of convex functions assumes a special interest since lower semi-
continuity exists when the topology of V is weakened. This is an extremely
valuable property.

Corollary 2.2. Every l.s.c. convex function F of V in R remains l.s.c. when
V is supplied with its weak topology o(V,V').

In fact, the epigraph of F being convex, this is equivalent to saying that it
is closed and hence weakly closed (Cor. 1.4).

The case of l.s.c. convex functions which assume the value —c« (improper
functions) is more specialized :

Proposition 2.4. If F: V —R is a ls.c. convex function and assumes the
value —oo, it cannot take any finite value.

Proof. Let us suppose that there exists # € V a point such that F(&1) e R.
We then take a € R such that a < F(i1), and we strictly separate (i7,d) from
the closed convex set epi F. Then there exists a continuous non-zero linear
form ¢ over ¥ and B € R such that:

(2.12) ¥(u,a)e epi F, A7) + aa < Hu) + aa.

Taking u =@ and a = F(@), we get a(F(ii) — a) > 0, and hence « > 0. The
two members of (2.12) can thus be divided by «:

(2.13) VueV, €@ -u) +a < Fa),

which is impossible, since the first member is everywhere finite and the second
member takes the value —co at one point at least. =

2.3. Continuity of convex functions

The study of the continuity of convex functions is based on the following
lemma:

Lemma 2,1, If in the neighbourhood of a point u € V, a convex function F is
bounded above by a finite constant, then F is continuous at u.

Proof. We reduce the problem by translation to the case where ¥ =0 and
F(0) =0. Let ¥" be a neighbourhood of the origin such that F(v) < a < +
for all v of ¥. Let us define #" =¥~ N —¥" (which is a symmetric neighbour-
hood of the origin), and let us take £ ]0,1[. If v € &#", we have, due to the
convexity of F:

ig)e ¥, hence F(v) < (1 — &)F(0) + eF(v/e) < ea,

-—Ze ¥, hence F(v) 2 (1 + €)F(0) — ¢F(— v/e) 2 — ea
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Then |F(v)| < ea for every v in ¢¥# , whence we have the required
continuity. =

A general conclusion may be drawn:

Proposition 2.5. Let F: V — R be a convex function. The following state-
ments are equivalent to each other:

(i) there exists a non-empty open set © on which F is not everywhere equal to
—oo and is bounded above by a constant a < +w;

(ii) Fis a proper function, and it is continuous over the interior of its effective
domain, which is non-empty.

Proof. Ciearly (ii) implies (i). Conversely, if (i) is true, ® = dom F. Let us
take u € 0 such that F(x) > —eo, From Lemma 2.1, F will be continuous at ,
and hence finite in a neighbourhood of u, and hence proper. For eyery

ve dggh", there exists p > 1 such that w = u + p(v — u) also belongs to dom F.
The homothety /2 with centre w and ratio 1 — 1/p transforms u into » and @
into an open set h(®) containing v. For every v’ € h(0), we have by convexity:

p—1 -1 1

F(v') < > a+ —EF(w).

Foh~\(y) +%F(w) <2

To sum up: every point v € dom F possesses a neighbourhood A(0) where
F is bounded above by a finite constant. From Lemma 2.1, F is continuous
at v, which concludes the proof. =

We can use this result more precisely in numerous special cases—spaces of
finite dimension, normed spaces and barrelled spaces.

Corollary 2.3, Every proper convex function on a space of finite dimension is
continuous on the interior of its effective domain.
o

Proof. If dom F is non-empty, it contains »+ 1 affinely independent
points u;, 1 i< n+1, where n is the dimension of V. From the inequality
defining convexity, F is bounded above by maxX;¢;<n+1 F (1) over the open

set:
n+1
{ Y Ay
i=1

Corollary 2.4. Let F be a proper convex function on a normed space. The
Jfollowing properties are equivalent to each other:

n+1
Y A=1land 4,>0 Vi}.l

i=1

(i) there exists @ non-empty open set over which F is bounded above;
(ii) dom F+# @ and F is locally Lipschitz there.
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Proof. 1t is obvious that (ii) = (i). Conversely, if (i) is true, F is continuous
over cGr;\ F (Prop. 2.5). Taking u € dom F, for every r > 0 we define:
Blusr) ={v||v—u| <r}.
By the continuity of F at u, there exists an ry > 0 such that:
Yo e Blu;ry) —w<m<E F) £ M < + 0.
Let us now suppose that r € ]0,r,[, and let us take v, € #(u,r). Let us set
Gw) = Fw + vy) — F(vy),

5o that G(0) =0, and # = {w| w|| < ro—r}. Then G is bounded above by
M —m over W, and due to the proof of Lemma 1.1:
(2.14) Vee[0,1], Ywee¥, |G(w)| < e(M — m).

If fo—v,l[<ro—r, then w=v—v, € ¥, with ¢ =jv — vl{/{(ro — r), and
substituting back into (2.14):

M-—-m
(2.15) Yoe B(vy;ry — 1), [F(v) ~ F(v,)] < ro — 7 lo — vy
If finally v, € #(u;r), we take equidistant points uy =, 1, . . ., Uy_y,

u,=v, on the segment [v,,v,]< %(u;r), in sufficient number so that
llty ~ thy 1/l S g — rfor 1 €k < n From (2.15), we have

M-m
i

ro—’

[Fu,) — Flu,, 1)' < |u, — u“.l“ for 1<k<n

and by adding each member, we obtain the local Lipschitz condition:

M-m

v, and v, € Bu;r) = |F(o;) — F(o,)| < s lor —vaf. w

ro —

Remark 2.1. Clearly the above proof gives an estimate of the Lipschitz
constant for (ii).

Corollary 2.5, Every l.s.c. convex function over a barrelled space (in par-
ticular a Banach space) is continuous over the interior of its effective domain.

Proof. Let ue dgr_n\F, which is assumed to be non-empty. By a suitable
translation, we can shift u to the origin. Then let a> F(0). The set
% ={ue V|F(u)<a} is closed and convex. Also it is absorbent, since the
restriction of F to every straight line passing through the origin is continuous
in the neighbourhood of the origin (Cor. 2.3). Thus € N —¥ is a barrel and
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hence a neighbourhood of the origin. As Fis bounded by a over ¢, F is con-
tinuous at 0 (Prop. 2.5).

3. POINTWISE SUPREMUM OF CONTINUOUS AFFINE FUNCTIONS

3.1. Definition of I'(V)

As usual, ¥ is a real l.c.s. The affine continuous functions over V are
functions of the type v > £(v) + o, where / is a continuous linear functional
over ¥ and a €R.

Definition 3.1. The set of functions F: ¥—> R which are pointwise supremum
of a family of continuous affine functions is denoted by I'(V). I'o(V) denotes the
subset of F € I'(V) other than the constants +< and —o.

It follows immediately from this definition that all the functions Fe I'(V)
are convex and 1.s.c. Conversely:

Proposition 3.1. The following properties are equivalent to each other:
(i) FeI(v)

(i) Fis a convex Ls.c. function from V into R, and if F takes the value —x
then F is identically equal to —w.

Proof. Note that the pointwise supremum of an empty family is —o and
that if the family under consideration is non-empty, F cannot take the value
—co, Therefore we have (i) = (ii).

Conversely, suppose that F is a convex Ls.c. function of ¥ into R not taking
the value —o. If F is the constant +, it is the pointwise supremum of all the
continuous affine functions of ¥ into R. If Fe I'(V), for every i1 € V and for
every 4 < F(#Z) we will show that there is a continuous affine function of ¥
into R whose value at u is located between 4 and F(#%), which establishes
the result.

Now epi F is a closed convex set which does not contain the point (i, d).
We can strictly separate them by a closed affine hyperplane # of V' x R
with equation:

(3.1) H ={(ua)eV x R|€(u) + aa = B}

where ¢ is a continuous non-zero linear functional over ¥, « and f e R. We
thus have:

(3.2) A(B) + 0d < B
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(3.3) Y(u,a)eepi F, Au) + aa > B.

If F(3#) < + o, we can take » = and a = F(i1) which gives a(F(#) ~a) > 0
where o > 0. When (3.2) and (3.3) are divided by a, we obtain:

1

Y N _
(3.4) a<_ o‘f(u) < F(u).
. . p-—1 . .
The continuous affine function 2 E/(.) (whose graph is nothing other

than o) therefore answers the problem.

If F(it) =+, either & 0 and we are back with the preceding case, or
a=0. In this case, (3.2) and (3.3) mean that the continuous affine function
B —£()is >0 at 7 and <0 over dom F. The above case allows us to construct
a continuous affine function everywhere less than F, e.g. y — m(.). Then for
every ¢>0, y—m(.)+ c(f—¢()) is always a continuous affine function
everywhere less than F, and it only remains to choose ¢ sufficiently large so that

(3.5) y —m(@E) + c(f —¢(n) >a

3.2. I'-regularization

Definition 3.2. Let F and G be two functions of ¥ into R. The following are
equivalent to each other:

(i) G is the pointwise supremum of the continuous affine functions every-
where less than F;

(ii) G is the largest minorant of Fin I'(V'). G is then called the I'-regularization
of F.

We shall now show the equivalence of (i) and (ii). Let us call G, (or G,) the
pointwise supremum of continuous affine functions (or functions of I'(¥))
everywhere less than F. Then G, and G, belong to I'(V), as the pointwise
supremum of functions of I'(V), and G, < G,. Conversely, every continuous
affine minorant of G, is a function of I'(¥) everywhere less than F. By defini-
tion it must be less than G, everywhere. The functions G; and G, have the
same set of affine continuous minorants. As they belong both to I'(V), they
must coincide. =&

In particular, if ¥ € I'(V), it coincides with its I'-regularization. In general,
we can construct the epigraph of the I'-regularization as the closed convex
hull of the epigraph of the function.
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Proposition 3.2. Let F: V — R and G be its I'-regularization. If there exists
a continuous affine function everywhere less than F, we have:

epi G=Coepi F,

Proof. Let ¢ be a continuous affine function everywhere less than F. It is
easy to see that the closed convex set co epi Fis the epigraph of a convex l.s.c.
function G. Since

epi F< 6 epi F<epi ¢
wehave F > G > ¢, and therefore G € I'(V). If, finally, G’ < Fwhere G' e I'(V)

then epi G’ is a closed convex set containing epi F, and hence containing
O epi F=epi G, which meansthat G' < G. =&
Thus, for example, if &/ < ¥V, the I'-regularization of its indicator function
Y 18 none other than the indicator function of its closed convex envelope.
We may wonder what ordering relations exist between F, its I'-regulariza-

tion G and its Ls.c. regularization F as defined in Section 2. Corollary 2.1 and
Proposition 3.2 immediately give us the result:

Proposition 3.3. Let F: V — R, and G be its I'-regularization.
() GESF<F;

(ii) if F is convex and admits a continuous affine minorant, F = G.

4. POLAR FUNCTIONS
4.1. Definition

In this paragraph, as in those which follow, we shall designate by ¥ and V'*
two vector spaces placed in duality by a bilinear pairing denoted by {.,.).
The spaces ¥ and V* will be supplied with topologies o(V, ¥'*) and a(V*,V)
which render them l.c.s. and Hausdorff.

Let F be a function of ¥ into R. If ¥* € V* and « € R, the continuous affine
function u# — {(u,u*) — a is everywhere less than Fif and only if

VueV, a2 {u,u* ) — F(u),
or again:
4.1) a = F*u*)
if we agree to set

(4.2) F¥u*) = sup {{u,u*y - F(u)}.
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The consideration of the continuous affine minorants of F thus leads us to
define by (4.2) a function F*: V'* —R.

Definition 4.1. If F: V — R, formula (4.2) defines a function from V* into R,
denoted by F*, and called the polar (or conjugate) function of F.

It is obvious that in (4.2) we can confine ourselves to those u in dom F:
(4.3) F*(u*) = sup {Cuyu*)y — F(u)}
u€e dom

which enables us to see that F* is the pointwise supremum of the family of
continuous affine functions <{u,.> — F(u), for u € dom F, of V'* into R. We
therefore conclude that F* € I'(V*), and in particular that F is l.s.c. and
convex. Note that if F is the constant +w, dom F= @ and F* is the
constant —,

This immediately results in the following properties:

(4.4) F*0) = — in£ F(u);
ue
4.5) if F< G, we have F* > G*;
i J¥ = o
“9 Gaf F" = sgp FEs

op £ < i,

Jor every family (F}), <y of functions over V',

4.7 (AF)*(u*) = AF*(u*/4),
Jfor every 4> 0;
4.8) (F + a)* = F* — a,

for every a € R;

(4.9) for every a € V, we denote by F, the translated function F(v) = F(v — a).
Then

(F)*(u*) = F*(u*) + (a,u* ).

4.2. Bipolars. Dual convex functions

We can repeat the process, thereby leading to the bipolar F**, which is now
a function of ¥ into R:

(4.10) F**(y) = sup. {{u,u*)y — F¥u*)}.
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From the above, F** e I'(V), and we can compare F and F**, which are
defined over the same space. The result is as follows:

Proposition 4.1. Let F be a function of V into R. Then its bipolar F** is none
other than its I'-regularization. In particular, if F € I'(V), F** = F.

Proof. By definition, the I'-regularization of F is the pointwise supremum
of all continuous affine minorants of F. We can restrict ourselves to those
which are maximal, i.e., from (4.1), those functions:

(4.11) u = {u,u*y — F*u*)

But their pointwise supremum is none other than F**, from (4.10). Whence
the result. m

The repetition of this process is limited:
Corollary 4.1. For every F: V — R, we have F* = F***,

Proof. As F** is the I'regularization of F, we have F** < F, and so from
4.5):

F* < F***.
Alternatively, from (4.10), for every u e C:
Cub,u)y — F*¥(u) < FHu?)
whence
F***(u*) = sup {Cu® u) — F**(u) } < F*u*).
Weé have seen that Fe I'(V) if and only if F** = F, We thus arrive at the
following definition:

Definition 4.2. The polarity establishes a bijection between I'(V) and I'(V'*).
FeI'(V)and G e I'(V*) are said to be in duality if they correspond in the
bijection:

4.12) F=G* and G=F*

The constants £+ on V and +o on V* are in duality. Thus Fe I'y (V) if
and only if F* € I'y(V'*): the polarity establishes a one-to-one correspondence
between I'o(V) and I'g(V*).
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4.3. Examples

Let & be a subset of ¥ and yx,, its indicator function. Let us seek its polar:
1Au®) = sup {Cu,u* ) — g, () }

X(u*) = sup Cuu* ).

It is a convex function, Ls.c. and positively homogeneous on V'*, termed the
support function of of . We have seen in Section 3 that y*¥= y . In particular,
& and TO6 & will have the same support function.

Here is an extremely useful example of dual convex functions. We will take
for V a normed space, for V* its topological dual, and denote by |i.]| the
norm of V and by ||. ||, the norm of ¥*. Then V and V* are in duality and we
supply them with the weak topologies o(V, ¥*) and o(V'*, V).

We take an even function ¢ € I'o(R) and we call ¢* its conjugate convex

function which also belongs to I'(R). Then we define F: ¥ —R and
G:V* >Rby:

Fu) = o(|u])
Gu*) = o*(|u*|,)
Proposition 4.2. Under the above hypotheses, F and G are dual.

Proof. 1t is obvious that Fe I'y(V) and G € I'o(V*). It is thus sufficient to
prove that F* = G. To do this, we write:

Fr*) = Sup {Cu*,u) — o(|u])}
= Sup Sup {Cur,uy — o(ful)}
= Sup gut“ﬁ;*ll* — o)}
= (as @ is even)
= Sup {¢[u*], — o)} = o*(Ju*],)
Remark 4.1. Let a, a* € )1, o[, satisfying
1a + lja* = 1.

1t is easy to verify that the functions
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belong to I'o(R) and are conjugate. We therefore deduce that
1 1
Fu) ==|ul* and  Glu*) =— |u*|¥
o o
are conjugate convex functions. =

Remark 4.2. Proposition 4.2 is no longer valid if ¢ is not even. In that case
we have

FHu*) = oi(|u*],) = o3([u*],).
where @¥ is the conjugate function of the function ¢, defined by (i = 1, 2):

@4(t) = e(lel), teR,
@,(t) = + o, t <0, ?a(t) = olt), t20 @
Remark 4.3. More generally, Proposition 4.2 is valid under the following
hypothesis:
for all m > 0, the function ¢t — ¢(¢) — m¢t attains its
minimum at a point 72> 0.

This condition is satisfied if ¢ is even or equally if ¢ >0 and ¢(0)=0. =

5. SUBDIFFERENTIABILITY

5.1. Definition

Henceforth V will designate a l.c.s., V* its topological dual, {., .)> the
bilinear canonical pairing over ¥ x V* and F a mapping of ¥ into R. We shall
say that a continuous affine function ¢ everywhere less than Fis exact at the

point u € V if /(u) = F(u). Necessarily, F(u) will be finite and ¢ will have
the form:

£(v) =<v—uu*d> + Fu
={v,u*) + F(u) — {u,u*).
Necessarily ¢ is maximal: its constant term is the greatest possible, whence:
(5.1) Fu) — Cu,u* > = — F*(u*).
Definition 5.1. A function F of V into R is said to be subdifferentiable at the
point u € V' if it has a continuous affine minorant which is exact at u. The slope

u* € V* of such a minorant is called a subgradient of F at u, and the set of
subgradients at u is called the subdifferential at u and is denoted 8F(u).
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If Fis not subdifferentiable at u, we have 0F (1) = @ . We have the following
characterization:

5.2) u*€dF(u) ifandonlyif F(u) isfinite and
{v—u,u*y + F(u) < F(v), VveV

If ¢ is a continuous affine function bounded above by F, £ is everywhere
less than F**, the I'-regularization. If, furthermore, £(u) = F(u), we obtain
£(u) < F**(u) < F(u), whence ¢£(u) = F**(u), from which these results follow:

(5.3) if 0F(u) # &, F(u) = F**(u),
(5.4) if F(u) = F**(u), OF(u) = F**(u).

We now have a direct consequence of this definition; it already makes us
anticipate the role of subdifferentiation in optimization problems:

(5.5) F(u) = miyn F(v) ifandonlyif O0edF(u).
We will now bring in polar functions. We take from (5.1) the following
characterization:

Proposition 5.1. Let F be a function of V into R and F* its polar. Then
u* € OF(u) if and only if:

(5.6) F(u) + F*u*) = {u, u* ).

Proof. The necessary condition has been established in (5.1). Conversely,
if (5.6) is satisfied, the continuous affine function

Cot* D+ Fu) — Cu,u*)

is everywhere less than F (since its constant term is equal to —F*(u*)) and is
exactatu. W

Corollary 5.1. The set OF (u) (possibly empty) is convex and o(V*,V)-closed
in V*,

Proof. By the definition (4.2) of F*, we always have
F*u*) — (u,u* ) 2 — F(u).
Then Proposition 5.1 can be written:
OF(u) = {u* e V*|F*(u*) — Cuu* ) < — F(u)}

and the second term is closed and convex since F* € I'(V*). =
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Corollary 5.2, For every function F of V into R, we have

(5.7) u* € 0F(u) = u e dF*(u*).

If, furthermore, F € I'(V) we have

(5.8) u* € 0F(u) <> u € 0F*(u*).
Proof. Since F** < F, if u* € 0F (u), (5.6) entails that:
(5.9) F**u) + F*(u*) < (u,u* ).

Since the inverse inequality is always satisfied, (5.9) is in fact an equality,
which means that « € 0F*(u*).

If Fe I'(V), F** =F, and (5.8) therefore is a result of (5.7). =

For convex functions, we have at our disposal a very simple criterion for
subdifferentiability:

Proposition 5.2, Let F be a convex function of V into R, finite and continuous
at the point ue V. Then 0F(v)# & for all vﬁm, and in particular
OF(u)# ©.

Proof. Since Fis finite and continuous at u, it is bounded above in a neigh-

bourhood of u and so is finite and continuous at each point of dom F (Prop.
2.5). Thus it is sufficient to show that 0F(u) # & .

Since F is convex, epi F is a convex subset of ¥ x R. Since F is continuous,
the interior of epi F is non-empty. To understand this, we need only take an
open neighbourhood 0 of u over which Fis bounded above by the constant
c e R: the set @ x ]c, +o[ is an open subset of V' x R contained in epi F:

Since (4, F(u)) belongs to the boundary of epi F, we can separate it from
épi F by a closed affine hyperplane (Cor. 1.1). We thus obtain a supporting
hyperplane o of epi F, containing (u, F(u)). Let us write its equation:

H ={(@a)eV x R|{v,u*) + aa = B} where u*e V'* a and feR
where the coefficients, not all zero, are linked by:
Y(v, a)eepi F, {v,u*> +aa > P
Cu,u* > + aF(u) = .
If & =0, we will have (v —u, u*> > 0 for all v in dom F, whence u*=0

since dom F is a neighbourhood of u. We thus have a> 0, and dividing

through by a:
Vvedom F, Eﬁ—<v,u*/a) < F(v)

B Cuurpay = P
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Finally,
YoeV, (v —u, — u*fu ) + Flu) < F(v)
which proves that —u*/« € 0F(u), which is therefore non-empty. =

Remark 5.1. Corollary 6.1 below shows that a proper l.s.c. convex function
F defined on a complete normed space is subdifferentiable ““almost every-
where” (more precisely, over a dense subset) inside dom F.

5.2. Relation with Giteaux-differentiability

We shall now complete our demonstration that, at least in the context of
convex functions, subdifferentiability constitutes a generalization of
differentiability.

Definition 5.2. Let F be a function of V into R. We call the limit as 1—~0,,
if it exists, of
F(u + Av) — F(u)
A

the directional derivative of F at u in the direction v and denote it by F'(u;v).
If there exists u* € V'* such that:

(5.10)

YveV, Fu;v) = {v,u*>

we say that F is Gdteaux-differentiable at u, call u* the Gdteaux-differential
at u of F, and denote it by F'(u).

The uniqueness of the Gateaux-differential follows directly; it is charac-
terized by:

(5.11) Yoe v, lim £+ 40 = Fl)

A—=04 A

= (o, F'u) .

The case of convex functions is particularly interesting since the expression
(5.10) is in that instance an increasing function of A. Thus, when 4 — 0,, rhis
expression always possesses a limit, which, however, can be +. We will show
that essentially the case of Giteaux-differentiability is the same as that of the
uniqueness of the subgradient.

Proposition 5.3. Let F be a convex function of V into R. If F is Gdteaux-
differentiable at u e V, it is subdifferentiable at u and 0F(u) = {F'(u)}. Con-
versely, if at the point ueV, F is continuous and finite and has only one
subgradient, then F is Gdteaux-differentiable at u and 0F (u) = {F'(u)}.
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Proof. If F is Giteaux-differentiable at w, it is obvious that F'(v) € 6F(u); if
indeed v € ¥V and w = v — u, we have

Flu +w) — Fu) 2 Fu,w) =<{w, F(u))
F(v) — F(u) = (v — u, F'(u) ).

Alternatively if u* € 0F(u), we will have for all we Vand all A > 0:
F(u + Aw) — F(u) 2 A{w,u*)
on dividing through by 1 and passing to the limit we get:

(w, Fl(u) ) 2 (w,u* )
Cw, Fi(u) — u*> 2 0,

Since w is any point of V, u* = F'(u).
Let us turn to the converse. Since F is convex, we have for all vin V:

YieR, F(u) + AF'(u;v) < F(u + Av).

Geometrically, this means that in ¥ x R, the straight line:

& ={(u+ iv, F(u) + AF'(u;v))|AeR },

does not pass through the interior of epi F. But €pi F is an open convex set
since epi F is convex, and it is non-empty since F is continuous and finite.
From the Hahn-Banach theorem, there is a closed affine hyperplane #’

containing . which does not intersect m. It is easy to see that ¢ is the
graph of a continuous affine function everywhere less than F and exact at u.
Since the subgradient u* of F at u has been supposed unique, the slope of 3¢
is u* and since o contains &;

F(u;v) = (v, u*)
which proves that F is Giteaux-differentiable at u with differential u*., =

The convexity of a Gateaux-differentiable function may be characterized in
the following way:

Proposition 5.4. Letr F be a Gdteaux-differentiable function of o <V,
& convex, into R. Then the following are equivalent to each other:

(5.12) Fis convex over of

(5.13) F(v) = F(u) + ( F'(u),v — u ), Vu,ved.
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Similarly, the following are equivalent to each other:
(5.14) F is strictly convex over of

(5.15) F(v) > F(u) + { F'(u),v — u ) Yu,vesd,u # v.

Proof. From the preceding proposition, (5,12) implies (5.13). Conversely,
the inequality (5.13) written with u and (I — )u+ Av(u,ve &,1€ 10,1])
necessitates

(5.18) Fu) 2 Flu + Mv —u)) + L{F'(u + Av — uw),u — v
Similarly,

(5.19) F(o) > Flu + Av —u)) + (1 = H Fu + Mv —w),v — ud.

By multiplying (5.18) by (1 — 1), (5.19) by A and adding the inequalities, we
obtain:

F((1 — Au + A0) < (1 — HF(u) + AF(v).
To show that (5.14) implies (5.15) we note that, as in Proposition 5.3,
Fu + AMv — u)) < (1 — A)F(u) + AF(v),
if u,v € o and 4 €]0,1[. Whence, F being convex:

(F,v —u) < F("+'l(”;u))—F(u)

To show that (5.15) implies (5.14) we proceed as for the convexity, noting
that (5.18) and (5.19) are strict inequalities if u #v. B

< F(v) — F(u).

The convexity of a function is expressed by the monotonicity of its Giteaux-
differential :

Proposition 5.5. Let F be a Gdteaux-differentiable function of o <V,
& convex, into R. It will be convex if and only if its differential F' is a monotone
mapping of Vinto V*, i.e. if:

(5.20) VYu,and u, eV, {uy —uy, F'(uy) = F'(u,)> 2 0.

Proof. From Proposition 5.3, if F is convex, F'(u,) and F'(u,) are the
subgradients of F at 4, and at u,:

Qup — uy, F(uy) > + Flu,y)
Cuy — U,, F'(uy) > + F(uy)

Adding these terms together, we obtain (5.20).

F(uy)
F(u,).

AN
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Conversely, if F is Giteaux-differentiable and if F’ is monotone, for all u
and v in ¥, the function ¢ of [0,1] into R defined by

#(A) = F(u + Mv — u))
is differentiable with derivative:
$'(N)=<v~—uFu+ v —u)d.

But, because of (5.20), ¢’ is increasing: thus ¢ is convex over [0,1] and in
particular

$(4) < (1 — 4)4(0) + A4(1), vie[o, 1],
which is the desired inequality:

F(1 = Au + Av) < (1 — A)F(w) + AF(v), vie[0,1]. m

5.3. Subdifferential calculus

It only remains for us to examine to what degree the ordinary differential
calculus can be extended into a subdifferential calculus. Some results follow
directly:

’ let F: V >R and 1. > 0. At every point u e V, we have
5.21
( ) O(AF)(u) = 1 0F(u),

let F, and Fy: V — R. At every point u € ¥V, we have
(5.22) '

O(F, + F,)(u) = 0F (u) + OF ,(u).

The equality in (5.22) is far from being always realized. Here, however, is a
simple case where it holds:

Proposition 5.6. If F, and F, € I'(V), and if there is a point ii € dom F; N
dom F, where F, is continuous, we have:

(5.23) YueV, 8(F, + F,)u) = 8F ,(u) + 0F ,(u).

Proof. We have to show that the inverse inclusion of (5.22) is true, that is,
that each u* € a(F, + F,)(u) can be decomposed into u¥ + u¥, with u¥ € 0F,(u)
and u% € 0F;(u). Our hypothesis is that F; and F, have finite values at # and
that

(5.24) Yve 'V, Fiv) + Fyl0) 2 v —uu*) + F (u) + F,(n).
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Consider the convex setsin V' x R:
C,={(wa|F,lv)—<v—uu*)>—F(u)<a}
C, ={(v,a)|a < Fyu) = Fyv)}.

The inequality (5.24) implies that they only have boundary points in
common. But C, is the epigraph of the function G:

G(v) = F,(v) — {v,u*) — Fu) + Cu,u*>

which is convex and continuous at % Thus C, is a convex set with a non-empty
interior. We can thus separate €, and C, by a closed affine hyperplane #
(Cor. 1.1). It is easily verified that 3 is “non-vertical” (see Prop. 5.2) and is
thus the graph of a continuous affine function.

v - {v,v*> + « where v*eV* and aeR.
The separation can be written:
Fy(u) — Fylo) < Co,0%> + a < F(0) = <v = w,u* ) — F,(u),
Yoe V.
In setting v = u, we obtain o = —{u,v*), and therefore:
Yve ¥V, (v —u, —v*) + Fy(u) < Fyv)
YoeV, (v —uu* +v*) + F(u) < F,(v)

Hence —v* € 0F,(u) and u* + v* € 9F,(u). Whence we have the desired
decomposition, u* = u¥ + u¥, withuf =u*+v*and u¥ =—v*. n

Finally, after considering the subdifferential of a sum of functions, let us
examine the subdifferential of a composite function. We take two l.c.s. ¥ and
Y with topological duals ¥* and Y* and a continuous linear mapping
A: V — Y with transpose A*: Y* — V*, Let Fe I'(Y); the function Fo A:
¥V — R belong to I'(V).

Proposition 5.7. Let there be a point Ail where F is continuous and finite.
Then for all points u of V, we have

(5.25) O(F © A)u) = A* dF(Au).
Proof. Let p* € dF(Au). By definition:
VpeYy, {p — Au,p* > + F(Au) < F(p)
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and a fortiori:

YoeV, {Av — Au,p* > + F 0 A(u) < F 0 A(v)
YveV, {v—u, A*p* > + Fo A(u) < Fo Av).
Thus A*p* € 3(F o A)(u) which proves that:
(5.26) A* OF(Au) = O(F O A)u).
Conversely, take u* € 0(F o A)(u).
(5.27) Yoe v, {v—uu*d> + FO A(u) € F 0 A(v).

Let us consider the affine subspacein ¥ x R.
&L = {(Adv,{v —uu*) + FoA)|veV}.
The inequality (5.27) shows that % and epi F only have boundary points in
common. Since F has been assumed to be convex and continuous at Az,
e?i\F # &, and there is a closed affine hyperplane 5# containing £ which
does not intersect @. As usual, 3 is non-vertical, and therefore is the
graph of a continuous affine function of ¥ into R:
p > {p,p*> + 0, where p*eY* and acR.
Since J contains &:

VveV, {Av,p* > +a=<v—uu*) + F 0 Au)
(5.28) a=FoAu) — {uu*)
(5.29) YveV, { Av, p* >—<vu*>
Thus u* = A*p*. Finally, since # does not intersect ep1 &pi E:
Vpet, {pp*)> + F oA — (u, A*p* ) < F(p)
(5.30) Vpey, {p— Au,p* > + F 0 A(u) < F(p).
Thus p* € 0F(Au). Whence the desired result: u* = A*p* € A*9F(Au), and
(5.31) F O A)u) = A* 0F(Au). W

6. ~SUBDIFFERENTIABILITY

Henceforth we shall assume that ¥ is @ Banach space.

6.1. An ordering relation over ¥V X R

Let us take a number » > 0, and consider in ¥ x R the closed convex cone
%(m), with non-empty interior, defined by:
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6.1) F(m)= {(u,a)eV x R|a +mfu|] <0}

We can associate with it an ordering relation over ¥ x R for which it will
be the cone of positive elements. We shall denote if by <. By definition:

(6.2) (u,a) < (v,b) = (v — u, b — a)e €(m).
Proposition 6.1. Let S be a closed subset of V x R such that
(6.3) inf{a|(u,a)eS} > — c0.
Then S has a maximal element for the given ordering.

Proof. 1t is sufficient to show that every totally ordered family of S has an
upper bound in S; the conclusion will then follow from Zorn’s lemma. Hence
let (a;,u;); .1 be a totally ordered family of S, and & the filter over S formed
by its starting sections:

(6.4) Ae F «3Jiel: A>{(a,u)|j=i}.

The family (a;);; is decreasing by (6.1) and, from (6.3), it is bounded. It is
thus convergentin R, and from the inequality which defines the given ordering:

(6.5) m|u, — uf <|a; — a;] vijjel

we deduce that & is a Cauchy filter over ¥ x R. It therefore converges to a
limit (a, ) which belongs to S since the latter is closed.

It only remains to show that (4,#) is the required maximal element. For
this we take any i € 7 and write the inequality

(6.6) (a,—a)+ mlu, —uf <O Wi
and, passing to the limit in j:
(6.7) @—a)+ mlu—ul <o

Thus (a,%) > (a;,u;) for all i, which establishes the result. =&

6.2. Application to non-convex functions

Let F be a mapping of V into R with —ew < inf F < 4. To say that
F(u) = inf F amounts to saying that 0 is the subgradient of F at u. We can
enquire what property of differentiability is related to the fact that
Fu)<inf F+e.

Theorem 6.1. Let F be a Ls.c. function of V into R, with —o < inf F <+,
and let there be a point u where

(6.8) F(u) < infF + e.
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For all > 0, there is a u, € V such that
(6.9) u—u,| <A and F(u;) < F(u)
(6.10) épi F  { (u,, F(u,)) + €(e/4) } = (uy, F(u,)).

Proof. Let us apply Proposition 6.1 to the closed set S=epi F, for the
ordering relation associated with the cone %(¢/A). There is a maximal element
(a;,u;) which is greater than (F(u),u). Since (a;,u;) is maximal, @, = F(u,)
and (6.10) is satisfied.

To verify (6.9), we simply write (F(u),u) < (F(u,),u,):

&
7w —w | < Flu) = Fluy).
The second term is bounded by ¢ due to (6.8). Whence we obtain (6.9). =

To understand this proposition more clearly, we may note that if F is
furthermore Gateaux-differentiable, condition (6.10) implies that, forallv € V:

(6.11) vte[0,1], Flu}) — f to]| < Flu, + to)

(612) £ ol < < Flagho
whence it immediately follows that:

(6.13) [Fu)l, < e/h

If we further specify that 1 be /€, we obtain the following more striking
corollary:

Corollavy 6.1. Let F be a Gdteaux-differentiable l.s.c. function of V into R
and u a point where:

(6.14) F(u) <infF + €.
Then there is a point v such that:

(6.15) F(v) < F(u)

(6.16) lu — o < Ve

(6.17) IF @), < Ve

6.3. Application to convex functions

Let ¥ still be a Banach space, ¥'* its dual, F e I'y(V) and F* its polar. We
know (definition of F*) that inf {F(u) + F*(u*) — (u,u*)} > 0. If the minimum
is attained for a pair (u,u*), then u € 9F*(u*) and u* € 0F(u). Otherwise, we
arrive at the concept of e-subdifferentiation.
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Definition 6.1, We call the set of u* € V* such that:
(6.18) 0 < F(u) + F¥(u*) — (u,u* ) <¢
the e-subdifferential of F at the point u € V, and denote it by 9,F(u).
The relation (6.18) being symmetrical in u and u*
u* € 0, F(u) <> ued, F*(u*).

This also implies that the function » — (v — u,u*)> + F(u) — ¢ is bounded
above by F. We immediately deduce from this that, for all ¢ >0, 8.F(u) is
non-empty if and only if F(u) is finite. The sets 0,F(u) decrease with ¢ and their
intersection for & > 0 is the subdifferential 0F(u).

The principal result concerning g-subdifferentials is the following:

Theorem 6.2, Let V be a Banach space and V* its topological dual. Let
FeT'yV), F* its polar, ue V, u* € V* with u* € 0,F(u). For all >0, there
exists u, € V and u* € V* such that

(6.19) lu—u, <4, lu* — ut| < e/4,
(6.20) u* & OF{u,).

In particular (J. = +/¢), if u* € 8,F(u), there exists u,€ V and u¥ € V* such
that

(621) lu—u|<ve  Jut—u]<Ve
uf € 0F(u,).

Proof. Consider the function over V

(6.22) G(v) = F(v) — (v, u* ) + F*u*).

By hypothesis (6.18), we have G(u) < inf G + ¢.
We can thus apply Theorem 6.1 to G.
There exists 4, € ¥ such that

(6.23) lu —u,l| <4
(6:24) epi G N { (u, G(w,)) + Be/4) } = (4, G(u,)).

For greater simplicity, we shall denote by %, the cone (u;, G(u,)) + ¥(¢/4)
in VxR, It is a closed convex set with non-empty interior and epi G is a
closed convex set. From (6.24) and the Hahn-Banach theorem, we can
separate %, and epi G by a closed affine hyperplane # of ¥ x R with equation:

(625 (v, h*> +ar+b=0, h*eV* a and beR
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Since €, is closed and convex, it is the closure of its (non-empty) interior
and so S also separates 4, and epi G. We cannot allow a = 0 in (6.25) other-
wise {v,h*> + b would keep a constant sign over 4, from which we would
conclude that h* =0 and b= 0. We can thus restrict ourselves to the case
where a = 1, which gives us

(6.26) {v,h*> +r+b 20 Y(v,r)eepi G
(6.27) Co,h* > +r+b <0 Y(v,r)e¥,.

Because of (6.24), the inequalities (6.26) and (6.27) are equalities at the
point (u,, G(u,)), which gives us:

(6.28) b= — (u, h*> — G(uy).
The relation (6.27) can then be written:

(6.29) {v—u,h*>+r—Glu,) <0 Y(v,r)e¥,.
Returning to the definition of 4 :
(6.30) {wh*> +s5<0 Y(w, s) € 6(e/A).
Thus, taking s = —¢/4, and returning to the definition (6.1) of (&/4), we get:
(6.31) Sup {w, h*> < efd
(6.32) h*]l, < &/A.
It only remains to put uf = u* — h* € V*. From (6.32) we obtain:
(6.33) fu* — ufll, < /4
and by substituting (6.22) and (6.28) into (6.26):
(6.34) VueV, (o, h* ) + Glv) = Cug h* ) — Glu,) 20
(6.35) YveV, F(v) — F(u)) — (v —uur> = 0.

But the latter demonstrates that u} € 8F(u;), and so concludes the proof. =

Corollary 6.2. Let V be a Banach space, and F € I'(V). The set of points
where F is subdifferentiable is dense in dom F.

Proof. Let up € dom F and ¢ > 0 be fixed; since F= F**,

Flug) = Sup [Cutp, u*> = FHut)],
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and there exists u¥ € V' * such that:
Cug,ug > — F*ug) = Fluo) — ¢,

that is u¥ € 0,F(u,). Applying Theorem 6.2 with A = 4/¢, we deduce that F is
subdifferentiable at a point u, € ¥ such that |u, — u,| < +/¢.



CHAPTER II

Minimization of Convex Functions and
Variational Inequalities

Orientation

In this chapter we give some simple results related to the minimization of
convex functions: the existence of the minimum, the characterization of
solutions, etc. We also give analogous results for variational inequalities.

1. A RESULT CONCERNING EXISTENCE

We recall that a Banach space is reflexive if its unit ball is compact in the
weak topology. This implies that every bounded sequence admits a weakly
converging subsequence. Hilbert spaces and LP spaces (I <p < ) are
reflexive.

Let V be a reflexive Banach space (with norm || [) and € a non-empty
closed convex subset of ¥. We take a function F of % into R and we assume
that

(1.1) Fis convex, l.s.c. and proper.

We are concerned with the minimization problem

(1.2) In(gf F(u).
Any element u € € such that:
(1.3) F(u) = In(gf F(v)

is termed a solution of the problem.

In certain cases it is preferable to replace the problem (1.2) by a minimization
problem throughout the space ¥; for this the function F: ¥ — R is associated
with F and with the convex set %:

F(u) if ueé%,
+ o0 if ué¢é®.

It is obvious from I1(2.1) and I(2.9) that F is convex and l.s.c.; moreover,
the problem:
(1.5) Inf F(u)

ueV

34

(1.4) Flu) =
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is identical with the problem (1.2): the infimum is the same, as well as the set
of solutions.

Proposition 1.1. The set of solutions of (1.2) is a closed convex set (<€)
which is possibly empty.

Proof. Apart from the trivial cases where the infimum in (1.2) (denoted
by «) is equal to + o, we notice that the set of solutions of (1.2) is:

{ueV|Fu) <a}
and the result follows from 1(2.3) and I(2.8). =
A simple criterion for the existence of solutions is the following:

Proposition 1.2. Let us assume, in addition to (1.1), that
(1.6) the set % is bounded,

or that the function F is coercive over %, i.e. that:
(1.7) lim Fu) = + o0, for ue®, |u| - .

Then the problem (1.2) has at least one solution. It has a unique solution if the
Sfunction F is strictly convex over €.

Proof. Let u, be a minimizing sequence of (1.2), that is, a sequence of
elements of € such that:

F(u,) - in(g F(v) = a.

Note that a belongs a priori to [—o, +o[; we will see from what follows that
o # —oo, The sequence u, is bounded in V: in the case of (1.6) this results from
the fact that the set ¥ is itself bounded, and in the case of the hypothesis (1.7)
this results from the fact that the sequence F(u,) is bounded above. Thus we
can extract from u, a subsequence u,, which converges weakly in ¥ to an
element u belonging to €. From Corollary 1.2.2 Fis Ls.c. on % for the weak
topology of V, and hence:

F(u) < lim F(u,) =«

u is a solution of (1.2) and a # —x.

If two different solutions u, and u, exist, then from Proposition I.1,
(1, + u,)/2 is also a solution; if F is strictly convex this is impossible as in
that case:

F(il—;——u—z) <%(F(u1) + Flu))=o
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Remark 1.1. Let a(u,v) be a continuous bijlinear form over ¥V, coercive in
the sense that
(1.8) a(v,u) = a||ul|* YueV, with o> 0.

Given £ € V'*, there exists a unique u which achieves the minimum over € of
the functional:

(1.9) F(v) = a(v,v) — 2%, v).

This is a direct consequence of the proposition; we need to verify that the
function

v~ alv, v)
is strictly convex. Now, from (1.8), a(v — w, v — w) > 0, whence
(1.10) 2a(v, w) < a(v, v) + a(w, w),
and for A€ 10,1[:
a(dv + (1 — Aw, v + (1 — )w)

= A2a(v, v) + 241 — A)a(v, w) + (1 — 1)*a(w, w)
< Aa(v, v) + (1 = Aalw, w),

and the equality is only possible if there is equality in (1.10), that is, if v = w.
For the coerciveness (1.7), we write:

(L1)  F@) = a(e0) = 2<60) > alol® = 2], o]
4
>3 of? - = 112
(I.llx = the norm in V*).

When € is bounded, (1.8) can be replaced by
(1.12) a(u, u) 2 0, YueV. B

2. CHARACTERIZATION OF SOLUTIONS

We wish to characterize the (or a) solution of (1.2) when the function F is
differentiable or is the sum of a differentiable function and a non-differentiable
function.

Proposition 2.1. We assume that the function F satisfies (1.1) and is G4teaux-
differentiable with continuous derivative F’.
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Then if u € €, the following three conditions are equivalent to each other:

2.1 u is a solution of (1.2),
(2.2) {F{uyv—uyz0 Vve4®,
2.3) (Fl)v—-—ud>=20 Yoe®.

Proof. (a) if u achieves the minimum in (1.2), then for any v €% and
A€]0,1],

F(u) < F((1 — Au + Av),
whence
(2.4) = [Flw + 2o - w) - Fw)] > 0,
When we take the limit as -0, the first term in (2.4) converges to
(F(uhv —u)
and we indeed obtain (2.2).
Conversely if u satisfies (2.2), then forv € € and A € ]0, I{
F(v) — Fw) 2 3 [F((1 ~ Au + do) — F(w)].
Taking the limit as A = 0, we find:
(2.5) F(v) — F(u) 2 ( F'(u),o —u) 20,

which shows that u is a solution of (1.2).
(b) We shall now show that (2.2) is equivalent to (2.3). F’ is a monotone
operator of Vinto V'’ (Prop. 1.5.5):

(2.6) {F(v) ~ F(uyv —u) 20, Yu,veV.

If in particular u satisfies (2.2), by adding (2.2) and (2.6) we see that u satisfies
3).
(2If)u now satisfies (2.3), by taking v=(1 - Du+iw, we ¥, L 10,1, we
find that:
ACF((1 — Au + Aw),w —u)> 20
(2.7) CF(u+ Aw—u))w—ud>20.
The function A — {F'(u+ A(w — u)), w — u)> is the derivative of the scalar

function A — F(u + A(w — u)); it is continuous and hence, when 4 — 0, (2.7)
requires (2.2):
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(F'(uw—u)2=0, Ywe¥. 1

Remark 2.1. For the situation described in Remark 1.1, the differential of
the function Fis given by:

(F (o) =2{a(u,v) - {Luv)}, YveV,

and thus the fact that u achieves the minimum of (1.9) in € is an equivalent
condition to each of the following: u € € and

(2.8) a(u,v —u) — {L,v —u) =0, Yved4,
or
(2.9) a(v,v —u) — {f,v —u) =0, Vved.

Proposition 2.2, Let us assume that F=F, + F,, F; and F, being ls.c.
convex functions of % into R, F; being Gédteaux-differentiable with
differential F;.

Then if u € €, the following three conditions are equivalent to each other:

(2.10) u is a solution of (1.2),
(2.11) (Fy(u),v — ud + Fy(v) — Fy(u) 20, Yve ¥,
(2.12) {Fi(v),v — u) + F,(v) — F,(u) 2 0, Yve¥.

Proof. (a) If u achieves the minimum in (1.2), then:
F(u) < F((1 = A)u + Av), Vve¥, Vie]0, 1],
and using the convexity of F,,
Fi(u) + F(u) < F((1 — Au + Av) + (1 — AF ,(u) + AF,(v),
—}:[Fl((l — Nu + Av) — F ()] + F,(v) — F,(u) 2 0;

making A tend to zero, we obtain precisely (2.11).
Conversely if u satisfies (2.11), then by the convexity of F; (¢f. (2.5)), we
find that:

F(v) — Fy(u) — ( Fy(u),v —u) >0, Yveé¥,
which when combined with (2.11) yields:
F(v) — F(u) 2 0, Yved,

and u is a solution of (1.2).
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(b) From the monotonicity of Fy:
(Fyv) — Fi(u),v —u)> 20,

and adding this inequality to (2.11) we obtain (2.12). Conversely if u satisfies
(2.12), then as in Proposition 2.1, taking v =(1 — Du+ iw, we €, 1 € 0,1,
we find that:
ACF (1 — Mu + Aw),w ~u ) + Fo((1 — Au + Aw) — F,(u) > 0;
by the convexity of F,:
ACFU(I — Au + Aw),w — ud> + AF,(w) — AF,{u) > 0.
Dividing by 4 and letting A — 0, we obtain (2.11) with v replaced by w. =

Remark 2.2. Proposition 2.2 clearly contains Proposition 2.1.
Example: Proximity mappings

We shall assume for this example that ¥ is a Hilbert space (with scalar
product ((., .))), and that ¢ is a proper L.s.c. convex function of Vinto R.‘V Let:

F=F, +F, F(u) = olu),

Fi(u) = §|u— x||? x € V given.
Since the function F, is strictly convex and Ls.c. (Remark 1.1), it is obvious
that F is strictly convex Ls.c. Moreover, the function F is coercive (property

(1.7)) over V: indeed, since ¢ € I'o(¥), ¢ is bounded from below by a con-
tinuous affine function which can be written:

((y,u) + a, o€ R,
whence
Flu) > 3 u — x> + (5, u)) + «
Fu) > §lu+y = x| = 3y — x||* + §lIx]* + o,

and we deduce that F(u) — +o for |ju|| — w, ue V.
Thus we can apply Proposition 1.2 with & = V: there is a unique element
u of ¥V which achieves the minimum of:

Fo) = zllo = x[* + ¢(v).

Proposition 2.2 implies that u is characterized by one or other of the following
conditions:

1 g e Iy(V) in the terminology of Chapter I.
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(2.13) (u = x,v — ) + o(v) — o(u) 20, VeV,
2

(2.14) (v — x,v — W) + ¢(v) — o(u) =0, YoeV.
The mapping x — u = u(x) of V into itself, introduced by Moreau [2], is
termed a proximity mapping (with respect to @) and we write

(2.15) u = proxx or u = prox,x.
As a special case of proximity mapping, when
(2.16) @ = x, = indicator function of a closed convex subset € of V,

we find the projection operator over 4. The equivalent conditions (2.13) to
(2.15) then become

(2.17) ue¥ and {(u — x,v — u) =0, Yved,
(2.18) uec¥ and ((v — x,v —u)) >0, Yve ¥,
(2.19) u = Ilyx = projection of x onto 4.

Remark 2.3. Inequalities such as (2.2), (2.3), (2.11) and (2.12) are called
variational inequalities and they arise naturally in problems of minimization
of convex functions. Propositions 1.2, 2.1 and 2.2, when combined, provide
existence theorems for the solution of certain variational inequalities (e.g.
proximity mappings). In the following section we shall give a direct solution
of certain variational inequalities of a different type.

3. DIRECT STUDY OF CERTAIN VARIATIONAL INEQUALITIES

Let us again assume that V' is a reflexive Banach space (with norm |[.|]) and
let V* be its dual (with norm . ||,).

We take a mapping 4 of ¥ into ¥* and a function ¢ of ¥ into R which
satisfies

3.1 @ is a proper convex l.s.c. function.

We are now concerned with the existence of elements u € ¥ which are solutions
of the variational inequality:

(3.2) CAu~— fiv —ud + o(v) — o(u) >0, YoeV

for f given in V'*.
The hypotheses about A are as follows:

(3.3) A is weakly continuous over the subspaces of finite dimension of V.
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(3.4) Aismonotone: { Au— Ap,u —v) =0, Yu,veV.
3.3 There exists v, € dom ¢ such that

<AU,U—UO>+¢(U)_) i UJ—> )
ol + o if o > o0,

We then have:

Theorem 3.1. Let A and ¢ satisfy (3.1) and (3.3)-(3.5). For f given in V*,
there is at least one u € V satisfying (3.2).

The theorem will be proved in several stages.

Lemma 3.1. Theorem 3.1 is true if we assume in addition that V is of finite
dimension and that dom ¢ is bounded.

Proof. Since V is of finite dimension, we can provide this space with a
Hilbert structure with scalar product ((., .)) and identify V and V* in such a
way that the duality pairing can be identified with the scalar product of V. If
u 1s a solution of (3.2), we then have:

(3.6) (Au~ fio—w) + o) — 0w 20,  YoeV

or alternatively:

(3.7) ((u—(u+ f — Au),v — u)) + @(v) — @{u) = 0, YoeV,
which, from (2.13) and (2.15) is equivalent to

(3.8) u = prox,(u + f — Au).

Since the mapping prox, is valued in dom ¢ which is a closed convex set
bounded in V, the existence of a solution of (3.8) is an immediate consequence
of Brouwer’s fixed ~point theorem provided that we can show that the mapping

(3.9) u = prox,(u + f — Au)

is continuous. Now from (3.3) the mapping 4 and hence the mapping
u —u+ f— Au is continuous in V.

It is therefore sufficient to show that the mapping prox, is continuous. But
if f1, f» € V, uy, = prox, f1, u, = prox,, /5, the relations (2.13) require that:

((uy — frou, - ) + ouy) —
((uy — fouy — uy)) + pluy) -
and by addition:

(3.10) “”1 - uznz <((fy = fouy — 1)) < Nfl - fz“ H“l - uz"»

0,
0,

(u,

@(u,)
olu,)
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(3.11) Juy = wa| < 11 = £l
which proves the continuity of prox,, and concludes the proof of thelemma. =

Lemma 3.2. Theorem 3.1 is valid if we make the single additional hypothesis
that V is of finite dimension.

Proof. Let r> 0 and ¢, be a function of ¥ into R defined by:

(3.12) oy = [0 ful <7
+ o if Juf >r

Since ¢, is the sum of ¢ and of the indicator function of the ball {|lu] < r}, itis
clear that ¢, is convex and ls.c. and that it is proper for r sufficiently large
(for dom ¢, not to be empty).

Lemma 3.1 implies the existence of u, € V, |lu,|| < r, satisfying:

(3.13) CAu, — fiv —u, ) + @,(v) — o,(4,) = 0, YoeV.

For r sufficiently large (v 2 |jvo))), we can put v = v, in (3.13) and we find that
CAu, = fivg —u, > + o(vg) — @(1,) > 0.

(3.14) ”7{,-{<Au,, 4= 0> + o)} ST (= (oo = 1) + oloo))

As the right-hand side of (3.14) is bounded independently of #, it follows from
hypothesis (3.5) that the #,’s are bounded in V. Thus we can extract from u,
a sequence u,, ; — 4o, which converges in V to an element u (V is of finite
dimension). Using (3.3) it is easy to take the limit in (3.13) (V being of finite
dimension) and this shows that u is a solution of (3.2) (note that ¢,,(v) = ¢(v)
since r, 2 ||v]} and that ¢,(»,.) = ().

Proof of Theorem 3.1. Let ¥ be the family of finite-dimensional subspaces
of V which contain v,.

For every V,, € ¥, the application of Lemma 3.2 shows that there exists
,, € V,, such that

(3.15) < Au, — fiv —u, > + olv) — @u,) =0, YoeV,.

Making v=1v,€ ¥, we establish an inequality analogous to (3.14) which
requires that the family u,, is bounded in V. Under these conditions, we have,
for an ultrafilter % which is finer than ¥",

(3.16) U, >u  weaklyin V.
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Writing (3.15) with v = « and taking the upper limit, we find
lim < Au,, u, — u > < lim [o(u) — o(u,)].

Since the function ¢ is convex and l.s.c.,

lim [o(u) — o(u,)] = o(x) — lim o(u,) <0,
which implies that:
(3.17) fim ¢ Au,,u, —ud < 0.

Let us admit for a moment the following lemma

Lemma 3.3. If u,, converges to u weakly in V and satisfies (3.17), then:
(3.18) lim { Au,, u, —v> =2 (A, u — v ), YoelV. B
With this result we can take the lower limit in (3.15) (v € V fixed):
tim < Au,, — fiu, —v> < lim [o(v) ~ o(u,)] < ¢(v) - lim ().
The lower semi-continuity of ¢ and (3.18) yield the inequality
CAu = fiu —v) < ov) — ou),
which shows that « is a solution of (3.2). =

Proof of Lemma 3.3. This has been given by Brezis [1] and exploits an
idea of G. J. Minty [1]. Since 4 is monotone

{Augu,, —ud 2 Auu, —u)
and we find that lim {Au,,, u, — 4> > 0 and hence
lim { Au,,u, —u) =0.

To establish (3.18), we consider w= (1 — Ju + Av, 1 € ]J0,1[ and, because
of the monotonicity, we write

{ Au, — Aw,u,, —w) =0,
therefore
ACAu u —v) 2 — (AUug Uy — Uy + (AW, Uy — U) — AlAw,v —u
and taking the lower limit, it follows that:

AlimAuu —v) 2 A Aw,u — v ).
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Dividing by 1 and letting A — 0, from (3.3) we obtain
CAw, v —u) = (A1 — Au + Av)v —u) - (Au,v — u ),
and we thus have (3.18) in the limit. =

Remark 3.1. Property (3.4) was only used to prove Lemma 3.3. Having
noted this, we can replace Hypothesis (3.4) by

If u,, converges weakly to u in V with

l—iE(Aum,um —u» <0,

we have

lim { Augu, —v) 2 Au,u — v ), Yve V.

(3.19)

An operator 4 of Vinto V* which satisfies (3.19) is called pseudo-monotone;
c¢f. H. Brezis [1], J. L. Lions [3].

Remark 3.2. We find in Lions [3] many existence theorems for more general
variational inequalities than the foregoing.

Special cases,
From Proposition 3.1 we can deduce several special cases.

Proposition 3.1. Let € be a closed convex set of V, and let A satisfy (3.3)
(3.5). For all fof V'*, there is a u € € such that

(3.20) (Au - fiv—u) 20, Yoved.

Proof. We apply Theorem 3.1, with ¢ = the indicator function of €.

Proposition 3.2. Let A be an operator of V into V* which satisfies (3.3)~(3.5).
For all f of V* there is a u € V such that

(3.21) Au = f.

Proof. We apply Proposition 3.1 with €=V, setting v=u+w and
v=u—w,we ¥, in (3.20), we find

{(Au — fiw) =0, YweV,
and (3.21) follows directly.
Propesition 3.3. Let V be a Hilbert space, A € L(V, V*) satisfying

(3.22) CAuu) > o ful?, YueV, a>0.
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For all f € V* there is a unique u € V satisfying
(3.23) Au = f.

Proof. We apply Proposition 3.2; 4 clearly satisfies (3.3) and (3.4); (3.5)
results from (3.22). The existence being thus obtained, the uniqueness follows
easily from (3.22). =

Remark 3.2. (Interpretation of variational inequalities with sub-
differentials.)
If u satisfies (3.2) then by definition (¢f. 1(5.1))

(3.24) f — Auedo(u).
In particular, if u satisfies (3.20),

(3.25) [ — Aue dyqlu),

f¢ = the indicator function of .

Remark 3.3. If a(u,v) = (Au,v) is moreover a symmetric bilinear form
over ¥ x V, the problems (1.9) and (3.23) are equivalent; this is an immediate
result of (2.2).

Proposition 3.3 is the classic Lax-Milgram lemma, known also as the
projection lemma.

Remark 3.4. The operator A is said to be strictly monotone if it satisfies,
instead of (3.4),

(3.26) {Au ~ Av,u — v ) > 0, Yu,veV, u # .

In this case, there is at most one « which satisfies (3.2) and exactly one under
the hypotheses of Theorem 3.1.



CHAPTER III

Duality in Convex Optimization

Orientation

In this chapter we shall associate to a minimization problem (&) a
maximization problem (#*) termed the dual problem of # and we shall
examine the relationship between these two problems (the comparison of the
infimum with the supremum, and the relationship between the solutions in
particular). =

1. THE PRIMAL PROBLEM AND THE DUAL PROBLEM

Let ¥ and V* be two topological vector spaces placed in duality by the
bilinear pairing <., .)y. The elements of ¥ will be denoted by u, v, w, . . ., and
those of V* will be denoted by u*, v*, w*, . ..

Taking a function F of V into R, we are concerned ith the minimization
problem

(#) Inf F(u).

ueV

Problem £ will be termed the primal problem. The infimum for problem £
will be denoted by inf £ and, as in Chapter I, every element u of ¥ such that

(1.1) F(u) = inf @

will be termed a solution of 2.
Problem £ will be said to be non-trivial if there exists u, € ¥ such that

(1.2) Fluo) < + oo.

Note that the function F is arbitrary at the moment; later we will pay
particular attention to the case where F e I'o(V); in this case problem £ is
clearly non-trivial.

46
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Perturbed problems

Let us assume to be given, in the following way, a family of perturbations
of problem 2.

Let there be given two other Hausdorff topological vector spaces Y and
Y* placed in duality by a bilinear pairing {., .). Since in general there is no
possibility of ambiguity, the pairing between V and F* and the pairing
between Y and Y* will both be denoted by (., .). The elements of Y will be
denoted by p, g, r, and those of Y'* by p*, g*, r*, ...

We shall also consider a function (denoted by @) of ¥ x Y into R such that

(1.3) D(u, 0) = F(u),
and for every p € Y we shall consider the minimization problem
(#) Inf &(u, p).
ueV

Clearly for p = 0, 2, is none other than problem £. The problems 2, will be
said to be perturbed problems of £ (with respect to the given perturbations).
We shall describe in Sections 4 and 5 the main types of useful perturbations.

The dual problem with respect to the given perturbations

Given problem £ and the perturbed problems £,, we are now able to
define a dual problem. For this let &* € I'(V* x Y'*),

(1.4) o*: V* x Y* >R,

be the conjugate function of @ in the duality between V' x Y and V* x Y*
(¢f. Chap. I).™ The problem:

(#9  Sup{ - @*0.p")}

is termed the dual problem of 2 with respect to @ (or with respect to the given
perturbations). The supremum for problem 27* is denoted sup #* and any
element of p* of Y* such that

(1.5) — %0, p*) = Sup 2*

is termed a solution of 2#*,
The first relationship between £ and 2* is the following.

) The pairing between ¥ x Y and V* x Y* is written, classically, as:
< (u*> P*), (uy p) >VXY = < u*’ u >V + < p*’ P >Y‘
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Proposition 1.1,

(1.6) — o £Sup?* <Inf? < + .

Proof. Let p* € Y*; by definition (¢f. 1(4.2))
@*(0, p*) = Sup [<p*, p > — B, p)];

peY
in particular for everyu e ¥:
@*(0, p*) > { p*,0) — &(x,0),
(1.7) ~ @*(0, p*) < D(u, 0).
The relationship (1.7) which is valid for any p* € Y* and u € V implies
sup 2*<inf2. =

Remark 1.2, Various counter examples show that all the inequalities

appearing in (1.6) can effectively be strict inequalities or equalities. Cf.
Rockafellar [7].

Proposition 1.2. If problem 2 is non-trivial, then
(1.8) sup 2* £ inf 2 < + c0.
If problem P* is non-trivial, then
(1.9) — o0 < sup #* <inf 2.
If P and P* are non-trivial, inf P and sup P* are finite
(1.10) — o0 <sup?* <inf? < + 0.

Proof. If 2 is non-trivial, there exists u, € V such that F(ug) = ®(ug,0) < +
and thus with (1.6):

sup 2* <inf 2?2 < P(uy, 0) < + 0.
The proof for (1.9) is analogous; (1.10) results from (1.8) and (1.9).

Reiteration of duality

The technique used to form the dual of a minimization problem can easily
be extended to a maximization problem, if we note that:

- = — inf .
wpl- Gt} = =g 6w
In particular it is natural to associate the perturbed problems (u* € V'*)
P Sup { — &*(u*, p*)},
(@) Sup{ - o pY)

with the dual problem 2* and to determine the dual problem of #* with
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respect to these perturbations; we easily arrive at the following problem
which we will term the bidual problem of #:

(P**) Inyf { @**(u, 0) },

where ®** is the conjugate function of &* ie. the I'-regularization of
B(P** e I'(V x Y)).

After this, we can no longer repeat the dualization process; indeed the
natural perturbations of #** are the problems

Inf @**(u, p)
ueV
and the dual problem of 22** with respect to these perturbations is the problem

Sup { — CD***(O, p*) }

and the latter problem is identical to problem 2* since ¢*** = ¢* (Cor.
1.4.1).

If problem 2** is identical to problem P(P**(u,0)= &(u,0), Vue V),
each of the problems 2 and 2* is found to be the dual of the other and there
is thus complete symmetry between primal and dual problems. This will
certainly be the case if §** = @ which is the same as

(1.11) Pely(V x Y).
In particular, this implies that if Fis not identically equal to +o,
(1.12) Fe (V)

(in fact, if @ € I'o(V x Y), u > ®(u,0) = F(u) is convex and l.s.c. with values
in ], +}, thus it belongs to I'g(¥); Prop. 1.3.1).

This is one of the reasons why situations where hypothesis (1.11) is satisfied
are of particular interest to us. This symmetry between 2 and #* does not
however imply that inf 2 = sup #* and the only general conclusion remains
(1.10); the equality inf 2 = sup 2* will appear in Section 2 as a kind of regu-
larity property of the problem under consideration.

2. NORMAL PROBLEMS AND STABLE PROBLEMS
In the following sections we shall assume in general that
(2.1) D el,(V x Y)
Forpe Ylet
(2.2) h(p) = inf 2, = Egyf D(u, p).
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Lemma 2.1. Under hypothesis (2.1), the function h: Y - R is convex.
Proof. Letp,ge Y and 4 €]0,1[. We have to show that
(2.3) h(ap + (1 — A)q) < Ah(p) + (1 — A)h(g),

whenever the right-hand side is defined (¢f. Definition 1.2.1). Thus (2.3) is
obvious (or there is nothing to prove) if h(p) or h(g) = +. Let us therefore
assume that h(p) < + and h(g) < +. For every a > h(p) (resp. for every
b > h(q)) there is a u € V (resp. v € V') such that

h(p) < ®(u,p) < a,

< <
h(g) < o(v, q) < b.

Then:
hip + (1 — A)g) = In‘f P(w, ip + (1 — 4)g)

D(Au + (1 — Ao, Ap + (1 — A)q)

(by the convexity of @)

Ad(u, p) + (1 - A)P(v, g)

Aa + (1 = A)b.

If we let a decrease towards h(p) and b decrease towards h(q), the inequality

hAp + (1 — A)g) < Aa + (1 — A

yields (2.3) in the limit. =

NN

Remark 2.1. Lemma 2.1 remains valid under the single hypothesis that @
is convex.

Remark 2.2. In general h ¢ T'o(Y) (in spite of hypothesis (2.1)). =

We can associate with the function heRY its conjugate function
h* € I'y(Y*); we have:

Lemma 2.2.
(24) h*(p*) = 2*(0, p*), Vp*e Y*.
Proof. By definition:

h*(p*) = Sup [{p*.p) — Hp)]
Sup [{p* p > — inf &(u, p)]
= Sup Sup [<p%p> - 9w 1]
= ¢*0,p*). =

]



DUALITY IN CONVEX OPTIMIZATION 51

It follows that
Lemma 2.3.
(2.5 sup 2* = sul;,) [— h*(p*)] = h**(0).

Inequality (1.6): sup 2* <inf 2, is thus equivalent to the well-known
inequality ~**(0) < h(0).

Definition 2.1. Problem 2 is said to be normal if h(0) is finite and h is 1.s.c.
at 0.

Proposition 2.1. Under hypotheses (2.1), the three following conditions are
equivalent to each other

) P is normal,
(ii) P* is normal,
(iii) inf 2 = sup P* and this number is finite.

Proof. We shall demonstrate the equivalence of (i) and (iii); the equivalence
of (ii) and (iii) follows directly from the fact that #** = .

Assuming £ to be normal and letting 4 be the Ls.c. regularization of A,
we have

(2.6) h** < h <h

(cf. Prop. 1.3.3). By hypothesis 4(0) = h(0) € R. Since 4 is convex, % is Ls.c.
and convex, assumes a finite value at 0 and hence cannot take the value —«
(Prop. 1.2.4). 1t follows that s € I'(Y) (Prop. 1.3.1) and thus A** = A. The
inequality (2.6) implies by duality that

h* = pr** > h* > h*

so that A*=h* and h**=h**=h; whence A(0)=h(0)=h**(0) and the
latter equality is none other than (iii) by virtue of Lemma 2.3.

Conversely (iii) implies that 4(0) = h**(0) € R and with (2.6), h(0) = h(0) e R
which means that the problem & is normal. =

Remark 2.3. The equivalence between (i) and (iii) is true under the single
condition that h is convex, which holds if @ is convex (¢f. Remark 2.1).

Definition 2.2. Problem & is said to be stable if h(0) is finite and # is sub-
differentiable at 0.

Proposition 2.2. The following two conditions are equivalent to each other:

(i) P is stable,
(ii) P is normal and P* has at least one solution.



52 FUNDAMENTALS OF CONVEX ANALYSIS

Proof. If 2 is stable, h(0) is finite and 0h(0) is non-empty; we know that in
this case h(0) = h**(0) (e R) which implies that problem £ is normal and in
addition dh**(0) = 0h(0) ¢ @ (¢f. 1(5.4)). Thus (i) implies (ii) by means of
Lemma 2.4 below.

Conversely if 2 is normal, h(0) = h**(0) € R and if 2* has some solutions,
oh**(0) = oh(0) # o (cf- 1(5.4)) which implies that £ is stable. =

Lemma 2.4. The set of solutions of P* is identical to oh**(0).

Proof. If p* € Y* is a solution of #*, we have
— %0, p*) = — 2*(0, ¢%), Vg*e Y,

that is, from (2.4):

= h*(p*) = — h*(q*),

— h*(p*) = Sup [<0,¢* > — h*(g¥)]

— h¥(p¥) = h**(0)
and this is equivalent to

p*€dh**(0). =

When problem £ is stable, Lemma 2.4 shows that the solutions of #* are
subgradients of 4 at 0, and therefore, in certain cases, the derivatives of inf 2
with respect to the given perturbations (¢f. Chap. VI, Section 5).

Corollary 2.1. Under hypothesis (2.1) the three following conditions are
equivalent to each other:

@) P and P* are normal and have some solutions,
(ii) P and P* are stable,
(i1i) P is stable and has some solutions.

Proof. The equivalence between (i) and (ii) follows from Proposition 2.2
and from the fact that £ is the dual problem of 2*. The equivalence between
(1) and (iii) follows directly from Proposition 2.2. =&

Proposition 2.3. A stability criterion.
Let us assume that @ is convex, that inf P is finite and that

There exists uy € V such that p — ®(uy, p) is finite

@7 and continuous at 0(€ Y).

Then problem 2 is stable.
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Proof. Because of Lemma 2.1 and Remark 2.1, h is convex and by
hypothesis h(0) is finite.

As the function p - @(u,, p) is convex and continuous at 0(e Y), there
exists a neighbourhood ¥ of 0 in Y, on which this function is bounded above:

P(ug, p) < M < + o0, Vpe v .
But

h(p) = Inf &(u, p) < B(u, p) < M, Vpev

and Proposition 1.2.5 thus implies that 4 is continuous at 0. Proposition 1.5.2
then implies that £ is subdifferentiable at 0.
Remark 2.4.

Hypothesis (2.7) which implies the existence of solutions for the dual
problem #* (for convex @ and finite inf #), can be compared with the
classical constraint qualification hypothesis in Operations Research (cf.
M. Slater {1}, H. P. Kunzi and W, Krelle {1], J. Cea [1]). Sometimes we will
refer to it as the qualification hypothesis for problem 2.

Existence of solutions and extremal relations
Proposition 2.4, If # and P* possess solutions and if
(2.8) inf 2 = sup 2*, and this number is finite,

all solutions @i of P and all solutions p* of P* are linked by the extremality
relation

(2.9) ®(7, 0) + &*0, p*) = 0
or
(2.10) (0, 5*) € 29(#, 0).

Conversely if i€ V and p* € Y* satisfy the extremality relation (2.9), then
i is a solution of P, p* is a solution of P* and we have (2.8).

Proof. We have in fact:

inf 2 = ®(#, 0) = sup #* = — &*(0, p*);

(2.9) can also be written

®(a, 0) + 2*(0, %) = (% 0),(0, %) )
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which is identical to (2.10) from 1(5.6).
If conversely @ and p* satisfy (2.9), it follows from (1.7) that

®(i, 0) = Inf ®(u, 0)

ueV

- @40, 5%) = Sup [ - %0, 7*)]

p*e
which establishes the required properties.
Remark 2.5. By definition of a polar function
P(u, 0) + ®*(0, p*) > ((4,0),(0, p*) > =0, VueV, Vp*eY*,
and for this reason (2.9) is called an extremality relation.

Remark 2.6. Relation (2.8) holds if problem £ is normal or stable or if
(2.7) is satified and inf 2 is finite (@ being convex). Proposition 2.4 applies in
particular to the situation of Corollary 2.1 ((i), (ii), or (iii) being satisfied). =

The following proposition, by regrouping the previously proved results,
provides an illustration.

Proposition 2.5. We shall a.sume that V is a reflexive Banach space, that
@ e T'(V x Y), that condition (2.7) is satisfied and that.

(2.11) lim ®(u,0) = + 0 i wuelV, fu| = .
Under these conditions, # and P* each have at least one solution,

(2.12) inf 2 = sup 2%,

and the extremality relation (2.9) (2.10) is satisfied.

Proof. The function F(u)= ®(u,0) satisfies the hypotheses of Proposition
I1.1.2 and so we deduce the existence of a solution of 2.

From (2.7), problem £ is stable (Prop. 2.3), which implies (2.12) and the
existence of a solution for #*. Finally the extremality relations (2.9) (2.10)
follow from the preceding and from Proposition 2.4 above.

3. LAGRANGIANS AND SADDLE POINTS
Definition 3.1. The function denoted by L such that
L:V x Y* >R,
(31) — L(u, p*) = Sup [<p*p> — ®up)] VueV, Vp*eY*.

will be called the Lagrangian of problem 2 relative to the given perturbations.
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We can write
(3'2) - L(u’ P*) = (D:‘(p*),

where @, denotes for fixed u € V the function p — ®(u, p), and &F € I(Y*)
denotes the conjugate function of @, € RY.
The properties of L are given by

Lemma 3.1.Foralluof V,L,:
(3.3) L, :p* — L{u, p*),

is a concave u.s.c. function of Y* into R.
If @ is convex, then for all p* € Y*, the function L.

(3.4) Lyeiu = Liu, p*)
is convex from V into R.

Proof. We have —L,= &} € I'(Y*) and so L, is concave and u.s.c./”
Let us now demonstrate the convexity of L,.; we have

(3.5) L{u, p*) = Inf [®(u,p) — (p*, 0]
Let u, v e V and A € ]0,1[; the inequality
(3.6) L(Au + (1 — A)v, p*) < AL(u, p*) + (1 — A)L(v, p*),

is obvious if L{(u, p*) or L(v, p*) = +. Hence let us assume that L(i, p*) < +w
and that L(v, p*) < +o and let a > L(u, p*) and b > L(v, p*) be fixed. Due to
(3.5) there exists p € Y, q € Y, such that

(3.7) L{u,p*) < ®(u,p) — (p*,p) < q,
(3.8) L(v, p*) < ®(v, g~ {p* q> < b;
but:

L(Au + (1 — Ao, p*) < D(Au + (1 — Ay, Ap + (1 — A)q)
- {p%Ap +(1 - A)q)
< (by the convexity of @)
< A[®(u, p) = {p*,p D]

+ (1 — A[e(v. q) - <p*. 9]
< (by (3.7) and (3.8))
< Aa + (1 — A)b.

M A function Fis concave if —F is convex.
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Letting a decrease towards L(u, p*) and b decrease towards L(p, p*), we
obtain (3.6).

Remark 3.1, We cannot assert that L,. is l.s.c. even if we assume that
Pely(VxY). nm

It will be useful to express problems 2 and #* in terms of the function L.
Without assuming anything about @, we have

O*(u*, p*) = Sup [Ku*ud + {p*,p)> — &y, p)]
peY

= Sup {Cu*u) + Sup [(p%p) — o, p)]}
= Su‘P [Cu*,u) — L(u, p*)].
Whence:
(3.9) — ®*0, p*) = In'f L(u, p*)
and problem 2%,
Su}) [— &*0, p*)]
p‘s *
can be written as:
(3.10) (2% Su? In'f L(u, p*)  (for an arbitrary function ®).
p*eY ue

Similarly, if we assume that @€ I'y(V' x Y) then Vue ¥V, the function
®,: p — ®(u, p), belongs to I'(Y) and thus @¥* = &, whence:

D(u, p) = P3*(p)
= Sup [<p.p*> — 1))

=Sup [<{p.p* > + Llw, p)]
Hence:

(3.11) ®(u, 0) = Sup L{u, p*)

and problem £ can be written as

(3.12) (#) Inf Sup L(u,p*) (Pel(V x Y)W,

uel p*e

M Tt is sufficient for this that &, € I'(Y), Yue V.
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Remark 3.2. By introducing the Lagrangian L, the problems &£ and #*
are shown to be related to the min-max problems which arise in games theory
(¢f. Chap. VI). Note that (1.6) is exactly the inequality Sup Inf L < Inf Sup L,
well known in games theory. The point of view adopted here and that of games
theory lead in parallel fashion to similar results; therefore we will just give a

few remarks and comments related to this second approach. See also
Chapter V1.

Definition 3.2. (i7,5*) € ¥ x Y* is called a saddle point of L if
(3.13) L(#, p*) < L(#, p*) < L(u, p*), VueV, Vp*reY*.

Proposition 3.1. Under the hypothesis that & € [o(V x Y), the following
two conditions are equivalent to each other:

® (4, p*) is a saddle point of L,
(ii) # is a solution of P, p* is a solution of P*, and inf P = sup P*,

Proof. From (3.12) and (3.9)

L(u, p*) = In‘f L{u, p*) = — &*(0, p*),
and from (3.12) and (3.11)
L(u, p*) = Su;) L(u, p*) = &(a, 0).
p%e?*
Thus:
&(i, 0) + @*(0, p*) = 0,

and due to Proposition 2.4, i is a solution of 2, p* is a solution of #* and
inf 2 = sup #*.
Let us now show that (ii) implies (i); using (3.9) and (3.11) we obtain

— @*(0, p*) = In‘f L(u, p*) < L(u, p*)
P(i, 0) = SuP L(#, p*) > L(u, p*),
p#s L]
and as @(, 0) = —P*(0, §*), this implies
SuP L(u, p*) = L(u, p*) = Inf L(u, p*),
) 4d ueV
which is equivalent to (3.13). =

Proposition 3.2. Let us assume that ® € I'o(V x Y) and that problem P is
stable.
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Then d € V is a solution of P if and only if there exists p* € ¥* such that
(i, p*) is a saddle point of L.

Proof. Clearly if i€ ¥V and if such a jp* exists, Proposition 3.1 implies that
# is a solution of £ (and p* a solution of 2%).

Now if # is a solution of 2, since the problem is stable, problem #* has
at least one solution p* and inf # = sup 2*; Proposition 3.1 then implies
that (@, p*) is a saddle point of L. m

Remark 3.3.We defer until Chapter VI a more precise comparison between
the optimization problems and the saddie point ones. =

4. IMPORTANT SPECIAL CASES (I)

Orientation

In this section and the next one, we shall apply the preceding results to two
important particular cases:

a general frame work, based on Fenchel [1]-{2]} and Rockafellar [5]-[7]-[8]
(¢f. also Temam [1}]) and especially adapted to certain problems in the calculus
of variations;

duality according to Arrow-Hurwicz [1] which permits us to recover the
duality results in convex programming (Kuhn-Tucker theorem [1]).
In this section we shall consider the “calculus of variations” setting. m

Given the paired spaces V' and V*, Yand Y*, we shall assume the existence
of a continuous linear operator A of Vinto ¥, A € #(V, Y), with transpose
A* € Z(Y*, V*). We shall also assume that the function F to be minimized
can be written as:

(4.1) F(u) = J(u, Au),
where J is a function of ¥ x Y into R. Problem £ takes the form

(4.2) Inf J(u, Au).

ueV

In this case the function @ will be

(4.3) ®(u, p) = J(u, Au — p).
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It is easy to determine the dual problem; if J* € I'(¥* x Y*) denotes the
conjugate function of J, we have

= Sup [<(p*,p) — J(u, Au ~ p)]

peY

@*(0, p*

~——

= Sup Su * — J(u, Au — ;
Sup Sup [<p*p)> - J( p)]
setting, for fixed u, ¢ = Au — p, we find that

®*(0, p*) = Sup Sup [<p* Au) — {p*.q)> — J(u,q)],

®*(0, p*) = Sup [ A*p* u) — (p* ) — J(u, g)]

qeY

whence

(4.4) D*(0, p*) = J*(A*p*, — p*).
Thus problem £* can be written as

(4.5) Sup [~ J*(4%p*, — p*)].

The relationship between the properties of @ and those of J is rendered
more precise by the following two obvious remarks:

4.6) If J is convex, @ is convex.

(4.7) IfJe TV x Y), eV x Y)

Theorem 4.1. Let us assume that J is convex, that inf 2 is finite and that

There exists ug € V such that J(ug, Aug) <+, the function
p > J(uy, p) being continuous at Aug.

(4.8)
Then problem (4.2) is stable:

(4.9) inf # = sup 2%,

and P* has at least one solution p*.

Proof. We apply Proposition 2.3 having noted that (4.8) implies (2.7).

Proposition 4.1. The following two conditions are equivalent to each other:
@ i is a solution of (4.2), p* is a solution of (4.5) and

inf # = sup 2*.



60 FUNDAMENTALS OF CONVEX ANALYSIS

(ii) #i € V and p* € Y* satisfy the extremality relations
(4.10) J(@, Au) + J¥A*p*%, — p*) =0
which is equivalent to
(4.11) (A*p*, — p*) e dJ(u, An).

We simply apply Proposition 2.4.

Theorem 4.2, Let us assume that V is a reflexive Banach space, Je (V' x Y),
that condition (4.8) is satisfied and that

(4.12) lim J(u, Au) = + o0, ifueV, luf| - .

Under these conditions, (4.2) and (4.5) each have (at least) one solution,
(4.13) inf # = sup 2*,
and the extremality relation (4.10)-(4.11) is satisfied.

Apply Proposition 2.5.

Remark 4.1. The Lagrangian associated with this problem can be written
as:

= L{w,p*) = Sup [<p* p ) — J(u, Au — p)]
or puttingg = Au—p
(4.14) L{u, p*) = — {p*, Au ) + JX( - p*),
where J,, is the function p —> J(u, p) and J¥ € I'(Y*) is its conjugate function.

Remark 4.2. The above can also be usefully particularized in the case
where, with the same spaces and the same operator 4, the function J can be
decomposed into the form

(4.15) J(u, Au) = F(u) + G(Au),
with:
FeRY, GeRY.W
Problem £ can be written as:
(4.16) In'f [F(u) + G(Au)];

M This function F must not be confused with the “initial” function F introduced in
Section 1.
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it is easy to verify that:
(4.17) J*u*, p*) = F¥u*) + G*(p*),

where F* € I'(V*) and G* e I'*(Y*) are the conjugate functions of F and G
respectively.

Problem #* can be written as:
(4.18) Suy.[— F*(A*p*) — G*(— p*)}.
p*e

Let us note here that

4.19) If F and G are convex, J (and hence @) is convex,
(4.20) If Fe F'o(V) and G € I'y(Y) then
Jel(V x Y), el (V x Y)

Proposition 4.1 and Theorems 4.1 and 4.2 apply; condition (4.8) can be
written as:

There exists uy € V such that F(us) <+, G(Auy) < 4+,
4.21) . .
G being continuous at Auy.

The extremality relation (4.10) can be decoupled into:
= J(i, AR) + J*(A*P*, — p*)
= F(u) + F¥(A*p*) + G(Au) + G*(— p*)
= [F(@) + FHA*5*) —  A*p% @ )]
+ [G(47) + G*(— p*) — { — p*, 4@t )].
As each expression in square brackets is positive or zero, this implies

(4.22) F(@) + F¥(A*p*) — ( A*p* ) =,
(4.23) G(AT) + G*(— p*) + {p*, Au) =0,
and these conditions amount to saying that

(4.24) A*p* € 0F(u),

(4.25) — p*eoG(Au) =

Remark 4.3. The above can be further particularized to the case where Y
is a product

(4.26) Y=1]]v, y* =[] v?,
i=1 i=1
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the spaces Y, and Y}* being mutually dual and the function G being decom-
posed into

6(r) = 3. 6o,

p =Py PmeY, GeR"
We have:

m
G*p*) = Y GMp?) ¥p* = (pt, ... p¥) e Y*,
i=1
where G} € I'(Y}*) is the conjugate function of G,.
In this case the extremality relation (4.23) can be decomposed into the m
relations (1 < i< m):

(4.27) G{Aw) + G- pF) + {pf, Au) =0,
(where A, is the ith component of Au), which is equivalent to
(4.28) —-pledGlAu). m

5. IMPORTANT SPECIAL CASES (II)
Ordering relations associated with cones

We recall™® that in a vector space Y, a subset € of Y such that A% < &,
VA > 0is called a cone with vertex O. The cone is pointed or unpointed accord-
ing to whether O €€ or O ¢ ¥; a pointed cone with vertex O is salient if
€ N {—%¥} = {0}.

We can associate a partial ordering relation denoted by < or > with a
pointed cone € by setting

(5.1) p<qg=q-pe¥.

Obviously p < p, Vpe Y; if p < g, and g < r, then p < r; the partial ordering
relation is compatible with the structure of a vector space in the sense that

(5.2) p=20=1p >0, Yi >0,
(5.3) pZq=>p+r=q+r, vr.

() For these questions ¢f. Bourbaki [2].
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The cone ¥ is the set of positive elements for this ordering relation

(5.4) ¢={peY|p=0}
The set {—%} is the set of negative elements
(5.5) {-¢}={preY|p<0}
If, moreover, the cone ¥ is salient, the relation < is an ordering relation:
(5.6) p<g,g<p=>p=4q

Conversely, if we are given a partial ordering relation over Y, < (or an
ordering relation), compatible with the structure of the vector space Y (cf.
(5.2) (5.3)), then the set of positive elements (> 0) is a pointed (or pointed
salient cone) with vertex O.

If, now, Y and Y* are two vector spaces in duality, we can associate with a
cone ¥ of Y its polar cone €*

(5.7) @* = {p*eY*|(p*p> >0, Vpe ¥}

Since €* is a pointed cone with vertex O in Y*, it defines a partial ordering
relation denoted by < or >:

(5.8) p* < q* < q* — p*e¥*;

hence ¥* is evidently the core of positive elements in Y*.

If, finally, ¥ and Y* are two dual topological vector spaces and if € is a
pointed closed convex cone with vertex O, then from the above we have the
following property:

(5.9) pe€<p20<{p5p) 20, Vp* e #*.

Indeed €** = ¥, €** being the polar cone of ¥* andsop e € < p e €** <«
(by definition) < (p, p*)> = 0, Vp* € ¢*.
Primal problem and dual problem

As in the preceding sections, we take the two pairs of locally convex
topological vector spaces in duality Vand V*, Y and Y*.

Let o/ be a non-empty closed convex subset of V, and take J such that
(5.10) J is a convex L.s.c. function of & into R.

Let € be a closed convex cone of Y defining a partial ordering relation <
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and let €* be its polar cone. Finally we consider a mapping B (possibly non-
linear) of & into Y such that:
é.11) B is convex with respect to the relation <:
B(Au + (1 — A)p) < AB(u) + (1 — A)B(v) VYu,veo/,Vie]0,1[.

(5.12) For each p* € Y*, p* >0, the mapping u+> {p*, Bu) of o
into R is L.s.c.
(5.13) {uesd|Bu<0} # &
The primal problem £ which now concerns us is the following:
(5.14) Ing; J(u).
BI:AEG 0

This can be written as
(5.15) Ian F(u)
provided we set

Ju fuesof and Bug0,
+  otherwise.

(5.16) Fu)=

The perturbation function @ is thus chosen to be

Ju ifue o and Bu<p,

. & = R
G.17) @ p) +w otherwise.

This function ¢ cannot take the value —o and from (5.12) is not identically
equal to +oo; thus it is proper.
We note that & can be written as
(5.18) B(u, p) = J(u) + xg(v),
where
Ju) ifueos,

(5.19) Jw) = +o0  otherwise,
and x,, is the indicator function of the set
(5.20) ¢,={ueV|ues and Bu < p}.

The following lemmas will specify more exactly the properties of &.

Lemma 5.1, (i) The set &, is closed and convexin V,Vp e Y.

(ii) The set & ={(u,p)eVx Y|ue o, Bu<p} is closed and convex in
VxY.
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Proof. (i) From (5.9) and (5.20), for u e o,
ueé, «»Bu — p <0<« (Bu—p,p*) >0, Vp* >0
Due to (5.12) and (5.13), the function
u— (Bu —p,p*>,
of o into R is L.s.c. and convex for fixed p* > 0, and hence the set
{uesl|(Bu~pp*) <0}

is closed and convex; the same holds good a fortiori for the intersection of all
such sets which correspond to all the p* = 0.

(ii) The same reasoning applies to &, if we observe simply that the function

{",P} H<Bu—PaP*>
is Ls.c. and convex of & x Yinto R, Vp* > 0 fixed. m

Lemma 5.2,

(5.21) del(V x Y)

Proof. Let us write @ in the form (5.18) or, more accurately, in the form
(5.22) B(u, p) = J(u) + x ({u,p}), 1, is the indicator function of &.

Clearly J is 1.s.c. and convex and so is y, (£ is a closed convex set); thus the
same is true for @ and since @ is proper, Proposition 1.3.1 implies (5.21).

The dual problem
By definition, for p* € Y*:
®*(0, p*) = Sup {(p*, p> — Hu,p)} = Sup {p*p)> — J(U)};
sz peY
Bu<p
putting p = Bu + g, we have
@*(0, p*) = Sup Sup { (p*, Bu) + {p*q> = J@)}

q=z0

®*(0, p*) = e+(— p*) + Sup {(p* Bu) ~ J(u) }
= 9*(0,p*) = ~ xeo(— p¥) + Inf{ — Cp*, Bu ) + J() }.
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Thus the dual problem is
. f{—-<p* B .
(5-23) Sup Inf{— (p* Bu) + Ju)}

As an application of Propositions 2.3 and 2.5 we have:
Proposition 5.1. In addition to hypotheses (5.10) to (5.13), we assume that
the infimum in (5.14) is finite and we make the following hypothesis:

There exists u, € & such that —Bu, < 0, that is —Bugy € € = the
(5.24) .
interior of €.

Then problem (5.14) is stable.

Proof. From (5.24) there exists a neighbourhood ¥~ of 0 in Y such that
~Buy+pe¥, Vpe¥'. Then P(uo, p) = J(uo), Vpe ¥, and p > ®(u,, p)
is finite and continuous at O(e Y); condition (2.7) is thus satisfied.

Proposition 5.2. Let us assume that V is a reflexive Banach space, that
conditions (5.10), (5.11), (5.13) and (5.24) are satisfied and additionally that

(5.25) limJ(u)=+w, if ues, lally — eo.

Under these conditions P and P* each possess at least one solution,
(5.26) inf # = sup P*,
and we have the extremality relation

(5.27) {p*,Bu) =0®,

Proof. Lemma 5.2 and the proof of Proposition 5.1 demonstrate that the
hypothesis of Proposition 2.5 are satisfied. The extremality relation (2.9)
gives, taking (5.17) and (5.23) into account,

J@) = Inf{ — (% Bu) + Ju)} < — (% Ba) + J(@);

but 5* < 0 and B# <0 since p* is a solution of #* and u a solution of 2;
hence {p*, Bii) > 0 and the above inequality implies that {(p*, BZ)> <0 and
thus we have (5.27).

) Called the constraint qualification hypothesis (¢f. Arrow and Hurwicz [1], Slater [1]).
) Note that p* < 0, Biz <0 and hence, a priori, {p*,Bi) = 0.
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Computation of the Lagrangian

In the present case, the results take on a more interesting form using the
Lagrangian which we shall compute:

- L(u,p*)= Spg?{(l)*’p> - ‘p(u,l’)}

= — J(u) + Sup {p*,p)
peY

p =Bu

— J() + <p*, Bu) + Sup {p*,q>
ge

g=0

=—J(u) + {p*, Bu) + yeu(—p*)
(5.28) L(u, p*) = J(u)—{p*, Bu) = yoo(—p*). 0

From Definition 3.2 and (5.28) a pair {iZ, *} € V' x V* is a saddle point of
L if and only if

(5.29) e, p*<0,
and
(5.30) J(@) — {p*, By < J(@) — {p*, By < J(u) — {p*, Bu),

Vuesf, Vp*<O0.

Indeed if {#, 5*} is a saddle point of L, then by writing (3.13) with v e &/
and p* < 0, we find that

(5.31)  J(@) — <{p*, B> — yeo(—p*) <J(@) — {p*, By = yu(~—5*)
<J(u) — (p*, Bu) — you(~P*).

We successively deduce from these inequalities that we cannot have
J(u) = +o, nor ye(—p*) =+, and (5.29) follows; (5.30) is then an obvious
consequence of (5.31). Conversely if (5.29) and (5.30) are true, (5.31) is true
for ueo/ and p*<0; but if u¢ o, L(u, p*)=+w, and if p* ¢ %™,
L(i, p*) = —co and (3.13) is clearly true.

) The addition and the subtraction operations in R are specified as follows:
(+) + (—0) = (+) = (+®) =+
)+ (~0) = (+) = (+@) = =
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With this remark, Proposition 3.2 yields

Theorem 5.1, Let us assume that conditions (5.10)~(5.11)+5.13) and
(5.24) are satisfied and that the infimum in (5.14) is finite.®

Then @i € o is a solution of (5.14) if and only if there exists p*€ Y, p* <0
such that {ii, p*} is a saddle point of L:

(5.30) J(@) — {p*, Bity < J() — {p*, Bty < J(u) — {p*, Bup,
Vaes/, Vp*<O.

In this case

(5.32) {p*.Bu) =0.

Proof. From Proposition 5.1, problem (5.14) is stable and everything is
thus a result of Proposition 3.2. Setting p* =0 in (5.31), we find that
{p*, Bty > 0, whence (5.32), the inequality {5*, Bi) < 0 following from the
properties of 5* and #. Furthermore, relation (5.32) is the extremality relation
of the problem. ®

Remark 5.1. The above results, particularly in the shape of Theorem 5.1,
are given in Arrow and Hurwicz [1].

Orientation

In the rest of this section we shall apply Proposition 5.3 to the specific case
of a classical problem, that of finite dimensional convex programming. =

Finite dimensional convex programming: the Kuhn-Tucker theorem

Here V=V*=R", Y=Y*=R"; ue V will be written as u = (u,,...,u4,),
and p € Y will be written as p=(py,..., pm). We shall take a closed convex
set &/ of R", and an ls.c. convex function J of o/ into R. The cone € of
Y =R"is as follows

{plp; =20, 1 <ig<m}

and the function B of &/ into Y is defined by its components B,, . . ., B,,, which
are functions of & into R; to satisfy (5.11) and (5.13), the B;s are assumed to
be convex and l.s.c.

M In this section we should replace p* by —p* in order to work with elements p*, 5* > 0,

as usual in convex programming,
@ Which follows e.g. from (5.25) when V is a reflexive Banach space.
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The primal problem is
(5.33) Inf  J{u)

ue
BiugO0,1gigm

The qualification hypothesis (5.24) takes the form

(5.34) There existsuy € &, suchthat B,u, <0, 1<ig<m.
Let us write

(5.35) L(u, p) = J(u) — ﬁl pBuu, if p<0 and ued.

Theorem 5.1 then gives the Kuhn-Tucker theorem (¢f. Kuhn and
Tucker [1]).

Theorem 5.2, With the above hypotheses, i€ & is a solution of problem
(5.33) if and only if there exists p € R™, p < 0, such that
(5.36) L(u, p) < L(&, p) < L(u, p), Vuesl, Vp=0.

In this case >\ | {p;, B,it> =0, which implies that for all i, 1 <i<m,

either B;ii<0 and p;=0,

(537) or Bi ﬁ = 0 and Pi < 0

6. MISCELLANEOUS REMARKS

Orientation

In this paragraph we shall make two remarks, first on the bidual problem
of a given problem and then on duality in variational inequalities.

6.1. The bidual problem and the generalized solution

In addition to the hypotheses of Section 1, and @ € I'y(V x Y), we take
two topological vector spaces F** and Y** such that V** and V'* (resp. Y**
and Y*) are in duality and

6.1) V < V*%  V dense in V**, the injection being continuous
(6.2) Y< Y**, Ydensein Y**, the injection being continuous.

Let ®** be the conjugate functional of @* in the duality between V* x Y*
and V** x Y** Clearly since e To(Vx ¥), @** e [y(V** x Y*¥) is a
continuation of .
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We now associate with the problems (#) and (#*) the bidual problem
(P**) of ()

(2**) le}i; D**(u, 0).

Problem 2** is the dual of #* in the duality between V* x Y* and
V** x Y**. Using Proposition 1.1, it is easy to verify that

(6.3) — o0 € sup 2* < inf 2** L infP £ + .

If now inf & > sup #**, in principle there is no relation between the
possible solutions of the problems 2 and #**. On the other hand, if
inf 2 = inf #** then every solution of 2 is a solution of #** and every
solution of #** which belongs to ¥ is a solution of 2.

It is thus convenient to say that if inf # = inf 2**, problem 2#** is a weak
formulation of problem 2 and each solution of #** which does not belong
to Vis called a weak solution of 2.

Hence it is important to have a simple criterion which determines whether

(6.4) inf # = inf P**

when only problem £ is given. But if (2.7) is true, Proposition 2.3 implies that
inf # = sup #*

and a fortiori because of (6.3),

(6.5) inf 2 = inf #** = sup 2*.

Proposition 6.1. Let us assume that V (resp. Y) is a non-reflexive Banach
space, V* (resp. Y*) its dual and V** (resp. Y**) its bidual. Then (6.1) and
(6.2) are true. If ® € I'y(V x Y) satisfies (2.7), if dom &(., 0) is a non-empty
subset of V and

(66) uedt!:lnlg(.,O) ?(,0) = + oo,
flully = + o

then problem P possesses weak solutions and all cluster points of a minimizing
sequence of P are weak solutions of 2.

Proof. A minimizing sequence of 2 is bounded in ¥ and therefore contains
a subsequence {w,} which converges to a limit ue V** for the topology
a(V** V*). From the above,
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inf #** < ®**(u, 0) < lim inf &**(u,,, 0)
m’'—
= lim P(u,.,0) = inf 2,
m' =
and thus u is a solution of #**, that is, a weak solution of 2. =

Remark 6.1. An example where this situation arises will be given in
Chapter IV, Section 3.4.

6.2. Duality in variational inequalities

We shall describe a procedure which allows us to apply certain concepts of
duality to variational inequalities, even when these do not arise from an
optimization problem.

The notation used will be that of Section .3, with the assumption that u
is a solution of the variational inequality (3.2). Then setting

(6.7) ¢ = Au - f
we have
(6.8) C&od + o) 2 (& ud+ olu), VoeV.

Of course (6.8) is not an optimization problem since ¢ depends on u, but
once u is known, & can be considered as a known element of ¥* and (6.8)
then becomes an optimization problem for which u is one solution

(6.9) Inf { (&0 + ol0) ).

According to the exact form of ¢, we can perturb this problem in different
ways to obtain a dual problem to (6.9). =
Example. Let us suppose for instance that
o(0) = G(4v),
where A€ £(V, Y), Yis a Banach space, and G € I'(Y). Setting

F(v) = (&0 ),
we are in the situation of Section 4, problem (4.16).

It is easily found that

0 if v*=¢

F*(v*) = A
G +oo  otherwise.
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and the dual problem of (6.9) therefore becomes
(6.10) Sup { - G*(— p*)}.
A*pr=¢
The relations between (6.9) and (6.10) (extremality relations, etc.) will still
depend on the supplementary properties of G.

Remark 6.2. For a different approach to duality in variational inequalities,
see J. Cea [2] and U. Mosco [2] [5].
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CHAPTER 1V

Applications of Duality to the Calculus
of Variations (I)

Orientation

In this chapter and the next, we shall apply the results of duality to various
problems of the calculus of variations arising from mechanics, physics,
filtering and optimal control theory. In certain cases we shall also demonstrate
some existence results for the solution of the primal problem using the results
obtained in Chapter II (especially Prop. 1.2 and Theor. 3.1).

With a view to applying the concepts of duality, we shall set the problem
under consideration within the framework of problem II1(4.1) or more often
within that of problem III(4.16): the spaces ¥ and Y will be functional spaces
of Sobolev type and A a differential operator. We shall make problem #*
[1II(4.5) or (4.18)] explicit and we shall try to apply Theorems I11.4.1 and
I11.4.2, making particular use of the extremality relations.

1. NOTATIONS AND REMINDERS

1.1. Sobolev spaces

The variable x = (x,,...,x,) will denote a point in the space R". The differ-
ential operator 9/9x; is denoted D, and if j = (ji,...,/,) is a multi-integer, we
write

. . . il
(1.1) D)=D} . .DI"=—r—
oxit ... 0xi"
where |j| =j, + ... + /"

If j=(0,...,0) D’ =1 = the identity.

We term Q an open subset of R", which may satisfy a regularity property
of the type

The boundary I' of Q is an r-times continuously differential
1.2) manifold of dimension n— 1 and @ is locally situated on one
side only of I
If (1.2) holds, we say that Q belongs to the class €".
75
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We denote by L*(Q2) (1 € a < +) (or L*(£2)) the space of real functions of
Qinto R whose power « is summable for the Lebesgue measure dx = dx;...dx,
(or essentially bounded over ). It is a Banach space with norm

1/a
% j |70 dx

,L‘(n) =

(or
I/ {e= @ = Ess. sup.|f(x)))
For o« =2, we denote the Hilbert scalar product of L2(Q) by

(fig) = f F(=)glx) dx,
and

1l = (£ 07 =]

For m an integer and | < « < +, we denote by W™*(Q2) the Sobolev space
(1] [2] (¢ also Lions [2]) of u € L*(Q), all of whose derivatives of order <m
are in L*(2). It is a Banach space for the norm

(13) I ’.,.E,. D

For a =2, we write H"(Q)= W™*(Q), and the norm (1.3) is the Hilbert
norm corresponding to the scalar product
(1.4) ((u, v))H m(Q) = | IZ (Dju, Djv).

jl€m

The closure in W™*%(Q) (or H™(£2)) of the subspace of functions with compact
support in Q is denoted by W§**(Q) (or H(Q2) for o =2). This is also the
closure of 2(R), the subspace of functions of € into R which are indefinitely
differentiable and of compact support in Q.

If the open space Q is regular [e.g. (1.2) with r = m + 2], we can define a
trace operator

(1.5) ? = (Yos s Ym-1)

which is linear and (in particular) continuous from W™%(Q) into [L*()]™V,
and such that if u is m-times continuously differentiable in Q,

1/a

-1
L)

Yotk = | w2 u—a—ju
4] Ir» ?1 av . 3 ety yj avj r,

M) 14"y = the space of functions L* over I” for the surface measure dI".
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where v is the unit vector normal to I' and directed towards the exterior of Q.
In this case

(1.6) Wgr*(Q) = Ker y = the kernel of the mapping y.

For all this and other results concerning Sobolev spaces, see Sobolev [1] [2],
Lions [2], Lions and Magenes {1}. Other properties of these spaces will be
recalled when needed.

1.2, Calculation of a conjugate function

Let Q be an open subset of R” and g a Carathéodory mapping of @ x R!
into R, i.e.:

(1.7 vieR!, x> g(x,&)is a measurable function,
(1.8) for almost all x € Q, £ — g(x, &) is a2 continuous function.

We shall frequently make use of the following result of Krasnoselski [1]
(Th. 2.1, p.22); the proof we give is shorter than the original one, and is due
to J. M. Lasry.

Proposition 1.1. Let E and F be two Banach spaces, Q a Borel subset of R, and
g:Q2 x E — Faq Carathéodory mapping. For each measurable functionu:Q — E,
let G(u) be the measurable function Q 3 x — g(x,u(x)) € F.

If G maps L*(Q;E) into L'(Q;F) 1 < p,r < o, then G is continuous in the
norm topology.

Proof. Let u,, neN, be a sequence of functions in L?(Q2;E) such that
|thn — 1| Lo(;zy — 0. We are going to show that there is a subsequence iu,,,
k € N, such that | G(u,,) — G(1)]| r¢q;e) = 0, which will prove the Theorem.

Define #:Q x E — R* by:

h(x,n) = |lg(x, 1 + @(x)) — g(x, #(x))| .

Pick a subsequence u,, such that |[u,, — il oz, < 27% and let v, = u, — 4.
It follows that v,(x) — 0 almost everywhere, and hence that h(x,z,(x)) -0
almost everywhere. In particular, since h > 0 for almost every x € Q, we can
find k(x) € N such that:

S‘:p h(x, vi(x)) = h(x, Uy (X))
Set vy(xy(x) = 0(x). It is easy to verify that the function x € Q2 — #(x) is measur-
able, and since

Jelo)|edx < fq S‘:P"”k(x)"é’ dx < % oGOl Zocasy < +0,
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? belongs to L?(Q; E). From the assumption on g, it follows that the function
x +> h(x,d(x)) belongs to L'(R). From the Lebesgue convergence theorem and
the inequality:

h(x, v(x)) < h(x, 5(x))
it follows that:
fo h(x,v(x))dx = 0. =m

This enables us to define the functional
(1.11) G:uw J' g(x, u(x)) dx
o

which is continuous from ¥ into R.
We may wonder what the conjugate function G* defined over the conjugate
space

V* = [A(Q) x ... x L*(Q),

is (a; is given by 1/a; + 1/a;=1).
The answer is given by the following proposition.

Proposition 1.2. With the above hypotheses:

(1.12) G*(v) = j g*(x, v(x)) dx, Vve V¥,
Q
where
(1.13) g*(x, y) = §E“Re [y-n—alx, ], ae. xeQ.

This result is a special case of Proposition IX.2.1 and its proof requires
results which we have not yet established, However, we shall use it for several
examples in Chapters IV and V. (The results we shall obtain will not in any
way interfere with the proof of Proposition IX.2.1.)

2. FIRST EXAMPLES

2.1. The Dirichlet problem
Given f'in L%(), we seek a function u solution of

—du=f in Q
u=0 on T.

2.1
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The variational form of the problem is well known: we have to find u € Hy(Q)
such that

(2-2) a(u, v) = (f,v), Vo e HY(Q)
where
(2.3) a(u, v) = Z": (D,u, D;v).

i=1
Because of Poincaré’s inequality” the norm [u| = +/a(u,u) is equivalent
over HY(Q) to the norm (1.3) and the Lax Milgram Lemma (Prop. 11.3.4)
guarantees the existence and uniqueness of a solution # of (2.2). We also
know (Remark IL.3.4) that # achieves the minimum in H }(Q) of

(2.4) $a(u, u) — (f, u).
We reduce this to the situation in Chapter III (4.15), setting
V = Hi(Q), Y = L@y,
A = the gradient operator,
V* = H™1(Q) = the dual of H}(Q), Y* =Y = L}Q),

Fuy= —(fiu), VueV = Hi®),
60) =5 | It ex

Problem £ (I11(4.16)) is thus identical with the problem of minimizing (2.4)
over H}(Q).
It is easily seen that

F*(u*)

1l

Sup (u* + fLud,»
0 if ur*+ f =0,
+ oo otherwise.

From Proposition 1.4.2,

4% =3 f [p*(0)1? dx.

Q2
Problem #*, the dual of 2 (¢f. I111(4.18)) can thus be written as
2.5 S — F*A*p*) — G*¥(— p*
(25) JSup [— FH4*p*) - G¥(— p¥)),

where A* is the divergence operator.

w "ll Ii]_u(n) < C(Q, a) “Dg""j_l(n), Yue W(l'_a(g)’ 2 bounded, 1 < a < +=.
@ We identify H}Q) with a subspace of L*(Q) and so ( f,u)={ f,u), <.,.> being the
duality between H(52) and H-(Q).
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Eliminating those elements p* for which F*(A*p*) =+, (2.5) becomes:
1
2.6 —_— *( |2
(26) p'eslggn"[ 2 _[ lp () dx:|.
pr=y Q
The hypotheses of Theorem II1.4.2 are satisfied, in particular I11(4.12)
and ITI(4.8) (here in the form of I1I(4.21)). We already know of the existence®

of a unique solution for 2; we have the existence of a solution p* for #* and
this is unique since the functional

P | Il o
2
o
is strictly convex (Prop. IL1.2). Furthermore, the extremality relations
I11(4.22) and III(4.23) hold; the first
F(a#) + F¥A*p*) = ( A*P* a0 )
is trivial here and the second
G(Aﬁ) + G*(_ ﬁ*) = - <ﬁ*’ A >9

implies that
J |grad #(x)|* dx + j |P*(x)|? dx = — 2 ‘[ grad i(x) . p*(x) dx,
0 o Q

which is only possible if':
P*(x) = —grad ii(x), ae. xeQ.

Finally we have

Proposition 2.1, The Dirichlet problem (2.1) written as a minimization of the
Dirichlet integral (2.4), admits problem (2.6) as dual problem.
Both admit a unigue solution (i and p* respectively): these solutions are linked

by

(2.7) p* = — grad 7,
and in addition
(2.8) max #* = min .

Remark 2.1. The correlation between problems (2.1) and (2.6) is well known
and already appears in the early works on the calculus of variations, where
it is obtained using the Legendre transformation.
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2.2, The non-linear Dirichlet problem

Let « be a real number, 1 < « <+, and o' the conjugate exponent such
that 1/o + 1/a’ = 1. Given fin L% (), we consider the problem

(2.9) - ii D(DufF"*Du) =f in Q

u=0 on 9Q,

Equation (2.9) is none other than the Euler equation for the minimization
problem:

(2.10) ueuI’P‘f(ﬂ) [E f,Du ) dx — Jf (x)u(x) :I

Clearly, Proposition II.1.2 applies (the coerciveness II(1.7) resulting from
Poincaré’s inequality) and implies the existence of a solution u for (2.10).
Furthermore the solution is unique since the functional

- Lw,.u(x)r dx,

As before we reduce to the situation in Chapter 111(4.16), setting

is strictly convex (a > 1).

= Wi(Q), Y = L&), A = grad,
V* = W~1%(Q) = the dual of W3 %(Q), Y* = [F(Q)",
Fw) = — (£, u),
G(p) =~f p(x)|* dx.
Q2

Problem 2 (I11(4.16)) is then identical with problem (2.10) above. As in
example 2.1, we have

0 if divp* = f,

F* A* *)
(“4*p%) ‘ + co otherwise,

and by Proposition 1.4.2,

=4[ 3 oo
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The dual problem to 2, 2* (c¢f. 111(4.18) or (2.5) above) can be written as

1 & ’
2.11 Su 1 e o]
( ) pd‘ievl':n%)}" [ o Jo '.;1 IP, (x)l x]

Observing that the function
1 { -
p* == | [Pl dx,

v

is strictly convex over L ()", and that the qualification hypothesis I11(4.21)
is satisfied, we can apply Theorem IIL4.2. to obtain as in Proposition 2.1
above:

Proposition 2.2. Problem (2.10) has (2.11) as its dual problem, (2.10) possesses
a unique solution 4, (2.11) a unique solution p*; we have (extremality relations)

(2.12) p¥(x) = — |D.u(x)|*~2D,u(x), ae xef
and
(2.13) max #* = min 2.

Remark 2.2. A problem of this type (with a non-linear Neumann boundary
condition) arises in glaciology: the solution of the primal problem determines
the main velocity of the glacier and the solution of the dual problem is related
to the constraints in the ice. This is developed in M. C. Pélissier and L. Reynaud
[1], and M. C. Pélissier [1].

2.3. The Neumann problem

Under variational form, for f given in L*(Q), we have to find u € H'(Q)
which satisfies
(2.14) a(u, v) = (f, v), Vv e HY(Q)

where a(u,v) = ((4,v)) is the scalar product (1.4) over H'(£2). This is the Euler
equation of the problem

(2.15) Inf [3]ul® - (£, ]

ue H1(R2)

and the existence and uniqueness of a solution # follow directly from Propo-
sition I1.1.2,
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To turn to the duality situation in Chapter III (4.16), we set

V — HI(Q), Y = LZ(Q)n+1,
Au = (u, D,u, ..., D,u), Yuel,
V¥ = HI(Q)' = the dual of HI(Q), Y*=Y = LZ(Q)"+1,
Flu) = — (f,u),
1
G(p) = Ef Ip(x)|? dx.
Q

Problem 2 [cf. 111(4.16)] is identical to problem (2.15) above. We have
F*(A*p*) = Sug {A*p* + f,u)
: * 0k —
F*(A*p*)=l0 if A*p* + f =0
+ oo otherwise;
from Proposition 1.4.2

G*(p*) = % f |p*(x)|? dx.

The dual problem 2* of 2 [¢f. 111(4.18)] can be written

1
2.16 - = *(x)|2
(216) S [ ! f o) dx]
Ap*+f=0 Q
Let us specify more exactly the constraint in (2.16):
(fsv) + (p*, Av) = 0, Vv e HY(Q),
(2.17) (f;v) + (p&,v) + 3 (p*. D) = 0, Voe H(R),
i=1
which implies
(2.18) f +p§ =% Dp},
i=1

in the sense of the distributions in Q. It follows from (2.18) that 3;_; D;pf e
L*(Q) and from a trace theorem® by Lions and Magenes [1], we can define
the trace on I of 3;_, p*v;, v = (v;,...,V"), the unit vector normal to I'; from
Lions and Magenes [1], we also have the formula for integration by parts

n

(2.19) f (z prvi) vl = 3 (Dpt,5) + ¥ (oF Do)

i=1 i=1

M Q regular; condition (1.2) with r > 2.
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Thus (2.17) and (2.18) entail

(2.20) .il p¥v,=0 on TI.
Conversely (2.18) and (2.20) imply (2.17).

Once the condition A*p* +f=0 has been made clear, problem (2.16)
becomes

L TP
(2.21) p‘ELS;:J » ': 2J0|p ()| dx].

Theorem II1.4.2 applies and a solution 5* of (2.21) exists and is unique.
We have the extremality relation I11(4.23):

G(Ad) + G*(— p*) = — {p*, 4u),
which implies that
(2.22) ps = —1u,  pf = — D, 1<i<n,
and, besides,
(2.23) min # = max P*.

2.4. Other problems

Let o/ be a closed convex subset of H'(Q). We shall consider H*(2) en-
dowed with the norm (1.4) denoted by || .||, and given fin L3(£2), we examine the
problem

(2.24) L“,f B Ju]? ~ (f, u)]-

Different cases are possible, depending on the set .o.
In order to write this problem as a problem (&) of the type I11(4.15), we set

V — HI(Q), Y = L2(Q)n+l’
Au = (u, D,u, .., Du), Yue H(Q),
V* = HY(Q) = the dual of H!(Q), Y* =Y = L@+,
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- (f,u) if ues

F(u) = .
+ oo otherwise,

G(p) = %‘-J‘ |p(x)|* dx, Vpe L} (Q)y*.

It is obvious that Fis convex, L.s.c. and proper whereas G is convex, continuous
and proper. Their conjugate functions can be written:

F¥(u*) = Sup (u* + fiud =i u* + f),

which is the support function of the convex set &/, at the point u* + f [cf.
I(4.4)], and

G*(p*) = %f lp*(x)]* dx.
2

The dual problem of (2.24) can be written

(2.25) p-ez.szl(lxgnn [— X;(A*p* + f) —%Jﬂ|p*(x)|z dx].

Theorem I11.4.2 applies: a solution # for (2.24) exists (and is also unique)
and similarly a solution j* for (2.25) exists (and is unique); we have

(2.26) min Z = max 2%,

and # and p* are linked by the extremality relations

(2.27) = (fs0) + g5(A*p* + f) = {p*, Au),
(2.28) GAT) + G*(— B*) = — (p*, AiD,

from which it follows easily that
(2.29) U= — pg, D = — pf, 1<i<n

For the set &/ we can consider in particular (¢f. Lions [3]):

o =@ + HYQ), ¢ given in H'(Q), and (2.24) is then a non-homogeneous
Dirichlet problem;

S={ucH Quzepin @}, or

o ={ue HY(Q)|u> ¢ in Q}, ¢ given in H(2) (¢ <0 on I in the second
case);

o = {ue H(Q)|you 20 on I'}, y, is the trace operator on I (¢f. (1.5); 2
being regular).
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In all these cases, it is easy to state explicitly the dual problem (2.25) and the
extremality relations (2.27) and (2.29).

2.5. The Stokes problem

Given fin L?>(Q)", we have to determine a vector function u = (uy,...,4,)
and a scalar function p such that

(2.30) — Au + grad p = f,

(2.31) divu =0,

(2.32) u=0onT.
Let

W ={ve HyQ)" dive =0};
this is a Hilbert space for the scalar product induced by H}(Q)",
(w, v)) = Z (Diuj’ Divj)’

1gi,j<n
(Q bounded).
The variational formulation of (2.30)-(2.32) is: To find u € W such that
(2.33) ((u, v)) = (f, v), Yve W.
From II(2.8), this problem is equivalent to the minimization problem
(239 1ot [ 4u)? — (£, )
We set:
vV = HyQ), V* = H™(Q)" = the dual of ¥,
Y = L) = Y*, A = div,
F() =3 |o|* = (f,v)
0 f p=0
G(p) = P
+ oo otherwise.
The problem
(2.35) Inlf [F(v) + G(Av)]
is then identical with problem (2.34).
We have

(2.36) F¥(4*p*) = Sup [(p*, dive) + (f,0) — 4 [o]°]
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The supremum is attained at the point v(p*) € ¥ which satisfies

((v(p*), w)) = (f, w) + (p*, div w), VweV,

that is, v(p*) is solution of the problem

— ¥\ = £ _ * 3
(237) 4v(p*) = f — grad p* in Q,

v(p*) =0 onT,
and hence
(2.38) F*(A*p*) = § [v(p*)]*.

The conjugate function of G is G* =0, and the dual problem of (2.35)
— F*(A*p*\ — G*(— p*

(2.39) Sup [- F(4%*) = G*(= p*)]
can be written as
2.40 S -1 *)127.
(2.40) Sup (=3 o)’

From Remark I1.1.1, problem (2.34) (or (2.35)) possesses a unique solution.,
Since hypothesis I1I(4.8) is not satisfied, Theorem I11.4.1 is not directly applic-
able. On the other hand, since the function F*is continuous at all points
A*p*, the analogous hypothesis to IT1(4.8) for problem 2* is satisfied, which
implies that problem £* is stable and yields: "

(2.41) inf 2 = sup #*.

The existence of a solution for * can be demonstrated directly: if p% is a
maximizing sequence, then

lo(pml < e,

the sequence v(p%) is bounded in H}(2), and by (2.37), grad p# is bounded
in H7Y(Q)", so p* is bounded in L?(Q)/R. There exists a suitable subsequence
(still denoted p), which converges in L*(2)/R to some limit 5* and we verify
that p* is a solution of #*; there is, however, no unique solution of #*2,
The extremality relation is none other than (2.30).

Proposition 2.3. Problem (2.30)-(2.32) possesses a solution {ii,p*} where i
is solution of the minimization problem (2.34) and p* is solution of the dual
problem (2.40). Moreover, the problems P and P* are linked by the relation
(2.41).

M In addition to the existence (already known) of a solution of 2.
@ The solution will be unique: except for additive constants.
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3. NON-DIFFERENTIABLE FUNCTIONALS

We shall consider in detail here two examples where the functions to be
minimized are non-differentiable. In the first example (Section 3.1), duality
allows us to display functions which have a fundamental physical significance
(the constraints) for the problem. In the second example (Section 3.2, ¢f.
Remark 3.4), duality permits the introduction of the Euler equation of the
problem, which is non-standard since the functionals are non-differentiable.

3.1. Mossolov’s problem

We now consider the problem (¢f. Lions [4], Mossolov and Miasnikov {1])

(3.1) Inf [% J lgrad u(x)|? dx + B | |grad u(x)| dx
Q

usHl’)(.O) a
- [omase)

where « and f are constants >0 and f€ L%(Q) is given. We shall see that this
problem can be put into duality in several different ways, leading us back by
different routes to the situation in Chapter III (4.16).

We shall take V = H}(Q) endowed with the Hilbert scalar product (2.3)
(Q is bounded), ¥ = L%(Q)", A = the gradient operator,

V* = H™'(Q) = the dual of Hy(Q), Y* =Y = L*(Q),
Flu) = 3 Ju)® = (£, w) || = norm of Hi(Q),
G(p) = B Llp(x)l dx, VpeY.
Then problem #:
(3.2) Inf [F(u) + G(Au)]

ueV

is identical with problem (3.1).
To state the dual problem explicitly, we calculate F* and G*:

ueH }|

(3.3) F*(u*) = S“Bn[<“ + fiu) —-Ilullz]
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The maximum is attained at the point # which is solution of the Dirichlet
problem

—aAu=u*+f

(34) ue Hi(R)

and the value of the maximum is

1
(35) FHu¥) = 5= [4* + £ -
where the norm of H-1(®) is the norm dual to that of H3(Q).
36 06" = Sup | *(9ne) - Bleol 1
peL™(" |
_10if |[p*(x)| < B, ae.
3.7 Glp) = \ +o otherwise.

Problem 2* can then be written as
(3.8) Sup [~ F¥A*p*) — G*(— p*)],

where, eliminating those values of p* for which the functional takes the value

_w’

1 :
(39) Sup [— 55 1 = divp*|E. m,].

|p*(x)| < Ba.¢.

Theorem 1I1.4.2 applies: there is a solution @ of (3.1) (which is unique by
strict convexity), a solution g* of (3.2) (not necessarily unique), and these are
linked by the extremality relations

(3.10) ‘F(ﬁ) + FHA*P*) = (A*p*, 4 )
G(AT) + G*(— p*) = ~ (7% 4@ >.

With (3.4) the first relation yields
(3.11) — a Au + div p* = .

The second relation means that

J [B|Au(x)| + p*(x)- Au(x)]dx = 0,
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and since the integral is >0, we denote that:
(3.12) B |grad #(x)| = —p*(x).grad a(x), a.e.
In the present case, the solution of the dual problem is used in characterizing

the solution of the primal problem. Conversely let us assume that # € HY{(Q)
and that there exists * € L*(Q)", such that we have (3.11)-(3.12) and

(3.13) [pP*(x)| < B ae.;

then it can easily be seen that the extremality relations (3.10) are satisfied
and Proposition I11.4.1 implies that 7 is a solution of 2 and p* a solution of
P

Proposition 3.1. Problems 3.1 and 3.9 are mutually dual,
(3.14) min # = max 2*.

Problem (3.1) possesses a unique solution @ and problem (3.9) possesses at
least one solution p*.

An element ii € HY(Q) is a solution of (3.1) if and only if there exists p* €
L¥QY", which satisfies (3.11), (3.12) and (3.13).

Another method of dualization

Again we set V=HYQ), V*=H"Y(Q), Y= Y*=L*Q)", A=grad, but
the functions F and G are chosen in a different way:

(3.15) F(u) = — (f, u), Yue HL(Q),
@ 2
(3.16) o) = | [3leta0 + Bt [ex.

With this choice of F and G, problem (3.2) is identical with problem (3.1).
Let us calculate F* and G*:
(3.17) F¥u*) = Sup<{u* + f,u)
|0 if a*+f=0
|+ otherwise.

peL?(s)n

618 60 = sup [ [re0to) - lto - ploto} |

From Proposition 1.2,

(3.19) G*(p*)=L {i‘.’.e [p*(x)c - 5le - ﬂlél]} dx
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Let us calculate the supremum contained in the latter integral. For the direc-
tion, the optimum is obtained at

*
F=p p*(x)
|p*(x)|
and is equal to

Ip*(x)| —Epz - Bp;

we now have to maximize this expression for p = 0. We must distinguish
two cases, according to whether | p*(x)| < or > . Inthe first case, the maximum
is attained at p =0 and is equal to 0, and in the second case, it is attained at

= [p*(x)| - B)
and is equal to
= (|p* 2.
—(p*()] - )%
finally ;"
(3:20) G*p*) = f Pl — B2 dx 2.
With the choice (3.15)~(3.16) of F and G, the dual problem of (3.1) is

T R

div p*=

Theorem I11.4.2 again applies; the first extremality relation (3.10) is trivial
and the second gives us:

(3.22) grad u(x) = “|_‘:( 9l (|g*(x)| — B)+ ae.,

where §* denotes a solution of (3.21).

) The maximum in (3.19) is attained at £ = 0 if | p*(x)| < fand at

{=

e (s = 8

if | p*(x)| = 8.

@Dy, =5ifs20,0if s <0; 5. = (—5),; s means (5,)%
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Proposition 3.2, Problems (3.1) and (3.2) are mutually dual,
(3.23) min # = max Z*.

Problem (3.21) possesses at least one solution. An element @ of HYQ) is
a solution of (3.1) if and only if there exists §* € LX(82)", satisfying div §* = f and
(3.22).

Remark 3.1. Let A be a non-linear operator of V= HYQ) into V* =
H~Y(Q), satisfying the hypotheses of Theorem IL.3.1 (I(3.3), II(3.4) or
11(3.19), 1I(3.5)) and let

¢(v) = B J |grad v(x)| dx.

Theorem I1.3.1 implies the existence of u € H}(Q) such that
(3.24) CAu — foo —u) + ¢(v) — @) 20, Vve HyQ);

we set

(3.25) = f — Au;
we then have from (3.24),
(3.26) o € 0¢(u).
Recalling the technique of duality which led to (3.9), we set
F(o) = — (o,v),

G(o) = B f 1P dx

and obtain the existence of p* € L*(Q)", such that

(3.27) P < B ae.
(3.28) Blerad u(x)| = — p*(x). grad u(x) a.e.,
(3.29) Aii + divp* = f.

We note that analogous results can be obtained with other operators 4
and possibly with other spaces ¥; in particular for the time-dependent case,
* ou

V = L}[0,T]; HY(®R)), and Au= -5 — o Au
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Remark 3.2. A situation completely analogous to the foregoing appears
in the mathematical theory of non-newtonian fluid flows of Bingham type,
and the p*s are then directly related to the stress tensor (see Duvaut and
Lions [1]).

3.2. A problem in filtering theory (1) (¢f. Berkovitz and Pollard [1] [2])

Let © be an open subset of R", which may or may not be bounded, and d a
real function in Q; the following problem arises in the theory of optimal
filtering:

2
(3.30) Inf lU |Auf? dx + (J |u|dx) }
u=¢,0u/dv=0p/dv 2
onl Q o

Berkovitz and Pollard in the cited reference considered the case n=1, and
Q = )0,+][; we shall examine here the more general case where » is arbitrary.
Before forming the dual of (3.30) we shall start by giving an exact formulation
of this problem and by demonstrating the existence and uniqueness of solu-
tions, a result which does not follow immediately from Chapter II.

We call #(€) the space

(3.31) {u|ue LNQ), Aue LX(Q))}
which is a Banach space when equipped with the “natural” norm:
(3.32) lul Ly + | Aul| L2y

We call 2£4(Q) the closure in #(Q) of the subspace 2(Q) of indefinitely
differentiable functions with a compact support in Q; #,(Q) is the set of

u € 3#(Q2) which satisfy in a weak sense: (¥
du
(3.33) u =0, 3 = 0 on T.

Given ¢ € #(Q), the precise formulation of (3.30) is

2
(3.34) Inf  ~| | |Au?dx + (| [udx) |
ue¢+9fo(!))2 o o

Proposition 3.3, Problem (3.34) possesses a unique solution.
Before proving this result, we shall establish some lemmas.

Lemma 3.1. If u € #o(Q), then @i € #(R"), ii being the function u extended
by 0 outside Q.

Proof. The mapping ¥ € 2(Q) > § € #(R"), being an isometry (2(Q)
endowed with the norm induced by #(Q), can be extended as a linear con-

) Cf. Lemmas 3.1, 3.2 and 3.3 hereafter.
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tinuous mapping of #,(Q) into IE(R™). If u € H# (Q), the image of u under this
mapping is #.

We note that:
(3.35) Aii = Au, Vue #, (2). m
Lemma 3.2,

(3.36) H#(R") < H*(R") and the embedding is continuous.

Proof. If u<c #(R"), then its Fourier transform #e L°(R") and £2d(€) e
L}(R"). We shall now show that u € L}(R"):

f (@) dt = f 2 a€ + j a(6)? e
R T30 8! 13l>1
<clilfpan+ [ e lopa
131>1
ca)ig mm + 18] Z2an
¢ Mu“.azf(l")'
It follows easily that £,4 e LZR"), 1 < i< nand
"fiﬁ(é)“fl(n") <c¢ “u“azﬂn-) ;
(3.36) results from this. ®

Lemma 3.3, If Qisregular, of class €2, thenu € 3 (Q) ifandonly ifu € H#(Q)
and it € H*(R").

Proof. Lemmas 3.1 and 3.2 show that if u € £ o(Q), @ € H%(R").

Conversely, if u € #(Q) and i € H*(R"), it can easily be shown that i is the
limit in s#(R") of functions with a bounded support. Indeed, let § € Z2(R"),
0<60<1,0(x)=1for |x| <1, 6(x) =0 for |x] > 2 and let Og:

(3.37) Or(x) = 6(x/R);

when R — oo, Bgu — u in #(Q) and O @l — 1 in H*(R").

We have now to prove that if u € 5#(Q) is a function with a bounded support
and if #€ HXR"), then u is the limit in #(Q) of functions of 2(L). Since
fi e HXR"), u € H¥Q) (from the trace theorem); thus u is the limit in H3(Q)
of functions of 2(€2). We can restrict outselves to functions with support in a
bounded open set 2, @' = ©, Q' > supp u. The result follows then from the
fact that H3(Q') = »#(Q') with a continuous imbedding, when Q' is bounded.

|

<
<
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Proof of Proposition 3.3.

Let u,, be a minimizing sequence of (3.34). It will be of the form
(3.38) U, =¢ + v, U € H(Q),
and

(3.39) () = %[ L |Atl? dx + ( L|um} dx)z] —inf®,

It follows from (3.39) that J(u,,) is bounded from above. The sequence u,, and
hence v, are bounded in J#(Q):

(3.40) 140l 120y < €,

(3.41) 1ol 10y < €

From Lemmas 3.1 and 3.2, the sequence #,, is bounded in H*(R")
(3.42) [l 2mm < €.

From (3.40)—(3.42), we can extract a sequence m’ from m such that
(3.43) D —w, weaklyin H?*R".

Since the imbedding of H%(®) into H(0) is compact for every bounded ball
0 (¢f. Lions and Magenes [1]), (3.43) implies that

(3.44) Bmlo — Ww|p strongly in  HL(©).
Using the diagonal process, we can choose the sequence m’ so that
(3.45) D,,Ax) = w(x)

From (3.41), (3.45) and Fatou’s Lemma, we have

(3.46) j w(x)|dx < lim | |[3,(x)|dx < c < + o, ae.
R m' 2w Jgn
which implies that w € #(R"); of course v = w|, € H#(Q), and as w=0 in
C @ (by (3.45)), 5 = w. Lemma 3.3 proves then that » € #¥(Q).
Now let 4= ¢ + v e ¢ + H(Q); by (3.46), (3.49) and the weak lower semi-
continuity of the L2 norm, we find that
J@ = inf  J(u),

ue¢p+ Ho(R)

which shows that # is a solution of (3.34).
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To demonstrate the uniqueness of u, let us suppose that #, and i, are two
solutions of (3.34) and let u = @, — #,. From the strict convexity of the function

u —»J‘|Au|2 dx,
2

we find that 44, = A#,. Thus ue #(Q) and Au=0. The function & (u
extended by 0 beyond Q) is in #(R") and from (3.35) satisfies 4 =0; thus
this function # is analytic and, being zero on (@, is zero everywhere. W

Remark 3.3.The result of Proposition 3.3 is due to Berkovitz and Pollard
[1] when n =1 and Q = ]0,+[; it is new for the general case.

Duality for the problem (3.30)-(3.34)
We go back to the situation in Chapter III(4.16), by setting
V = #(Q), Y = [MQ) x [X(Q),
Au = {u, du}, Yue #(Q),
V* = #(2)*= the dual of #(Q),
Y* = [°(Q) x I3(Q),
0 if ueg + Hy(Q),

F(u) = ’
+ oo otherwise,

(F = the indicator function of ¢ + #¢(2)),
G(p) = Golpy) + Gi(py):

2
Golpo) = & ( j 1po dx) = 1 1ol o
0

G,oy) = 4 j P2 dx = 1 [21] o

Q

The problem
(3.47) Invf [F(u) + G(Aw)]

is thus identical to (3.34). Let us determine the conjugate functions.
From Remark 111.4.2,

(3.48) G*(p*) = G3(p3) + GI(PY)
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and from Proposition 1.4.2,

(3.49) G3(p3) =% |p§] 2= - Vpg € L*(9),
(3.50) G1(pY) =1 [PlLe) Vp} e I(Q),
F*(A*p*) = Sup (p* Au)
ued + Hp(R2)

={p* A¢> + Sup f(pzv + ptav)dx.
ve #o(D) o
Since 2(Q) is dense in H#y(2), we have
F*(A*p*) = (p*, A > + Sgu(g) J (pdv + p,4v) dx,
ve 0

and the supremum is equal to 0 or +w according to whether Ap} + p} =0
(in the distribution sense) or not:

_|<p* 6> if Apt+pi=0

(3.51)  FY(4%p*) .
+ oo otherwise.

Problem #*, the dual of (3.34), can be written
Su? [— F*(A*p*) — G*(- p™)]
p‘E -

Eliminating those values of p* for which the functional is equal to —wo, we
find from (3.48) and (3.51):

1 1
(3:52) pteL"“?!gng(m [— (p*A¢ ) — 2 Ipollz- ™7 ||pf|liz(n,].
Ap‘l + p; =0

Theorem I11.4.1 applies, the stability condition I111(4.8) being easily verified :
problem (3.52) possesses at least one solution j* and inf# = sup#*. In fact
the solution of (3.52) is unique; if 5* and §* are two different solutions, we
obtain from the strict convexity of the function p¥ > 4| p*|22(0, 5* = 4% and
80 p* = §* since p} = —Apt = —AGF=g}.

We apply now the extremality relations (Proposition II1.4.1, Remarks
II1.4.1 and 111.4.2):

(3.53) F(u) + F¥(A*p*) = { A*p*,u),
holds automatically, but we also have

(3.54) 3 luliie + $1PGHie @ = — <55 #),
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(3.55) 1 A Zaq) + 3 1PY L2 = — <P} Au ).
Relation (3.55) obviously implies

(3.56) A = —

On the other hand

_(phad = — j pii dx <( l dx)~ 1932 o
0 0

*
1

a1

< 1 |p¥li- @t "ﬁ”zl(m’

and from (3.54) all these inequalities are in fact equalities, which implies succes-
sively that

(3.57) — Pe(x)it(x) = Bl L= o u(x)] 2,

(3.58) 18] = 0y = l#ll 1oy

Thus

(3-59) — p¥(x) = ||it]| s ey[5En #(x)], a.e. when i(x) #0.

Since Ap¥ =—p§, (3.56) implies that A% = j§ € L*(Q) and (3.59) implies
that

(3-60) A%u(x) = — ||ut] L1 q - [sen #(x)], a.e. when i(x) #0.
Proposition 3.4. (i) Problems (3.34) and (3.52) are mutually dual and
(3.61) inf # = sup #*.

(ii) Problem (3.34) possesses a unique solution 4, problem (3.52) a unique
solution p* and these solutions are linked by the extremality relations (3.56),
(3.57) and (3.58).

(iii) u € ¢ + H#o(Q) is solution of (3.34) if and only if

(3.62) Aue L(Q)
and
(3.63) A’u(x) = = |ulpqgsenu(x)],  ae when u(x)+0.

Proof. Everything has already been established except (iii). It foilows from
(ii) that (3.62) and (3.36) are necessary conditions. Conversely, if u€ ¢+
Ho(Q) satisfies these relations, let

Pt = — Aue L¥Q),
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and
p¥ = — Apt = A*uel”(Q).

It is easily verified that the extremality relations (3.53), (3.54) and (3.55)
are satisfied by u and p* = (p§,p¥), which, with Proposition II1.4.2, implies
that « is the solution of & (and p* the solution of #*). m

Remark 3.4.Equation (3.62) together with (3.63) constitute the Euler
equation of problem (3.34). It has been obtained here using the extremality
relations; it can also be obtained by a direct argument. On the other hand,
the characterization of the solution of the problem by (3.62), (3.63) (and u
¢ + #o(Q)) seems to be new, even in the special case where n=1 and Q=
10, oof.

Remark 3.5. The solution of (3.34) has been determined explicitly in
Berkovitz and Pollard [1] [2], when n = 1, Q = ]0, o], #(0) = 0,4'(0) = 1. The
solution is the function u defined as follows:

On [og, 2] (0o = 0):

_ I 4 25 4.4 2 2.2
u(x)——24x +121x le + x.
011 [an,an+1]’ n > 1’
ux) = — p~*ulp(x — a,) + a,-,)

Xpypyg — &, = pﬁl(“n - %,_y).

On [A,+o], u(x)=0, where A=Ilima"

n-—»0
Moreover

3¢2 ( 9 ¢ )“5 6¢
= ———— I = — RS S —
Ty 1258 + 1 “TSEE

where ¢ is the unique solution of the equation
9¢% = (¢ + 1)¢ - 2)°

in the interval ]2, o[. We have

I = leu(x)| dx.
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By direct use of the characterization (3.62)-(3.63) of the solution, we can
verify by elementary calculus that the above function is in fact the solution
of (3.34).

3.3. Problems of filtering theory (2)

Another problem in filtering theory proposed by L.D. Berkovitz and H.
Pollard [3] [4] is the following:

(3.64) Inf% [( f| u(x)|dx>2 + Jj|Au(x)|2 dx]

the infimum being taken among those functions # which are regular over
Q,Q=10,+o[, such that ueL'(Q), u(0)=0 and Auec L*) where 4 is
the integro-differential operator defined by

du * du .
(3.65) Au(x) = — a(x) +exp(— x) + J‘O exp(— (x — t))Tt(t) de;

this is equivalent to

(3.66) Au = Aju + p,
with
(3.67) Aju= —u +u %p,

where p denotes the function

exp(—x), x>0

(3.68) p(x) = 0. x<0

and v % w denotes the convolution product of v and w

+ 0

(3.69) v % w(x) = j v(t)w(x — t)dt. ¥

-

To formulate problem (3.64) a little more precisely, we shall need the follow-
ing lemma '

Lemma 3.4. Let u be an absolutely continuous function in @, ue LY(Q),
W € Lo (). Then Ayue LA (D) and

@ Jtis to be understood that the functions defined over 10, «[, are extended by 0 for x < 0
and in such a case

vRw(x) = f vityw(x —1)dt, x>0 and vkw(x) =0, x <0
0
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(3.70) u(x) = u(0) — j xAlu(t) dr — f x(x — )A,u(t) dt.

0 [

Proof. If g is a function defined over Q, we term g the function which is equal
to g over Q and to 0 for x < 0. We have the standard result (¢f. Schwartz [1]):

(3.71) i = & + u(0)s,

where § is the Dirac d-function at 0.
We now consider the expression

~

(3.72) Au= -0+ %p=(p—~98) xu
which from (3.67) and (3.71) is equal to
A= Ay - u(0)6 + u(0)p.

The inverse of the convolution of (p — 8) is —(¢bo + J), where @, is the Heaviside

function
1 t>0.
t) =
$olt) {0 t<O.

Thus we deduce from (3.72) that
B = = (g + 6) * (Au — u(0)5 + u(0)p)

which gives us after simplification

B = — A0~ ¢y * A + u(0)d;
hence, in R,
u'= — Alu - ¢0 * Axu,
u(x) = — Aufx) — f A u(t) dt, x>0W,
0

Another integration with respect to x implies

x x

Aju(t)dt — J (x — t)4,u(t) dt,

0

u(x) = u(0) — J

0
which is in fact (3.70).

(1) We can show by a similar argument that if « € L1(2) and if the restriction of A, 4 to
Q is in LY(Q), then u is absolutely continuous and we have the conclusions of the lemma
with fewer hypotheses.
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We note that, from (3.73), VT > 0:
(3.74) Il Lo, rn < (T || A8 Lsgo.myp
where ¢(T) = a constant dependingon . w
We now define the space V,
(3.75) V ={ueL}Q), we Ll Q) Aue [¥Q)}.
By Lemma 3.4, V is a Banach space for the norm
lullLia + 414 20

For u € V, we can speak of u(0), and the precise formulation of the problem
is then to take the infimum in (3.64) among those functions u eV such that
u(0)=0.

Duality for problem (3.64)

The space V has already been defined; we set ¥ =LYQ) x LA(Q), V* =
the dual of ¥, Y* = L%(Q) x L), and

Au = { Aqu, A u},
(3.76) ot Aun}

Aju=—u +u % p, Agu = u.
ForueV, let
(3.77) F(u) = |° if u(0) =0,

+ oo otherwise,

and fOfp = (Po,Px) € Ya

(3.78) G(p) = Golpo) + Gi(p1)

(3.79) Golpo) = 3 |PolLsey - Gy(p1) = 3|1 + plli2car
The problem

(3.80) Ln'f [F(u) + G(Au)]

is indeed identical to problem (3.64).
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We shall determine the conjugate functionals explicitly. From Remark
I11.4.2 and Proposition 1.4.2,

(3.81) G*(p*) = G¥(p3) + G1(p})

(3.82) G§(p8) = 3 P8 )= (ay

(3.83) GH(p}) = 11ptia — <Pt >
Lemma 3.5, Writing p(x) = p(—x), we have

(3.84) FHA*p*) = 0

if

(3.8) Lot —ptwi)+5=0

dx

and +o otherwise.
Proof. For p* € Y*,
FY4%p*) = Sup (p* Au)

u(0)=0

Sul;:» j [pdu + p¥(— v + v % p)] dx.
Uue
u(0)=0"v0

But

J P % p)dx = I (Pt % o)’ dx,
0 0
and we thus have

F*(A*p*) = Sup J [ptu + (py % ¢ — pH)w]dx

u0)=0v0

= Su 2y 4+ (p* w o0 ~ p¥'] dx.
"E@(?"L [p3u + (Y % p — pPv]

The latter supremum is equal to +o if (3.85) is not satisfied and so F*(A*p*)
=+ in this case. If (3.85) is satisfied, a legitimate integration by parts gives

j [odu + (pF % 5 — ptw] dx =
0
® *k d %* ok >
+ Po+‘a;(P1_P1*P)“dx=0

1]
and in this case we indeed have F*(A*p*)=0. =
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We are now in a position to state explicitly the dual problem
(3.86) Sup [ - FX(4*p*) = G*(= p*)).
p‘E *
It can be written as

(3.87) Sup
p*eLl™ (2) x L2(9)
py+(pt—pikp)y =0

1 1
- ptp) =5 Ipbliem = 5 U9t |
Proposition 3.5. (i) Problems (3.64) and (3.87) are mutually dual and
(3.88) Inf#? = Sup 2*.
(ii) Problem (3.64) possesses a unique solution 1, problem (3.87) possesses a

unique solution p* and these two solutions are linked by the following extremality
relations:

(3.89)  pi(x) = — || sgn #(x) ae. when u(x)#0,
(3.90) 18] L= @ = [l rcap
(3.91) Fr=id ~@ % p - p.

(iii) A function u is the solution of (3.64) if and only if
(3.92) uev, u(0) = 0,
(3.93) (g —q % p)eL®(Q),whereq = +u —u % p—p
(3.94) (g — g % pY(x) = + |uLiqsenu(x) ae. for u(x)#O0.

Proof of (i) and (ii). The relation (3.88) results from Theorem II1.4.1 since
condition I11(4.8) is satisfied. The existence of a solution p* of (3.87) also
results from this theorem; this solution is unique since if §* is another solution
then ¥ = §* as p¥ > —3|| p¥|}2(q, is strictly concave; and after

PE =Y *p —P1) =T *p~qt) =35
so that p* = g*.
To prove the existence of a solution of (3.64) we use the direct method:
if u, is @ minimizing sequence, then u, is bounded in L(£), A, u, is bounded in
L*(Q) and from (3.70) and (3.73) (and u,(0) = 0), u, is bounded in L2 (Q)
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and u, is bounded in L2.(0). By compactness, there exists a sequence n; —
and there exists u € L{5.(€2) such that

u,, ~ — win L*([0, T]) in the weak star-topology, V7> 0,

u,  —u weaklyin ([0, T]) VT >0,
A,u, — Ajuweakly in LQ).

We deduce from this that u, — u uniformly on [0, T], VT > 0, so that u(0) = 0;
furthermore, application of Fatou’s Lemma shows that u € L'() and

J lu(x)| dx < liminff |, (x)] dx < + o0.
0 nj— o 0

Thus u € V and u is the solution of problem (3.64). The uniqueness of the solu-
tion results from the strict convexity of 3| . ||Z2¢q,: if # and & are two different
solutions then A, it = A, # and from (3.70), & = § since #(0) = #0) = 0.

The extremality relations (¢f. Proposition III.4.1 and Remarks II1.4.1 and
111.4.2) can be written

F(a) + FXA*p*) = { A*p*,u ),
which is obvious,
(3.95) Go(Aou) + G3(— P3) = — < PS> Aokt >,
(3.96) GI(AIE) + GH(— p}) = — (Pl Au ).
Relation (3.95) can be written

%“‘7“21(9) + %“53 "iﬂt’(n) = = (P, ),

and is equivalent to (3.89) (3.90) (¢f: no. 3.2). Relation (3.96) can be written:
=+ % p+ pliag +3 P20 — <P p>=
=~ (PhE-T %)

and is equivalent to (3.91).
(iii) Let us assume that a function u satisfies (3.92)~(3.94). We then set

pr=q=u—u wp—pel(Q®.
ps =(q % p — g)e L(Q).

We verify that u € V and p* € Y* satisfy the extremality relations and  is thus
the solution of (3.64) and p* the solution of (3.87). =
W yand p e L¥(Q); &’ * p € L¥Q) by the convolution inequality since p € L*(Q).

C¥
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Remark 3.6. The solution of (3.64) has been determined explicitly in
Berkovitz and Pollard [3] [4]. It is the function
(3.97) u(t) = — Elz(t “ A — 1) i t<d
=0 if t24,

where I = |u]|.1(,, Whereas r, 4, I are linked to the auxiliary coefficient v by the
algebraic relations

IAr = 24v

I(A% + 2rd + 12) = 6(1 — v?)

I(r +22) =201 — A)?

24 + _)_.__ _r

24730 12

By direct use of the characterization (3.92)—(3.94) of the solution, we can
verify by extremely elementary calculus that (3.97) is indeed the solution of
(3.64).

3.4. The problem of elasto-plastic torsion
Let us consider in H §(Q2), the set
A = {ve HyQ)||grad ()| < 1 pp.)

which can easily be proved to be closed and convex. The problem of elasto-
plastic torsion is the problem:

(3.98) Inf {l J [(grad u)* — 2 fu]dx }

veX | 2 0
which is equivalent to finding the solution u € X of the variational inequality
(3.99) (v —uw) —(fiv—u =0, Vve K.

According to a result of Brezis and Stampacchia [1], if fis given in L(Q),
I < a < o, then (3.99) possesses a unique solution # satisfying @ e W2%(Q).
To simplify matters, we shall assume that

(3.100) f e L*(Q),
s0 that
(3.101) ie W»Q), Vo, 1 < a < o0.
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Because of the Sobolev embedding theorems’ i satisfies
(3.102) ic€'(Q).

We set V= HYQ), V*=HQ), Y= Y*=L*Q), A=grad
and

Fu) = 3 u]* = < fud

0 if x)| <1 ae.
G(p) = [p()] .
+ oo otherwise

and problem (3.98) can be written:
(3.103) Inf [F(u) + G(Au)].

ueV

We easily check that
Fru*) = 3 |u* + f13.

where || . || is the dual norm of
1/2
lu] = [ f (erad u)? dx]
o]
in H~1(Q). We also have
60" = | oo ox.
o]
The dual problem of (3.103) can therefore be written as

o109 sup [~ Jlae = 713 = [ ool ax |

p:ELz(_Q)n

107

Problem (3.103) does not satisfy the stability criterion (4.21) given in
Chapter III. On the other hand, the dual problem (3.104) satisfies the analogous
condition to I11(4.21) and owing to the complete symmetry of problems &
and 2*, we can easily transcribe the results contained in Theorems 111.4.1 and
I11.4.2: 2* is stable, which implies that 2 possesses a solution (which we al-

ready knew), and that
(3.105) Inf 2 = Sup 2*.

o pyme(Q) < ¥°(3) with a continuous embedding provided that » < ma and that Q is

sufficiently regular (2 is €7, r = m+ 2). Cf. Sobolev {1}, Lions [2].
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If #* possesses a solution p* then the extremality relations imply that

(3.106) —Au + divp* = f
and
(3.107) J‘ |p*(x)| dx = — f p*(x). Au(x) dx,

which is equivalent to

(3.108) |P*(x)] = — p¥(x) - Au(x) a.e. xe€Q,
which yields almost everywhere in £,

(3.109) prl =0 if Igraddﬁ(x)|<1
p*(x) ]irr_:d—’f_— if |grad u(x)| =1
where
(3.110) Mx) = [p*().
Then # satisfies
(3.111) ~ Aii — div <z§%g—gl) = f

Conversely, if there exists 1 eL?(Q2) such that A(x)=0 for |graddi(x)|
< 1, and which satisfies (3.111), we define 5* from (3.109) and the extremality
relations (3.106) and (3.107) are satisfied, which means that p* is the solution
of #* (and # the solution of #). ®

Remark 3.7. As problem (3.104) is not coercive in L¥(Q)",® it does not
necessarily possess a solution.

Remark 3.8. If problem #* possesses a solution, then we necessarily have
(3.106). For this reason it is sufficient to maximize (3.104) among the p* €
L*(IN" which satisfy (3.106). Setting

E=f + Au

and changing the signs, we obtain

*
(3.112) p'elx.rzl{n)n{.[ |p*(x)) dx}.
divp*=¢ Q

W 1t is only coercive in L*(2)", which is not a reflexive space.
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In the two-dimensional case, n =2, there exists ¢ € H}(Q) such that
Ad = ¢, and setting g = p* — grad ¢, we have divg =0. If furthermore Q is
simply connected, there exists € H'(L) such that,

(3.113) q, = 0y/0x,, g, = — 0yY/ox,,
and problem (3.112) is therefore equivalent to the following problem for ¥,

2 241/2
G114y Iof | |(QL 20 (L _28) |7y,
ver'@ || \0x, = 0x, ox, 0Ox,
Like (3.104), this problem is not coercive (or at least it is coercive in W*:(Q)).

It can be compared with the problems which will be studied in Chapter V,
no.4.1. m

We shall now see that it is possible to define a generalized solution of
(3.104) according to the method outlined in Chapter III, no. 6.1.

We set V= HY(Q) 0 €(D) resp. (¥ = €%Y") together with the topology
induced by H(Q) (resp. L*(Q2)"). We set Z = the space of bounded Radon
measures on Q with values in R, Z = .#,(Q)". The natural scalar product
between ¥ and Z extends the natural scalar product between ¥ and Y*, and
the spaces ¥ and Z (resp. ¥ and Y*) are mutually dual for the corresponding
topologies a( ¥,2), a(Z, ¥) (resp. o(¥,Y*), a(Y*, ¥)).

The extension of G* to Z is easy:

G*(p*) = J |p*| = variation of |p*| on Q, Vp*e Z,
Q

and we have

ldivp* — £} if divp*e HTY(Q)

F*(A*p*) =
(4%p") + oo otherwise.

After that we consider the problem &,

Inf [F(u) + G(Au)]

veV

which admits the same infimum as (3.103) and the same solution # because of
(3.102). We also consider the problem 2*, which is the bidual of #*:

eits s 3] fawp - s - 1]

div p*eH~ 1())
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By analogous reasoning to that in Section I11.6.1,
Sup #* < Sup #* < Inf &,
and since Sup@* = Inf P, there results the equality
Sup #* = Sup #*.

4. REGULARITY AND DUALITY
Orientation

The pairs of dual spaces considered in the general setting may be Hilbertian,
and in this case we can take ¥V = V* (resp. Y= Y*) the pairing between V
and V* (resp. Y and Y*) being the scalar product of ¥V (resp. Y). This special
case corresponds to Hilbertian duality.

Here we give an example of Hilbertian duality. This example will also
illustrate the interconnection existing between the regularities of the solutions
of the two dual problems. =

The primal problem is:

(4.1) Inf [3]u]? = (fu) + ¥(w)]

ueH §()

where fe L¥(Q) is given, y € I'y (H(Q)) is given (convex, l.s.c. and proper),
I . || being the norm in H§(£2); the open set  is assumed to be of class €2

Weset V=Y =H}Q), V*= Y* = H}Q), the duality between ¥ and V*
(resp. Y and Y*) being the scalar product of ¥ (resp. Y). The operator A is the
identity,

(4.2) F(u) = % |u? -
(4.3) G(p) = y(u) (p = u).

For u* € V* = H}(Q), we have

F*w*) = Sup [((u*,u) + (f4) — 3 |u’].

ueH (D)

The supremum is attained at the point &, which is the solution of the Dirichlet
problem

— Au= f — Au®,

(44) ue Hi(Q),
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and the value of the supremum is

(4.5) Fu*) = + }|u* + ¢|%
where ¢ is the solution of
(4.6) - aé =],
¢ € H(Q).
The conjugate function of G is
(4.7) ¥*(p*) = Sup [((p* p)) — ¥(p)]-
peH{(2)

The dual problem of (4.1) has essentially the same form as (4.1):

“3) Sup [~ 4w+ 817 = ()]

(we use the variable w instead of p*).

Theorem II1.4.2 applies: hypothesis I1I(4.8) is easily verified and for co-
erciveness, we note that iy possesses at least one continuous affine minorant
function

() = ((a, u) + 4, ae HY(Q), 1R,
and hence
Flul? = (S ) + ¥) > 3 u]* - (6, 4) — (@ u) — 4
~flu—-(@+al*>3|6 +a|* -4

and IT1(4.8) follows.
Hence problem (4.1) possesses a unique solution #, problem (4.8) a unique
solution w,

min & = max $*,

and # and w are linked by the extremality relations

(4.9) F(u) + F*(w) = (w,u )
(4.10) () + y*(w) = — (w,u)d.
From the calculation of F* (¢f. (4.4)) we see that (4.9) amounts to saying
—Au=f — Aw
or

(4.11) i=¢+w
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The exploitation of (4.10) depends on the explicit form of /.

A special case

Let € = {u € H}(Q)|u(x)| < 1 a.e.}. This set is convex and closed in H®Q),
and its indicator function y is convex, L.s.c. and proper. With iy = x¢, problem
(4.1) can be written as

1 2
(4.12) ot [ ul? - ()
Ju(x)| <° 1 a.e.

For the determination of i* we have,
Lemma 4.1. y*(w) = [ |Aw| if Aw is a bounded measure and +wo otherwise.

Proof. Let us assume for the moment (¢f. Lemma 4.2) that 2(Q)N ¥ is
dense in €. Then we have

A o
(4.13) Y*(w) = Sup ((w.06))
{8(x)]<1
= OESg(% L( Aw)- 0dx

lo<1

and the required result follows.
Lemma 4.2, 2(Q) N € is dense in%.
Proof. Let 0, (¢ > 0) be a family of functions of ¢*%(£2), 0< 6, < 1, and

0.(x) =0 if d(x, I') < ¢ (distance of x to I')
=1 if d(x,I')> 2e.

For every ue Hy(Q), 6,u — u in H}(Q), when ¢ — 0 (¢f. Lions and Magenes
[1]. In particular if u € €, 0,u — u, but we note that B,u e €, Ve > 0.

It thus remains for us to approximate a function ¥ € ¢ with a compact
support in €, by functions of 2(Q) N ¥. The result follows immediately by
regularization.

Problem (4.8) becomes
(4.14) Sup  [—3|w + ¢ — §law]]

weH )
Aw bounded
measure

This problem possesses a unique solution w.
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Remark 4.1. If Q is regular, then from the standard regularity results
¢ € H*(Q) and from Brezis and Stampacchia [1], # € H*Q). By virtue of
@.11):

(4.15) we Hy(Q) n H}(Q)

which implies that the supremum in (4.14) is attained on H5(Q) N H¥Q).
But for w e H¥(£2), Aw is obviously a bounded measure and

J |aw] = L| Aw(x)] ds,

so that (4.14) becomes

(4.16) Sup [- ilw + ol* - J | Aw| dx]
Q

weHH{ QA H2(Q)

and W is solution of (4.16).
This result is due in a different form, to H. Brezis [2].

5. GENERAL PROBLEMS IN THE CALCULUS OF VARIATIONS

Orientation

In this paragraph, we wish to study a form of duality for a general problem
of the calculus of variations of the type

(5.0) ng g(x, u(x), P(D)u(x)) dx,

where ¥ is a convex set of functions, g a function which is convex with respect
to its last two arguments and P(D) a differential operator. m

Let g be a Carathéodory function defined on 2 x R! x R™ with values in R,
ie.:

(5.1) foralmostall x € Q, (1,&) — g(x,u, &) is continuous on R! x R™,
(5.2) for all (u,£) e R* x R™, x — g(x,u, &), is measurable on Q.
Additionally, we assume that for almost all x € Q

(5.3) n — g(x, ) is convex from R x R™ into R,

Setting
W = L"(Q) x .. x L*Q)
Z =IMQ) x .. x I!7(Q),
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where 1 € a; < 4w, 1 < f; <+ forall i and j, we assume that for all ue W
and for all 8 € Z, the measurable function

(5.4) x = g(x, u(x), 6(x))
is in LY(Q).

It thus follows from the theorem of Krasnoselskii [1]V that the mapping
(5.5) (,0) = { x — g(x, u(x), 0(x) }

is a continuous function of W x Z in L(Q).
We term P(D) a differential operator continuous in the distribution space

and we consider the space V,
V ={ue W|P(DueZ},

which is a Banach space for the norm
lully + | P(D)u.

Finally €, the set of constraints, is a non-empty closed convex subset of V.

Problem (5.0) is now completely defined.

We shall now study its dual problem. Returning to the position in Chapter
III, no. 4, the space ¥ being already defined, we set

Y=Wx_Z, V* = the dual of V, Y* = the dual of Y,
Au = (u, P(D)u), VueV  (naturally A e €(V, Y)),
F = y, = the indicator function of €,

G(p) - j o p()dx,  Vpe W x Z.
2
The problem
(5-6) Inf { F(u) + G(4u) }
is identical to (5.0)
F* may be calculated easily,

F* = y% = the support function of €.
To calculate G* we use Proposition 1.2 and we find that

5.7) G*p*) = J g*(x, p*(x)) dx,

Q

) Proposition 1.1.
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where
(5.8) g*(x,n*) = Sup [n*n —g(x,n)], ae xeQ
neR! x R™

The dual problem of (5.0) can then be written

(5.9) ,,S-gﬁ{ — xg{A*p*) — j g*(x, p*(x)) dx}_

It is interesting to note that because of (5.5), Condition 111(4.21) is satisfied
and so with Theorems I11.4.1 and II1.4.2, and Proposition 111.4.1, we have:

Proposition 5.1. Problem (5.9) possesses at least one solution p* and

(5.10) inf (5.0) = sup (5.9).

If problem (5.0) possesses a solution i, then we have the extremality relations:
(5.11) Xe(#) + xG(A*p*) = { A*p* u ),
(5.12) g(x, Ai(x)) + g*(x, — p*(x)) = — p*(x). Ati(x) ae xeQ.

Remark 5.1. It is noteworthy that we can demonstrate the existence of a
solution for Z* with what little information we possess concerning g.

We may wonder what significance p* has for 2 when £ has no solution:
by means of p*, we can envisage the definition of a sort of generalized solution of
2. This is exactly what we shall do in Chapter V for some very specialized cases
of (5.0).



CHAPTER V

Applications of Duality to the Calculus
of Variations (IT)

Minimal Hypersurface Problems

Orientation

In Section 1 we shall, as in the preceding chapter, make use of the techniques
of duality of Chapter III for the aon-parametric minimal hypersurfaces
problem (with or without obstacles) and for various similar problems: the
link between these problems is that they are only coercive in non-reflexive
spaces [L*(£2) or a space built on L'(Q)].

For each example, the position will be as follows: the primal problem may
or may not possess a solution i, the coerciveness being only available in a
non-reflexive space. The dual problem, on the other hand, will possess a
unique solution p*. The extremality relations will link 5* to the solution & of the
primal problem, when this solution exists. When the primal problem possesses
no solution, the dual problem will allow us to define a generalized solution
to the problem: this is the aim of Sections 2 and 3, in Section 2 for the non-
parametric minimal hypersurfaces problem and in Section 3 for a more general
class of problems. Sections 2 and 3 will have recourse to numerous results in
the theory of partial differential equations which will be recalled at the appro-
priate time. Moreover, a result of Brgndsted and Rockafellar concerning
¢ sub-differentials (Theorem L.6.2) plays a remarkable role here.

1. NON-PARAMETRIC MINIMAL HYPERSURFACES
1.1. The primal problem and the dual problem

We wish to minimize the integral
(1.0) J V1 + |grad u)? dx,
o]

among all the functions ¥ which are equal to a given function ¢ on the boundary

I of Q. It is the problem of minimizing the area of a hypersurface among

those which are graphs of a univocal function defined in Q and are lying on the
116
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given contour (the points (x,¢(x)),x € I'). This problem is equivalent to a
Dirichlet problem for the equation of minimal hypersurfaces (the Euler
equation of the problem):

- D,u
D, :
(1.1) i; [1 + |grad u|*]*/?
u=¢ onl.

=0 in Q

To set the problem precisely, let us assume that  is a bounded set which is
not necessarily regular. The space with which we shall be concerned is W*-1(Q)
or occasionally™ #1-1(Q) = the closure in W*'}(Q) of indefinitely differenti-
able functions in &. The function ¢ is assumed to be given throughout Q instead
of just on TI'; this condition is only restrictive if  is not regular.® Thus we
assume that ¢ is given satisfying:

(1.2) peWw(Q),

and we seek to minimize (1.0) among the functions u € ¢ + W-1(Q) which
exactly expresses, in a weak sense, the conditionu=¢ on I':

(1.3) Inf J- [1 + |grad u(x)]*]"/2 dx.

uep + Wi 1(Q)

Just as we have done throughout Chapter IV, we revert to the situation in
Chapter I11(4.16) and we set

vV = whi(Q), Y = LY(Q),
V* = WLY{Q)* = the dual of W!-1(Q),
Y* = L2(Q), 4 = grad,
. 1,1
Flo) = lO if ved)ﬂ‘— Wei(2)
+ oo otherwise.
G(p) = j [1 + |p(x)]?]"/* dx, vpe LY(Q)
o]

We have thus reduced problem (1.3) to a problem II1(4.16); we shall now
describe the dual problem I11(4.18).

D YL1Qy= W' 1(Q) if Q is regular, ¢f. Lions [2).

@ 1f Q is sufficiently regular (for instance 1V(1.2) with r = 2), then because of a result of
Gagliardo [1], the trace operator ¥, is defined and maps W' {(©2) continuously and linearly
into L¥(I") and there is a continuous lifting operator R e L(LY(I), W' 1(2)) (yo O R = the
identity). Obviously, in this case, any given function 8 € L}(I") can be “extended” inside Q
by a function ¢ € W* () with y,¢ = 0.
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Calculation of F* and G*
%* * k) — *
F*(4*p*) veo Sy $ P AV
%* k) — %*
F¥(A*p*) = (p*, Ad> + uewg'gm< p*, Av .
Since 2(Q) is dense in W3-(Q),

P(m(p* Av) = Sug {p* Av) = Sggz)[— {(divp*, v )]

veWw}

and this supremum is 0 if div p* = 0, and + « otherwise:

1) Py = [ P48 = [ pramdaar i avpr =
+ oo otherwise.

Lemma 1.1.

G*(p*) = - Jl [t — |p*(x)|?]/2 dx, if |p*(x)] <1 ae,

and 4+ otherwise.

Proof.
19 6o = sup [ (0909:p() = 11+ 1) a5,

and to calculate G*, by PropositionIV.1.2, it is sufficient to determine for almost
allx

(1.6) Sup [p*(x)¢ — (1 + [¢]*)*]

SeR"

If ¢ = np, p = ||, the supremum in # for fixed p is attained for 5 = p*(x)/| p*(x)|
and its value is

(1.7) lp*(x)l p — (1 + p?)t/%;

it is then necessary to maximize (1.7) for p > 0. A simple calculation shows
that the supremum is equal to +o if [p*(x)| > 1, to O (and this is achieved at
p=+w) if |p*(x)|=1; finally if |p*(x)| <1, the supremum is equal to

—+/1 — | p*(x)|? and this is attained at

(18) )= _psll(x)2 _.
(1 - [p*()*]

The lemma then follows. =
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Remark 1.1.1t is important for what follows to observe that the relation
(1.9) G(p) + G*(p*) = <p*,p ),

implies that | p*(x)| < 1 almost everywhere and that for almost all x € Q:

— [1 = 1G] = Sup [p*0x)- & = (L + J4%)"77)

= p*(x)- p(x) — [1 + |p(x)]*]"%

From the proof of Lemma 1.1, this means that

(1.10) p*(x)) <1 ae,
and
- p*(x)

(1.11) p(x) TEGIE a.e.,
or

() = p(x)
(1.12) P = E T T
The dual problem

Because of (1.4) and Lemma 1.1, this can be written as

(1.13)  Sup [— Lp*(x)-AqS(x) dx + L[l — |p*(x)|2]2 dx:|.

p'ELﬂ) (n,'l
|p*(x)| <lae
divp*=0

Hypothesis I11(4.21) is satisfied since the function G is continuous in L*(Q)"

and Theorem I11.4.1 applies: problem (1.13) possesses a solution p*, and this
solution is unique since

p* e f [1 - |p*(0|2] ax

is strictly concave on the set {p* € L*(Q)", |p*(x)| < 1 a.e.}; furthermore
(1.14) inf # = max P*.

We note that the primal problem (1.3) may or may not possess a solution
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(¢f- Remark 1.2). If such a solution # exists,> Proposition IIL.4.1 applies
and entails the two extremality relations

(1.15) F(u) + F*(A*p*) = { A*p*, a1 ),

where the first is trivial and the second is interpreted in the light of Remark 1.1.
This leads us to

Proposition 1.1. Problem (1.3) (the non-parametric minimal hypersurface
problem) and problem (1.13) are mutually dual,

(1.17) inf # = sup #*.

Problem (1.3) may or may not possess a solution, whereas problem (1.13)
possesses a unigue solution p*. If problem (1.3) possesses a solution i then

(1.18) p*(x)| <1 ae. xe®
and
*
(1.19) grad u(x) = — p*(x) ae XxXef.

[1 = [p*()*]"?

Remark 1.2. When problem (1.3) does not possess a solution, we may ask
whether the right-hand side of (1.19) is sufficiently regular to represent the
gradient of a function of W}(Q) and if so what is the meaning of this function
for the minimal hypersurface problem. This is the fundamental problem to be
studied hereafter and, at the same time, we shall be in a position to demonstrate
the regularity properties of p*.

1.2. Fundamental property of a minimizing sequence

In the rest of this chapter, we shall make considerable use of the following
important remark. Let us consider in a general way a minimization problem 2,

(1.20) Inf [F(u) + G(Au)].
FeTyV), GeT'y(V) and let #* be its dual:
(1.21) Sup [~ F*(4*p¥) — G*(~ p¥)].

M 1t is necessarily unique since o [1 + Au(x)?]'/2dx being strictly convex, if #;, and u,
are two solutions, grad u, = grad u, which together with u, —u, € W3 Y{(Q) (4, =1 on I')
implies that u;, = u,.
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We shall assume that

(1.22) inf 2 = sup #*
and
(1.23) P* possesses a solution p*.

This is exactly the case for problems (1.3) and (1.13).
Let v,, be a minimizing sequence of Z: v,, € V, Vm, and

(1.24) F(v,) + G(Av,) - inf 2,

ie.

(1.25) F(v,) + G(Av,) = inf # + p,,
(1.26) Pm =0, om — 0, m — 0.

Proposition 1.2, Under hypotheses (1.22) and (1.23), if v, is a minimizing
sequence of P satisfying (1.25) then, Vm,

(1.27) A*p*ed, F(v,)
(1.28) — p*e 6pmG(Av,,,).

Proof. Using (1.22) and (1.23), we can write

F(v,) + G(Av,) = inf# + p, = — FHA*3*) = G¥(— p*) + pp,
whence

[F(v,) + FXA*p*) — { A*p*, v, 3] + [G(4v,,)
+ G*(= p*) + {P* A0, 3] = p,u;

but since, by definition of a polar function (¢f. 1(4.3)), each of the expressions
within square brackets is >0, we see that

0 < F(v,) + FXA*p*) — { A*p*, 0, ) < py
0 g G(Avm) + G*(— i’*) + <ﬁ*’ Avm> g pma

which is identical to (1.27) and (1.28) by definition (cf. 1(6.1)).

1.3. Regularity of the solution of (1.13)
The following results are valid if the hypothesis
-p e WH(Q) n [°(Q),
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holds, but to simplify the presentation we shall assume that
(1.29) ¢ e W Q) N ¢(Q),

(#(2) = real continuous functions on Q).
Paragraph 2 will deal (for much more general situations) with the case
where ¢ € W(Q) N L(Q).

Lemma 1.2. There exist minimizing sequences of (1.3), constituted with
continuous functions v,,, with

(1.30) | 9m]l Lo () € constant, |l 1.1y < constant.

Proof. If v, is a minimizing sequence of (1.3),

J (1 + |grad v,)?)"/? dx < constant,
o]

so that

|grad v, || 1oy < constant
and since v,, — ¢ € W}(Q), Poincare’s inequality
" U — ‘1’ ”L’(ﬂ) < c(Q) ”grad (vm - ¢)”L‘(9)"

implies that || U] L1y < constant and thus any minimizing sequence of (1.3) is
bounded in W11(Q).
Since 2(2) is dense in W§-(Q), there exist minimizing sequences of the type
by =¢ + 0, 0, €2(Q),

and in this case v,, € ¥({). For a sequence v, of this type, let w,, be the function
defined by

va(x) If |on(x)] < M,
wa(X)=1|M if o, (x) > M,
- M if v (x) < — M,
where M =|¢|¢q- The functions w, are likewise continuous and w, e

W1:1(Q), Vm, the truncations being continuous in the W*%(Q) (¢f. Stampacchia
[1]); furthermore (¢f. Stampacchia loc. cit.) for almost all x € Q

O0m
(x) = | 0x,
0 if |v,(x)| > M,

(x) if [ou(x)] < M

Oy
ox;
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and therefore

j [1+ |Aw,,,(x)'2]1/z dx < j [1+ IAvm(x)lz]”z dx,

so that w, is likewise a minimizing sequence of (1.3) [naturally, we have
Wi — ¢ € WHH(Q)].

Lemma 1.3, Let 0 be a ball, 0 < O < Q. We can find a minimizing sequence
of (1.3) which satisfies the properties stated in Lemma 1.2 and furthermore

(1.31) Su‘P lgrad w,(x)| < ¢,

(1.32) lonlelaze < ¢
(c denoting constants independent of m).

Proof. There exists aball 0', 0 < 0 = @ < Q. Let us consider a sequence
U as given by Lemma 1.2. For all m, the problem

(1.33) Inf (1 + |grad y|2)'2 dx,
yeWhH1(0) ,
W=vponde 0
admits a unique solution ,,, since v, is continuous and 0" is strictly convex
(¢f. M. Miranda [1]). The function ¥, is the solution of the Dirichlet problem
associated with the equation of minimal hypersurfaces:

c Dy .
1.34 D, . =0, in @
(1.34) .-2:1 (1 + |grad y|?)'/2

¢ =v, on J0.

Obviously, we have

j (1 + [grad ¢m|2)1/2 dx € j‘ (1 + lgrad vmlzwz dx,
¢ .

(4

and hence the function w,,
Wm(x) = v'"(x)’ x ¢ 01’
l/’m(x)’ X € @',

is in ¢ + W§ (), and constitutes a fortiori a minimizing sequence of (1.3).
From the maximum principle applied to (1.34),

(135) Sg’pw/m(x)l < S(?%‘P Ivm(x)‘ < ||¢l|?(ﬁ)'
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By virtue of a fundamental result of Bombieri, De Giorgi and Miranda [1],
which gives an a priori estimate of the solutions of the equation of minimal
hypersurfaces, (1.34) and (1.35) imply that (0 < 0 < 0'):

(1.36) Sup lgrad ¢ (x)] € ¢ = ¢(0, O,
ey, _ ' w
(1.37) 50 | <c=¢0,0, 8] )"

The minimizing sequence w,, satisfies all the required properties. =

Lemma 1.4. The solution p* of (1.13) satisfies

(1.38) Sup |p*(x)] < 1 — 7(0), n(€) > 0,

xelt
foranyset0 < 0 < Q.

Proof. To establish (1.38) we assume that @ is a weakly compact ball in
Q; it is then easy to pass on to the case where @ is a weakly compact subset of
Q by taking a finite covering of such balls.

For a fixed ball ¢ we consider the minimizing sequence v,, defined in Lemma
1.3. By virtue of (1.30), (1.31) and (1.32), there exists v € L*(Q), v], € H*(0) N
W1=(0), and there exists a subsequence m’ > « such that

(1.39) v, » —> u in the weak star topology of L*(Q),
(1.40) 9v,,./0x, — Oufdx, in the weak star topology of L=(0) (1 < i < n),
(1.41) Ume — u weakly in H%(0).

Since the injections of Wi(Q) into L}(Q2) and of H?*(Q) into H'(0) are
compact (¢f. J. L. Lions [2]),

(1.42) Uy — u strongly in L}(Q),
(1.43) v, —> u strongly in H(0).
Thus we can choose the sequence m’ so that
(1.44) v,(x) > u(x) ae xe
0v,, Ou .
(1.45) —a;'(x) —>5x—l(x) ae. xe0, (1<i<n).

Obviously we do not know if u e W*1(Q) nor a fortiori if u e ¢ + W*(Q)
and it is this which prevents us from concluding that u is a solution of (1.3);
in general u is not a solution of (1.3).

O Only inequality (1.36) is given explicitly in the work of Bombieri, De Giorgi and
Miranda. But (1.37) follows at once; ¢f. R. Temam [3], p. 140, for a very similar situation.
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Using, for the moment, Proposition 1,2, we see that
(1.46) — p* €0y, G(Av,),

where p,, is a sequence which converges to 0 (p,, > 0). Theorem 1.6.2 applies:
there exists p,, € L'(Q)", pk € L*(Q)", with

(1.47) 1P = AVl L1y <€ vi O
(1.48) 1% = 7* [ Lotor < e
and

(1.49) — Pm € 9G(p,,),

which, from Remark 1.1, means that

o) = — PnlX)
(1.50) Pm(x) [l + |p (0] a.e.

From (1.47), p,, — Av,, = 0 in L*(Q)", for m —> «, and so we can choose the
sequence m’ so that

(1.51) Pmlx) — Av,(x) > 0, ae. xeQ.
With (1.45), (1.48), (1.50) and (1.51) we obtain on passing to the limit
(1.52) 5*(x) = grad u(x) ae. xe0,

B [1 + |grad u(x)|*]*?
and as u € W*=(0), property (1.38) follows.

Remark 1.3. To be precise, the constant # of (1.38) depends on 0, Q and
)l Loy (¢f. (1.36) and (1.37)).

1.4. Generalized solution of (1.3)

Lemma 1.5. There exists an analytic function u which is bounded (u € L*(Q2)),
which is the solution in Q of the equation of the minimal hypersurfaces and which
satisfies

1.53 dufx) = — p(x) , Vxe Q.
(1.53) grad u(x) L= ] xeQ

Proof. We consider a bounded minimizing sequence of (1.3), e.g. v, (¢f.
Lemma 1.2). Then, as in Lemma 1.4, we have a subsequence v,, which satisfies

(1.54) v, — uin L2(Q) in the weak star sense,
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(1.55) Uy — u strongly in L1(Q),
As in Lemma 1.4, we have

(1.56) ~ p*€d,G(Av,),  pn20, p,—0,
and there exists p,, € LY(Q)", pt € L*(Q)", such that

(157) ”pm Avm ”L'(.Q)" V Pm>

(1.58) ||P:. — P*|ro@r <V o

%
(1.59) Pulx) = — Palx) ae xef.

[1 - [px(x)*]"?
From (1.58), for m — o,

(160 e T )
[ = P17 11 = [P PT 7

If 0 is a weakly compact open subset of Q, then by (1.38), if m is sufficiently
large

lPa(x)| < 1 - 4n(0),
so that the Lebesgue theorem allows us to conclude that

P . p*
1 — ‘p*IZ)I/Z Ip*|2 1/2

in LY{@)". With (1.59) and (1.57),

ﬁ*
(161) Avm d —————-—l-p;l—l—/';

in LY(0)" and as Av,, — Au in the distribution sense in @

p*(x)
[1 = [p*(x)*]

and since O is any relatively compact subset, we deduce that (1.53) holds.

By virtue of (1.53), the property divp* =0 (¢f. (1.13)) means that u is the
solution of the equation of the minimal hypersurfaces (¢f- (1.1)).

It follows from (1.53) that u € W1°(0) for every relatively compact open
subset 0 of Q(® < Q) and since @ is solution of the minimal hypersurface
equation, @ is analytic in Q (¢f. De Giorgi [1]).

grad u(x) = — x e,
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Lemma 1.6. For every minimizing sequence v,, of (1.3),
(1.62) v, —>u in LY Q)/R,

v, Ou - ,
(1.63) 'a—xl —*a—xl n L‘((D), VO < @ < Q, 1<ign
Proof. Exactly the same reasoning as for Lemma 1.5 shows that as the limit
is independent of the particular subsequence, the convergences (1.55) (modi-
fied in (1.62)) and (1.61) hold for the complete sequence.

2. GENERALIZED SOLUTION OF THE DIRICHLET PROBLEM
FOR THE EQUATION OF THE MINIMAL HYPERSURFACES

Orientation

In Section 2.1 we shall give the main theorem which depends on the lemmas
of Section 1 and establishes the existence of a generalized solution of problem
(1.1) or (1.3). In the subsequent subsections we shall develop various comple-
mentary results and remarks.

2.1. Statement of the main result
Theorem 2.1. Let ¢ be given, satisfying

(2.1 bW (Q) N L2(Q).
Problem (1.3) admits problem (1.13) as its dual and
(2.2) inf 2 = sup 2*.

Problem #* possesses a unique solution p*, which is analytic and satisfies
(2.3) Sup [p*(x)| < 1, VO < O < Q.
xef

There also exists an analytic function u which is uniquely defined to within an
additive constant:

2.4 du(x) = — p*(x) , xeQ,
G4 eed) = - R R ;

which is the solution of (1.3) if such a solution exists and which in every case
satisfies:

(2.5) ue L2(Q),

(2.6) u is solution in Q of the minimal hypersurface equation,
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every minimizing sequence {v,} of (1.3) converges to u in the
Q.7 Jollowing sense: v,, — u in L*(Q)/R,

|dv,/0x; > Bu/dx, in LNO), VOcOcQ 1<i<n

Proof. 1f, instead of (2.1), ¢ € # 1 }(Q)N ¥(8), the theorem results as a
direct consequence of Lemmas 1.4, 1.5 and 1.6. We pass on to the more general
case by approximation of ¢. If ¢ satisfies (2.1), there exists a sequence of func-
tions @, € #"1-1(Q) N €(Q) such that

(2.8) ¢ ¢ in #YQ)

(2.9) ltmlle < 4] @

Indeed, by definition of #°':(Q), there exists a sequence of indefinitely
differentiable functions i,,, such that i, — ¢ in #"*-*(Q); the functions ¢,
defined by

Yulx) i [Yu(x)] < M,
Pux)=| M if y,(x)> M,
-~ M if ¥ (x)< - M,

(M = || p|) Loy are in #71-1(2) N €(0) and satisfy (2.8) and (2.9).

Then, let p¥% be the solution of problem (1.13) corresponding to ¢,, and p*
the solution of problem (1.13) corresponding to ¢. The crucial point is to verify
(1.38). But the relation (1.38) for 5}, remark 1.3 and (2.9) imply

(2.10) Sup [pa(x)| < 1= 1(0, @, |$nlea)

(2.11) S(‘nlp |f);(x)l <1 -9 9, "¢‘“L°= (m)-

We have thus shown that

(2.12) Sup P*(x)| <1 = n(0, Q|| ¢]| =) < 1, VO <0 c Q,

if we show that g% — j*, for example in the weak star sense in L*(Q) (which
implies that for all @ < Q, the restriction of 5% to @ converges to the restriction
of 5* to 0 in the weak star sense in L*(0)).

Since | p¥(x)| <1 almost everywhere, there exists a subsequence j} and g*
L>(Q), such that

(2.13) Pr —gq* for the weak star topology of L*(Q).
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Thus p% being the solution of (1.13) for ¢,,, we have

- j Fx(x)Adu(x) dx + J [1 — [p2x)P]

- j F*(x)Adn(x) dx + j [1 = [p*()2]"2 dx;

this gives us for m’ — o, and on taking the upper limit of each term and using
the u.s.c. of the functionals:

- f F(x)Ab(x) dx + f [1 = |02 dx

> - j 50 A6(x) dx + f [1 - [p*(0*] a.

As p* is the only solution of (1.13), we deduce that ¢* = p*, and the whole
sequence ji converges to 5* in L*(€Q) in the weak star sense.

As stated above, (2.11) gives (2.12) in the limit. It is easily seen that from
(2.12) we can take up point by point the proofs of Lemmas 1.5 and 1.6 and
thereby obtain all the stated results in Theorem 2.1. =

Remark 2.1. The techniques used in Section 3 for more general problems
than (1.3) show in fact that

(2.14) ue W)

Remark 2.2. We cannot hope in (2.7) for strong convergence of dv,,/0x; to
du/0x, in the whole set Q (e.g. in L}(2)): for then we would have u = v,, = ¢ on
I' which is not necessarily true (¢f. Remark 2.3).

Remark 2.3. If problem (1.3) possesses a solution, then, obviously, u
is equal to this solution (to within a constant): we establish this result by
applying (2.7) to the minimizing sequence
v, = U, Ym > 1.

If problem (1.3) does not possess a solution (which is what happens in many
standard examples), the function u is not a solution of problem (1.3) and this
is evident from the fact that it does not satisfy the required limiting condition
u = ¢ on I'. This condition is only satisfied on one possibly empty subset of I'.
By virtue of property (2.7), it is nonetheless reasonable to term this function
u the generalized solution of problem (1.3).
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Remark 2.4. (Open problems).

(i) The essential problem set by Theorem 2.1 is to know whether u=¢
on I in at least one part of I'.

In Section 2.2, we shall give some partial answers to this question (cf.
Theorem 2.2, Propositions 2.2 and 2.3).

(ii) When the open set Q is regular, we can define because of Gagliardo [1]
the trace of u on I', you € L'(I'); this trace only depends on the trace of ¢ on I,
yo@. It would be interesting to study the correspondence between y,¢ and
you. In this case, too, we shall give some incomplete results in Section 2.2. u

2.2 Boundary values of the generalized solution

Propasition 2.1. Let us assume that the open set Q is regular, of class €2,
and that ¢ € €°(82). Let us also assume that I' has a non-negative mean curvature
everywhere. Then the function u given by Theorem 2.1 satisfies® u=¢ on I and
is a solution of (1.3).

Proof. From Serrin [1] (¢f. also D. Gilbarg [1], G. Stampacchia [3]), problem
(1.3) possesses a solution and from Remark 2.3, this solution differs from u
by a constant which we may choose to be 0.

After this easy result, we note the following result concerning the behaviour
of u on I (¢f. Lichnewsky [1] [2]).

Theorem 2.2. Assume that Q is a lipschitzian set and that I is an open subset
of T. Assume that Ty is a €° manifold with a non-negative mean curvature
and that besides (2.1)

(2.15) ¢ € €X(I).

Then there exists a unique function u which satisfies all the conclusions of
Theorem 2.1 and furthermore

(2.16) u=¢ on T,
every minimizing sequence {v,} of (1.3) converges to u in the
following sense
(2.17) Um—>u_in LY{(Q)P
ov, Ou . _
é;cT_>5Z in LY(0), VO <0 = Q.

The proof of this theorem is based on the utilization of local barriers.

(1 More precisely one of the functions u + ¢, ceR.
@ And not only in LY(Q)/R.
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Let x, belongto I'; an upper local barrier at x, for the Dirichlet Problem (1.1)
is a function y = o, 4 > 0 satisfying

() yes*@no,,
o grady :
(2.18) (i) div (mm—lzl—”—z-) €0 in 2NO,,
(i) (o) =d(¥e),  (iv) Y1) 2¢(») on I'N0,,
M yY=22 in QN(0,-0,),
where ¢, and 0, are two open neighbourhoods of x,, @, < 0,.
A lower local barrier is defined in a similar way, and we have

Lemma 2.1. Under the assumptions of Theorem 2.2, at each point x, € I'y,
there exists a lower and an upper local barrier for the Problem (1.1) with A
arbitrary.

This result is essentially classical and can be obtained by a slight improve-
ment of the techniques of J. Serrin [1]; see, for instance, A. Lichnewsky [2].

Proof of Theorem 2.2. For each x, € I';, we consider the barrier Yo, with
fixed 4,

(2.19) 4> (@] Locey-
Let u, be a bounded minimizing sequence of (1.3) with:
u,=¢ on 9%, ||un“l.°°(ﬂ) <4

j v/T+ [gradu,|? dx — inf 2.
2

Because of Lemma 1.2 such a minimizing sequence exists.

Let v, = inf(y,u,) in 0, and v, =u, in @ — 0,. The proof will consist in
showing first that », is also minimizing sequence of (1.3) and then to take
advantage of this result.

(a) We choose lipschitzian open set 0, §, < 0, & < 0,, and we note that
v, € WH1(0), v, € W(Q — 0,) and then v, € W1(Q). It is also clear that
v, = ¢ on 0Q (see (2.18) (iv)).

Now we denote as 0,

. grady ,
(220) 9 = le ([1 + Igradl’/lzll/z ) < 0 m Q ﬂ @.
It is clear with (2.20) that y is the unique solution of the variational problem
(2.21) Inf U [1 + |grad o}*]"/2dx + J Oc dx].
on ;(;2“;10) ane ene

The function w, = Sup(y, u,) satisfies w, = on 2(2 N 0); indeed w, =y on
' N 3(2 N 0) since ¥ > ¢ = u, on this part of the boundary and w, =4 on
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QN QN O since Y > A >u, in O, — 0,. Since y is the unique solution of
(2.21) and since 8(w, — ) < 0, we have:

J [1+ ]grad ¢|2]1/2 dx gg i+ Igrad Wnlzlllz dx.
one

one
We observe that grad w, = gradu, a.e. on the set

o ={xe0, IIJ(X) < u,,(x)}
and gradw, = grady a.e. on the set ¢ — &/. Hence

2.22) j [1 + |grady|*1/2 dx < J [1 + |grad u,|*}*/* dx.
“ Q
For v,, we have grad v, = gradu, a.e. in Q — o and gradv, = grady a.e. in &.

From (2.22) we then find
j {1 + |grad v,|?]*/? dx Sj {1 + |grad u,|?]*/? dx,
2 aQ

and since v, = ¢ on 9%, v, is also a minimizing sequence of our problem (1.3).
(b) Theorem 2.1 is now applicable to both sequences, v, and u,; in particular
U, —>u in LYQ)
v,~>u+c in LYQ).
Since v, = u, on a set of positive measure (in Q — 52), we must have ¢=0.

We recall that v, < ¥ (the upper barrier) in some neighbourhood ¢ of x, € I'y.
Then

(2.23) u<y in 0.
If u is continnous in { then (2.23) and (2.18) (iii) imply that
(2.29) u(xo) < P(xo), Vxo €Iy

If u is not continuous and belongs only to W*:1(Q), we use the fact that the
trace of u over I is the limit of u along the normals of I', for almost all these
normals (dI" measure). We then deduce from (2.23) that for almost all x, € I'y,

(2.25) u(Xo) < (xo),
which is a weaker form of (2.24), the best result we can expect if we only know
that u € WY(Q).
Using similarly lower local barriers we find that
(2.26) u(xy) = Pp(x), ae. xp€r,
and Theorem 2.2 follows from this and (2.25). =

Another type of result related to the behaviour of # on I' is given by next
proposition.
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Proposition 2.2. The hypotheses are those of Theorem 2.1 and we also assume
that one of the functions u defined by Theorem 2.1 satisfies

Ax, e I suchthat

(2.27) lim |grad u(x) < + oo.

xef?

Then there exists a unique function u which satisfies all the conclusions of
Theorem 2.1 and, furthermore,

u = ¢ on a subset of I with non-zero measure and more precisely on
(228) |{xel|lim |gradu(y)] < + «};
y=x

yEQ
every minimizing sequence {v,} of (1.3) converges to u in the
Jollowing sense
v,—u in L'(Q),
0v,,/0x; - Ou/dx; in L'(0), YO < 0 c Q.

(2.29)

Proof. From (2.15) it follows that gradu(x) is bounded over an open set
Qo = B,(x,)N Q, where B,(xo) is an open ball with centre x,. From (2.4)
this implies that:

(2.30) Sup |p*(x)| < 1.
xefg
We can then repeat the reasoning of Lemmas 1.5 and 1.6. For every mini-
mizing sequence {v,} of (1.3) we have, as in these lemmas, the existence of a
subsequence m’ such that

(2.31) Uy —>u-+ ¢ stronglyin L'(Qg)
0v,,.[0x; — OufOx; stronglyin LY(£,), 1<ign,

where u is one of the functions obtained from Theorem 2.1 and ¢ € R is some
suitable constant.
Since v,,=¢ on I', we have v,=¢ on I'o=TI N 92, and so in the limit

(2.32) u—c—¢=0 on I,

The constant ¢ is thus independent of the chosen subsequence v, and it is
the whole sequence v,, which gives rise to the convergence limits in (2.31).
We can thus take ¢ =0, and because of (2.4) and (2.32) the function u is
uniquely defined,
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The reasoning which has just been followed for the point x, can be repeated
for every point x € I such that

lim|grad u(y) < + co. B
y—x
yeQ2

Remark 2.5. (In conjunction with Remark 2.4.) It would be interesting to
determine some conditions on Xy, 2, and ¢ which give (2.28) a priori.

Example. 2.1.1f Qisaring of R%, 1 < x| <2, and if pis givenon I, ¢ =0
for |x| =2, ¢ = ¢ for |x| = 1, problem (1.3) shows an axial symmetry and can
be reduced easily to a one-dimensional problem:

r2

(2.33) In J [1 + (du/dp)*1¥2 p dp.

u(1) =c

If ¢ is small, ¢ < ¢,, the solution of (2.33) is an arc of a catenary. If ¢ > ¢,
there is no solution of (2.33). The meridians of the minimal hypersurface
are arcs of a catenary with vertical tangent at |x| = 1, and a segment |x| =1,
¢y Su < c. It can be verified from Theorem 2.2 or Proposition 2.2 that this
arc of a catenary is the generalized solution of the problem. ®

In conjunction with the problem posed in Remark 2.4(ii), we have

Proposition 2.3. Let us assume that Q is regular of class €2, and for every
¢ € WhY{(Q) N L(Q), we term p*(¢) the solution of (1.13).

Let us also assume that, for a given function ¢, p*()v=+1"? on a subset
I',of I, and p*(¢p)v=—1 on a subset ' _ of T

Thenif¢p' e W QN LA(Q),¢' <ponl,,¢' 2ponl ¢’ =¢only=T_
(', U r.), we have

(2.34) P*(#) = p*(¢).

Proof. To simplify the notation we write p*(¢) =p,p*(¢')=p’. From
Lions and Magenes [1] (¢f. note (1)) we have, as Q is regular:

) From a trace theorem of Lions and Magenes [1], since p* € L))" and since
div 5* € L¥(2) (div 5* = 0), we can define the trace of 5*-v on I, as an element of H-/3(I"),
the dual space of HV¥(I"). Since moreover 5* € L*(2)", it is easy to show, using the methods
of Lions and Magenes {1], that the trace of p* -v belongs to L*(I") and

|P* VL) S| F* | Looim
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"jl’gradfﬁdx: —Jpvcbdl"ﬂ—j(divp)cﬁdx
a r

[#]

- jpvqb dr - fp’ grad ¢’ dx = - fp’vqﬁ’ dar.
r o

r

By definition of p’ we then have

- f pro dr + f (1 - ol dx <
r [

S— J‘pvvqsld[w + J (1 _ |p1|2)1/2 dx.
r Q
Decomposing I' into I'y U I', U I'_, we write:

— J- PV¢ dr — J‘ (1 — p'v)¢' dr + J (1 + PIV)(# ar
35 r r-
" J (1= lpf*?dx < = j pvedlr + j (1 — |p'|?)*"* dx.
0 o o
But

—J (1 — p'v)¢pdlI < —j‘ (1 — p'v)¢'dr,

j (1 + pvpdl < j (1 + p'v)¢’ dr,

r-

and (2.35) implies that:

—J pvep dr —j (1 —p'vj¢pdr +f (1 + p'v)ypdr
o T+ r--

+ J(l — |p»)* dx <

< - f Py dr + f (1 - p1) ax,
To [
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which yields the inequality

— jpvqbd[‘ + J(l — |p|H)* dx <
(2.36) r o

— Jp’vqb dr + J(l — |P'|H)? dx,
r o

which implies that p’ = p, by definition of p. =

Remark 2.6. We will prove very simply in Section 2.3 that
u<¢ ae.on I,
uz¢ aeon I_
u=¢ aeon I, H

Remark 2.7. Proposition 2.3 may be interpreted in term of the generalized
solution u = u(¢) of problem (1.3). Indeed we observe that p.v = +1 implies
|ou] =+ and respectively du/dv <0, du/dv > 0. It is conjectured that for
smooth ¢ and 2, du/d7 is bounded up to the boundary and in this case p.v=
+1 will mean 9u/dv = T . Essentially if u(¢) satisfies ou/dv = —ccon I'_, d/udv =
+ on I',, 9u/dv finite on I'y, and if we “augment” ¢ on I',., we “diminish” ¢ on
I'_, and leave ¢ unchanged on Iy, then the generalized solution u = u(¢) is
unaltered. w

2.3. Connection with a problem of de Giorgi

Giusti, de Giorgi and Miranda have introduced a problem which is intimately
connected with (1.3) and which can be written, when Q is regular and of class
€2, as:

(2.37) Inf {J (1 + |grad u|*)'/2 dx + J;lu - ¢ dl‘}.
wwin@ | |,

We shall compare (1.3) and (2.37) using duality; we refer to de Giorgi [2] for a
direct comparison of the problems, and a direct study of problem (2.37).
To specify the dual problem to (2.37), we set

V= whi(Q), Y = LYI') x LY{(Q),

Au = { yqu, grad u }, YueV,

¥* = the dual of W(Q), Y* = Lo(I) x L2(Q),
F(u) = 0, Yuel,

G(p) = Golpo) + G4(P1), P = (Po, P1), Poe L'(T), py € Ll(g)"’
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Gylpo) = J‘lpo - 4’1 dr,

G,(p,) = J(l + [pyfH)"? dx.
o

Clearly problem I1I(4.16) is then identical to (2.37). We have
Lemma 2.2. F*(A*p*) =+ unless
(2.38) divpt =0, and  p} + ptv|, =0,
in which case, F*(Ap*)=0.

Proof. 1t is easily seen that F*(u*) =0 if u* =0, + otherwise. It is thus
sufficient to interpret the condition A* p* =0 which amounts to:

<P*,A“> =j

r

pyoudl + j prgradudx =0, Yue WiY(Q)
o

We easily obtain (2.38), using Lions and Magenes [1] which provides a
meaning for p*v|r, v = the outward normalto I". ®

Lemma 2.3.
(2.39) G*(p*) = G§(p3) + GY(pY, ... P}),

spdll § *xW <1 ae xel,
2.40)  Gi(p}) = LPW i |p3(x)|
+o  otherwise.

@41) G¥(p}) = _L“ - Pt dx if P < 1 ae,

+oo otherwise

Proof. For (2.39) we use I11(4.27) and 111(4.28); (2.41) is identical to Lemma
1.1. Finally for (2.40),

tt08) = Sy, | (2300 = [po = el ar
0E r
= jp:‘;ab + Sup ~f[p(‘%‘qo — lgo[1 dr,
r qoe LI r

and we obtain the stated result, m



138 DUALITY AND CONVEX VARIATIONAL PROBLEMS
The dual problem of (2.37),

(242) ?-B,Pa [— F*(A*q*) — G*(— ¢*)],

is thus

(2.43) Sup [Jq;g(p ar — j(l — lqr)r dx],
r o

the supremum being taken on the set of p* € L*(I") x L°(2)" which satisfy

(2.44) div ¢* = 0,
(2.45) % +4atv|r =0

(2.46) lg¥(x)] <1, ae. xeQ
(2.47) la3(x)) <1, ae. xel.

Using Proposition II1.4.1, we ascertain that (2.43) possesses a solution and
by strict concavity this solution, denoted by g*, is unique; furthermore

(2.48) inf [(2.25)] = Sup [(2.31)].

If problem (2.37) possesses a solution 7, we can apply Proposition 111.4,2
and Remark II1.4.2 to obtain the extremality relations:

(2.49) G¥(— q3) + Golyod)= — { g 707 ),

(2.50) G¥(— q}) + G,(gradd) = — f q¥ grad v dx.

Q2

These entail respectively:
@51)  G5(x)(yoB(x) — ¢(x) = |roB(x) — é(x)l, ae. xel,

@) }
(2.52) grad o(x) = T lé’f(x)lz’ a.e. € Q.

These relations take on a special interest with the following lemma:

Lemma 2.4. Problems (1.13) and (2.43) are identical. Their respective
solutions p and g are linked by

(2.53) a5 = — i,
(2.54) q7 = p*.
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Proof. If we set p* = gf, problem (2.43) can be expressed only in terms of p*
(from 2.45) and it is then identical to (1.13), whence the resuit; (2.47) foliows
from (2.46) and (2.45) according to a remark in footnote (1) p. 134.

Proposition 2.4. (i) Problems (1.3) and (2.37) have the same infimum and if
(1.3) possesses a solution 1 then 1 is a solution of (2.37).

(ii) In all cases (2.37) possesses a solution & which is equal to within a constant
to the generalized solution u of (1.3).

Proof. It follows easily from (2.2), (2.48) and lemma 2.4 that the infimum are
the same and (ii) is thus proved.
For (ii) we consider a minimizing sequence u,, of (2.37)

&(uy) = inf(2.37) + p,p,

where £ denotes the functional in (2.37), p,, > 0 and p,, >0 asm — o,
We deduce from Proposition 1.2 and Lemma 2.4 that

~47 =p* € 9,, Gi(grad v,,).
Using the same technique as in Lemma 1.4, we see that, for m— o,

u, —>u in LYQ)
235) (% M i oy, vocOe l1<i<n,

ax,- Xi
where u is one of the generalized solutions of (1.3) given, within a constant, by
Theorem 1.2.

We then prove that « is solution of (2.37) by establishing some kind of lower
semicontinuity property of &.

Let Q, denote an open ball containing @, and let Q' = Q, — 8. From
Gagliardo [1], the function ¢ can be extended as a function in W?*:1(£y).
We then introduce the functions #,, (resp. #) which are equal to u,, (resp. u)
on Q and ¢ and Q'; let also

&' (uy,) = E(uy,) + j [1 + |grad¢|*]'/2 dx
o

=f [1+ |grad &, |?]/? dx + j lu,, — pldrT.
r
Now

(2.56) &' (un) = Sup“ [90 + Z gg‘ um] dx]

i=10X
where the supremum is taken among the 8 = {8, ...,0,} of 2(L,)"**, such that

Se<l.
i=0
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Indeed using the Green formula we see that the right-hand side of (2.56)
is equal to the supremum of

j‘n (90 +i§191 ?a%:)dx —J (éloi Vt) (ot — @) dr.

The supremums are essentially independent in Q, Q' and on I'; whence (2.56).
Now, because of (2.55) we see that

#,—>f in LY(£), as m—wo

and we can pass to the lower limit for the right-hand side of (2.56); we get

&' (i) = Sup U [90+ > %, a] }
o 2, {=1 0X;

< lim &'(8,,).
Whence &(u) < inf (2.37)and uisa solution of (2.37). =

The following is an easy consequence of Proposition 2.4 and the extremality
relation (2.51).

Corollary 2.1. One of the functions u given by Theorem 2.1 satisfies

vus¢ on I ={xel p*v=-I1}
youz¢ on I'_={xel,p*v=+1}
you=¢ on TIy={xel,-1<p*v<1}
Remark 2.8. (i) A direct proof of the existence of a solution to (2.37) is
due to Giusti, de Giorgi and Miranda.

(ii) We do not know if the solution of (2.37) is unique. Under the assump-
tions of Theorem 2.2, the solution & of (2.37) is unique and equal to u. The
uniqueness is not known in the case where the boundary of Q has everywhere
a strictly negative mean curvature. If the solution is not unique, two different
solutions u and u + ¢ will satisfy

J ]u—¢|dr=f|u+c —$|dr. =

Extension of this formulation

The introduction of problem (2.37) by Giusti, De Giorgi and Miranda was
based on geometric considerations: the functional in (2.37) represents the
area of the graph of # augmented by the area of the part of the vertical cylinder
of section I', and limited by the graph of u(x) and ¢(x), xe I'.

Using the duality techniques and in particular the arguments of Lemma 2.4
and Proposition 2.4 we will show that besides (2.37) there are many similar
variational problems which play the same role for (1.3).
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Let gy € I'o(R) be an even continuous function with g4(0) = 0, and consider
the problem

(.57 Inf U {1 + |grad u|?)* 2dx +j golu— ¢)d1‘}.
2 r

ueW1.1(Q)

In order to compare (2.57) and (1.3) we dualize (2.57) using the same setting
as for (2.37). The only difference will be in the definition of G,; here we set
Go(po) =f go(u—@)dr.

Its conjugate function G% is r
G¥(pb) = j g(pdar +f piodr
r r
where g, € I'o(R) is the conjugate of go.

Using Lemma 2.3 we can give the dual problem of (2.57). It is:
258 Sup{+ [ sgar—[ ascapars| n- |q;=|21wdx}
r r ]

the supremum being taken among those g* = (g%,4F) € L*(I") x L*(Q)", which
satisfy

(2.59) divg* =0
(2.60) gt +qt.v=0
(2.61) lg¥(x)| <1, ae. xeQ.

This problem possesses a unique solution §*(4* is unique by strict convexity,
and §# because of (2.60)) and

(2.62) Inf{(2.57)] = Sup[(2.58)).

If g¥(s) =0, for s € [—1,+1], then we will be in a position to repeat the proof
of Lemma 2.4 and establish that the unique solution §* of (2.58) is linked to j*
(solution of (2.31)) by

gs=—p*vI,  gt=p"

Thus problems (1.3) and (2.57) have the same infimum, if (1.3) possesses a
solution g, then # is solution of (2.57) and if (2.57) possesses a solution & this
solution is equal to within a constant to the generalized solution u of (1.3).

In conclusion, if g, € I'y(R) is any even continuous function, with go(0) =0,
and such that g¥(s) = 0 for |s| < 1, the problem (2.57) plays exactly the same
role as (2.37) (except for the existence of solution).

Remark 2.9. In particular we may choose go(s) = a|s|, « > 1, and we find

(2.63) Inf U [1+|gradu12]"2dx+aj |u—¢|df}.
Q r

ueWhil()
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For each o, « > 1, the solution of (2.63) is u(+c). As & — , (2.63) appears
as a penalized form of (1.3). It is interesting to note that the penalized problems
all have the same solutionforx > 1. =

Remark 2.10. We can also apply the techniques of duality to other problems
which are similar to the minimal hypersurface problem: hypersurfaces with
obstacles (¢f. D. H. Kinderlehrer [2] [3] [4], M. Miranda [5] [6] [7] [8], ). C. C.
Nitsche [1] [5), G. Stampacchia [4]), hypersurfaces with given mean curvature
(¢f. M. Miranda [8], P. P. Mossolov [1], E. Giusti [1]), capillary problems
(¢f. P. Concus and R. Finn [1] [2], M. Emmer [1]).

For the numerical approximation of minimal hypersurfaces, see C. Jouron

1.

3. GENERALIZED SOLUTION OF CERTAIN PROBLEMS OF
MINIMAL HYPERSURFACE TYPE

Orientation

Using the techniques of duality, we shall develop, as in Sections 1 and 2, a
concept of generalized solution for a class of problems of minimal hypersur-
face type.

3.1. The primal problem and the dual problem

Let g =g(x,u,8), ue R, £ € R", be a real function, three times continuously
differentiable on & x R™, and let us assume that
(3.1) n = (7, ..., M,) — g(x, m) is convex, Vx € 2,
(3.2) VpeI*(RQ) x L}(Q), the function x — g(x, p(x)) is summable
over Q (o fixed, 1 € o < +x).

In particular, if ue W(Q), x— g(x,u(x),gradu(x)) is a summable
function over Q.
In this section, we are concerned with the problem

(3.3) Inf j g(x, u(x), grad u(x)) dx.

This problem is equivalent to the Dirichlet problem associated with the
Euler equation of (3.3),

X d dg _ 09 .
(3.4) i; ax, 3¢, (x, u, grad u) = T (x,u, grad ), in Q,
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(3.5) u=¢ onl.

In what follows, we shall specify the hypotheses concerning G; the class
of functions g under consideration contains the function

(3:6) )= (1+ % )/

for which problem (3.3) is none other than (1.3).

For the moment, we shall write (3.3) as a problem of type III(4.16) and de-
termine the dual problem.

Let V=W4(Q) N LHQ), Y =LY Q) x LYQ)*; we denote by p = (pg,p,),
Po € LX(Q), p, € LY(Q)", the elements of Y. We set:

V* = the dual of ¥, Y*=L"(Q) x L>(Q)",

where 1/a’ +1/a=1; we denote by p* = (p},p¥), the elements of Y*, p} e
LY(Q), pt e L*(Q)".

We define the operator A,

(3.7) Au = {u,grad u }, YueV,
and the functions F and G,

0 if uep + Wy'i(Q) (ueV),

F(u) = .
+ oo otherwise,

6(p) = f oo p(x)dx,  Vpeli@) x Li@Q)
]
With the above notations, the problem
(3.8) In‘f [F(u) + G(Au)]

is in fact identical to (3.3).
The function F is convex and l.s.c. on V; its conjugate function is

¥ *) = *
Frw?) = Sup Cuu),
ue L*(©2)
and for p* € Y'*,
F¥(A*p*) = (p* Ap ) + Sup { p*, Av ), ve Wii(Q) n LXQ).

The latter supremum is equal to

Su * + rad v) dx,
veg(g) J‘Q(po pl J )
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and this supremum is 0 or +w according to whether p} — divp} =0 or not:
(3.9) F(A*p*) = | CPH A9 I pf — divp} =0,

+ oo otherwise.

From (3.1) and (3.2), the function G is defined and convex on L*Q) x
L'(Q)", with values in R. It follows from (3.2), from the continuity of G and
from Proposition IV.1.1 that:

(3.10) the function p — G(p) is continuous over L'(Q)***.

The conjugate functional of G, G*, is defined over Y* = L*(Q) x L*(Q)":
3.11 G*(p*) = — d
1) 66y = | sun [ [04nte) — ots ) 0

By virtue of Proposition IV.1.2:
(3.12) GH(p¥) = f g*(x, p*(x)) dx,
o]
where g* possibly equal to +o at some points, is the pointwise conjugate

function of g:

(3.13) g*(x,n*) = Sup {n* n - g(x,7)}.

reR”+ 1

Tt is easily verified that g* is bounded below on 2 x R**!

(3.14) g¥(x, n) > — Sup g(x,0) > — oo.

From this and by virtue of the lower semi-continuity of g*, the integral
(3.12) is completely defined in }—o0,+].

Remark 3.1. From the foregoing, the relation g* € 2G(q) is equivalent to:

(3.15) g*(x, ¥(x)) + g(x, q(x)) = g*(x)q(x) a.e,
and this implies that
(3.16) g*(x,q*x))eR, ae. xecQ B

The dual problem of (3.3) can thus be written as

617 sw [— L(pzwprgrad(p)dx— Lg*(x—p*(x)dx].

p*el® (.Q)x L“’(.Q)"
pb=divpy
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Proposition 3.1. Problems (3.3) and (3.17) are mutually dual and
(3.18) inf 2 = Sup 2*

Problem (3.17) possesses at least one solution p*. If problem (3.3) possesses
a solution i, then:

(3.19) g*(x, — p&(x), — PY(x)) + g(x, u(x), grad u(x)) =
= — pa(x)u(x) — p¥(x)- grad u(x), a.e.

Proof. This is an immediate consequence of Theorem I11.4.1, of Proposition
II1.4.1 and of (3.15).

3.2. New hypotheses for g

The extension of Section 2 to problem (3.3) can be made in the case where
g satisfies the hypotheses given below whose role and significance will appear
later.

We assume that, for all M > 0, there exist constants yu,, y, ..., depending
on M, such that:

VxeQ, YueR, lul < M, véeR",

(3.20) g(x, u, &) = uo(M)E| — u (M),
(3:21) gg< WO <m(M),  1<isn
(3:22) 3 200w 0 > m(MNL+ B2 - (M), (M) > 0,
(3.23 |% (510 ’ < (M),
”I 2 n |”’|2
029w < § T o, < oo 1
e ("1’ ) "n) eR", #6(M) >0,

where |n’| is defined from ¢ and 7 by

(329 R st
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Similarly, for all M > 0, we assume that there exists u = u(M) such that,
Vx e Q, VueR, lu| < M, Vée R,

3 3
(3.26) N u(l\zl), { 0 | cuM)
0&, 0¢ ,0u €] 0¢, 8¢, 0x; €|
3%g #M) ‘ &g
327) | —24 ¢ | < B2 |20l M,
G2 o ae 60| < e 5t oz, 0x, 1| S HM)
3 2 3 2
(328) |2 - To) M) T8 ¢, - 29 | < ym),
ot 0w aur| | 3¢, oudx,”  Ouox,
g u(M) d%g
(29 \seauon| <7 |3Eax,ox| S HM)

We also assume that there exists M, > 0 such that:
VxeQ, VueR, |u| > My, VEeR"

0
(3.30) Y Lxué)e =0,
i=1 0&,
(3.31) @( u, £) uz0
. 7y %o 1 &) sgnu > 0.
As in Chapter I, we shall term domg* the set
(3.32) domg* = {(x,1)e 2 x R""!|g¥(x,n) < + o0 }.
We shall assume that
(3.33) g* is continuous over dom g*,

and to simplify matters slightly,
(3.349) (r%, ..., m¥) — g*(x, n*) is strictly convex, Vx € @,
VnyeR with (x,7n)edom g*.
This last hypothesis is a sort of continuity hypothesis for G and can be

stated as follows:
Let g,, and g% be two sequences such that

() 4nel(Q) x LYQP,  4qnel*(Q) x L(Q),
(i) g% € 9G(g,,),
(i) g% —¢* in LQ) x L°(Q),
where g* € 3G(q) and satisfies
(iv) Sgplq(x)| < 4+ o, O c Q measurable.

(3.35)

Thenfor i =1,..,n,
(@) —q: in Ll(@)- n
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Remark 3.2. It is easily verified that hypotheses (3.20)—(3.25) are satisfied
for the following functions g certain of which lead to standard variational
problems (¢f- J. Serrin [1]):

(L + |¢|*)"* (minimal hypersurfaces),

(1 + 1P = f(xu + l|u‘, A>0, feL*(Q)

(¢f> Mossolov [1] when 4 =0),

(1 + gAY = f(x)u + u?, fel®(Q) (a=2),

(1 + |x|* +|¢*)** considered by Bernstein [1] [2],

L+ + D72, (14 (1 + g2 s> 12,ec. B

3.3. Generalized solution of problem (3.3)
Statement of the principal resnlt

Theorem 3.1. With the hypotheses (3.1), (3.2) and (3.20) to (3.25), and ¢ given
satisfying

(3.36) ¢ e W Q) N L=(Q),
problem (3.3) admits problem (3.17) as its dual and
(3.37) inf # = inf #*.

Problem (3.17) possesses a unigue solution 5*.
Furthermore, there exists a unique function u (unique up to within an additive
constant) such that:

(3.38) ue Wh(Q) n L*(Q),

(3.39) Sup |grad u(x)| < + oo, VO c O c Q,

(3.40) g*(x, — p*(x)) + g(x, Au(x)) = — p*(x)* Au(x), ae. xeQ,
(3.41) u is the solution of (3.4) in Q, the Euler equation of (3.3).

(3.42) Every bounded minimizing sequence {v,} of (3.3) converges to u
in the following sense
v, »u in L'(Q)/R
0v, /0x, — du/dx, in L'0), VO<OcQ, I<ign

The theorem will be proved in the following sections.
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Remark 3.3. By virtue of (3.39), (3.41) and some standard results (cf.
E. De Giorgi [1], E. Hopf [1], O. A. Ladyzhenskaya and N. N, Uralceva [2]),
the function u is as regular in Q as g (up to the analyticity in Q).

Remark 3.4. We can apply Remarks 2.2, 2.3 and 2.4 concerning minimal
hypersurfaces to this situation.

In particular, ¥ may or may not be the solution of (3.3) according to whether
u= ¢ on I or not. When u is not the solution of (3.3) we say, by virtue of (3.42),
that u is a generalized solution of this problem.

Research into a priori conditions on Q, g, ¢, which guarantee that u = ¢
on I" or on a subset of I' remains an open problem.

Following J. Serrin [1], we can obtain analogous results to Proposition 2.1
for certain functions g and certain open spaces Q.

We also have an a posteriori result analogous to Proposition 2.2, which we
shall state below and prove in Section 3.8. =

Proposition 3.2. With the hypotheses of Theorem 3.1 and also the assumption
that one of the functions defined by Theorem 3.1 satisfies

dx,el such that
(3.43) lim | grad u(x)| < + co.

X Xg
xe?

Then there exists a unique function u which satisfies all the conclusions of
Theorem 3.1 and, furthermore,

(3.44) u = ¢ on apart of I" with non-zero measure and more precisely on
’ {er‘Il—i_rtn;|gradu(y)|<+oo}.
};'E.Q
Every bounded minimizing sequence {v,,} of (3.3) converges to u
(3.45) in the following sense:
) v, = u in [}(Q)
0v,[0x; > Ou/Ox,; in [}0), VO 0c Q.

3.4. Construction of a regular minimizing sequence of (3.3)
We assume, until Section 3.7, that
(3.46) ¢ € HY(Q) n L*(Q),

and we shall first prove Theorem 3.1 with this supplementary hypothesis.
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We consider, for fixed & > 0, the function u, € H*(§) which is the solution of

the problem®

ved+ HYD)
veL(2)

(3.47) Inf {J [%Igrad o(x)|* + g(x, v(x), grad v(x ))] dx}.

The existence and uniqueness of a solution u, € L*(£2) follows from Lady-
zhenskaya and Uralceva [1], J. L. Lions [3]. From the same authors, we have

u, € 2(Q) at least, and u, is solution of the Euler equation of (3.47):

(3.48) €Au, Z Ed——— x, u, grad u,) = —g—g (x, u, grad u,).

To begin with, we prove

Lemma 3.1. u, is a minimizing sequence of (3.3).

Proof. If v € ¢ + 2(Q), we have, 2 being the problem (3.3):
r
inf 2 < | g(x, u(x), grad u(x)) dx

vQ

r o

JOo L
(by definition of u,)

ro-

<| |3  |arad o(x)|? + g(x, o(x), grad U("))J dx.

Jao L

When & ~ 0, we obtain:

inf 2 < lim J g(x, u,, grad u,) dx

£~0 Jo

£=0

< lim J g(x, u,, grad v.) dx
]

éj g(x, v, grad v) dx
)

< —;—[ grad u,(x)|* + g(x, u(x), grad ua(x))] dx

M This is a regularized elliptic version of problem (3.3). For elliptic regularization in

other contexts see Baouendi [1], Kohn and Niremberg [1), Lions [3].
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Since 2(Q) is dense in Wi-1(Q) N L*(Q), by taking the infimum for the v
under consideration we obtain,

£=0

lim f g(x, u,, grad u,) dx = inf 2,
[

and the lemma follows.

Lemma 3.2. The sequence u, is bounded in L>(Q) and in W*-*(Q).

Proof. By definition of u,,

(3.49) J [—;— lgrad u,|* + g(x, u,, grad us)il dx <
]

< j [% |grad o|* + g(x, @, grad (p)] dx.
]
Because of (3.20) we deduce that:

(3.50) Ve lgrad u, || L2 < C

(3.51) lgrad u | iqn < 6,

which with Poincare’s inequality (u, — ¢ € H}(2)) implies that
(3.52) Ve < e

(353) ”uauwl.l(g) < ec.

On the other hand, let

(3.54) M, = max (oL« qop M)

where M, is the constant introduced in (3.30) and (3.31). Applying the maxi-
mum principle to (3.48) we verify that

(3.55) “usnL“’(Q) < M,
To show in fact that:

(3.56) u(x) < M, ae.,
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we multiply (3.48) by (u, — M,),, we integrate and, using Green’s formula,
we find that®

J z": [s—gg—f+~(§—g( gradu)] z—dx =
0 = i

A{ue> Mo} 151

0
= — J —é%(x, u,, grad u)u, — M,)dx < 0 (by (3.31)).
2n{u, >Mg}

This implies, with (3.30), that ou,/ox, =0 almost everywhere on the set

{x|u(x)>My}, 1<i<n,

and (3.56) is proved.

Lemma 3.3. For every open set 0 relatively compact in Q
(3.57) lullwio @ < (@, 2 M),
(3.58) 4l a20y < (0, 2, M),

where these constants only depend on 0, Q and M,

Proof. This is a direct consequence of a perturbation theorem established
in R. Temam [3] (¢f. Theor. 1.1) and which can be stated as follows:

Theorem of singular perturbation. We assume that u, € €*(Q) verifies (3.48)
and (3.55), whereas g € €*(2 x R"™) satisfies (3.21) to (3.29).®
Then for every open set O relatively compact in Q, we have (3.57) and (3.58).

Passage to the limit, 2 — 0

We can specify the behaviour of u,, for ¢ — 0. With Lemmas 3.2 and 3.3
and by using the diagonalization process, we can extract from u, a sequence
denoted by u, such that:

(3.59) u, —> uin L°(Q)—weak*,
(3.60) du, /ox; —> du[dx, in L*(0)—weak*, VO <0< Q, I1<ign,
3.61) u, —uweaklyin H¥0), V0<0c Q.

() This is permissible, since (4, — M), € H ¥(), ¢f. Stampacchia [1].
) This is the reason for introducing these hypotheses.
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This function u € L*(2) and satisfies (3.39).
Because of (3.53), since the embedding of W'*(Q) into L(Q) is compact,
we can choose #, so that

(3.62) u, — ustrongly in L'(Q).

Similarly, with (3.58) and the compactness theorems in Sobolev spaces
(Lions [2], Lions and Magenes [1]),

(3.63) u, |lo—>ulg stronglyin H0), VOc0cQ

Because of (3.63) and again using the diagonalization process, we can
extract from u, a subsequence (again denoted by u, ) such that

u, (x) > u(x) ae,

(3.64) du ? .
2 (x) - == (x), ae., i=1.,n

By virtue of (3.51), (3.63) and Fatou’s lemma,

Ou 1 s
E el (Q) 1= 1, ey R,
and since # € L*(Q), property (3.38) is satisfied.
We now pass to the limit in (3.48). By virtue of (3.55), (3.21) and (3.23),
the functions

dg 09
3¢ (x u,, grad u,), " (x, u,, grad u,),

are uniformly bounded on Q, independently of &. Since dg/0&,, 0g/ou are
continuous, (3.62) and (3.64) imply that

g%: (x, u(x), grad u,(x)) — g_g. (x, u(x), grad u(x)), a.e.

)
0—?,- (x, u,(x), grad u,(x)) - g—g (x, u(x), grad u(x)), a.e.

dg 0
o (x, u(x), grad u (x)) — a‘i (x, u(x), grad u(x)), a.e.

With the dominated convergence theorem, this implies that:

dg )
aé ( X, e’ grad u ) aé, (x’ u’ grad u)y

dg g R
5, (%t grad u) — == (x, u, grad u), in LY(Q).
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Passing to the limit in (3.48), we now see that u satisfies the equation (3.4)
and (3.41) is proved.

3.5. Regularity of the solution j* of (3.17)

From Proposition 3.1, problem (3.17) possesses at least one solution.
By virtue of the supplementary hypothesis (3.34), if p* =(p¥,5%) and
§* =(§%*,4%T) are two solutions of (3.17), we have:

5t =ar.

But as g} = divp} = divg} = 4§, we have p* =4* which demonstrates the
uniqueness of the solution of (3.17).® This solution will be denoted by p*.

At this point a study of the regularity of p* will enable us to prove (3.40)
which implies (for Section 3.4) a characterization of u independent of the sub-
sequence u, extracted from u,.

From Lemma 3.1, u, is a minimizing sequence of (3.3); hence:

F(u)) + G(Au,) = G(Au,) = inf # + p,,
Pe = Os pPe 0 withe.

We can make use of Proposition 1.2:

(3.65) — predp, G(Au,).
Theorem 1.6.2 then enables us to affirm the existence of p, and p¥ such that:
(3.66) p.eY = L¥Q) x L{Q),
(3.67) pte Y* = [€(Q) x L2(Q),
(368) lp. = Auy <o,
(3.69) Ip* = B*lv < V..
(3.70) ~ pF € 9G(p,).

From (3.15) (Remark 3.1), (3.70) means that:
(71 g*x — ) + (% pX) = — P pX) ae.
and implies that:
(3.72) g*(x, — pX(x))edomg*, ae. xeQ

1 We have not used (3.46) here.
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By virtue of (3.68), we can, by extracting a new subsequence, assume that:

(3.73) p..(x) — Au, (x) > 0 ae,
and, with (3.64),

(3.74) P, (x) = Au(x) ae.
Obviously, by (3.69),

(3.75) pk (x) » p*(x) ae.

Passing to the lower limit in (3.71), we obtain:
g*(x, — p*(x)) < — p*(x). Au(x) — g(x, Au(x)) < + oo, a.e,

so that (x, —7*(x)) € domg* for almost all x € Q.
Hence, because of (3.33) we can pass to the limit in (3.71) and deduce the
equality (3.40) from it.

3.6. Property of minimizing sequences of (3.3)

We shall now prove (3.42).
Let {v,,} be a bounded minimizing sequence of (3.3):®

v, e + Wii(Q), v, €L®(RQ), VYm
(3.76) O]l Loy < €
G(Av,) — inf 2, m — o0,
From this we can deduce with (3.20) that the sequence v, is also bounded
in W1(Q),
We set

G(Av,) =inf#? + o, 0,20,
o,, — 0 for m — ». From Proposition 1.2 we have again
—p* € 0, G(Av,,).

Using Theorem 1.6.2, we obtain for all m, the existence of p,, and pg, such
that:

(3.77) pn € LH(Q) x LY{Q)", pre L¥(Q) x L2(Q),
(3.78) 1P = Av,fly < Vo,

 In particular v,, can be the sequence {u,} of Section 3.4.
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(3.79) “P: - i’*“y‘ sVoa,,
(3.80) predG(p,).

From (3.79), p* — p* in Y*, and from (3.19) and (3.40) —p* € 8G(Au), with
Au satisfying (cf. (3.38) and (3.39)):

(3.81) S%p|Au(x)|< + 0, VO < 0 < Q.

We can thus apply (3.35) and deduce that,

(Pn); = (Au);, in L] (Q), 1<ign
But then from (3.78) we have
(Av,); = (Av); in L} (Q),
which implies that
dv,/0x, > dv/dx; in L (Q), lgign

Now, since v, is bounded in W*-}(Q) and in L*(Q), we can extract a subse-
quence v,,, such that:

(3.82) Um,—~> ¥ in L=(Q)—weak* and strongly in L(Q).

Necessarily, in each convex component of @ we have ¥ = u + constant,
and if we pass to the quotient by the constants, the limit in (3.82) is inde-
pendent of the subsequence and the entire sequence v, converges to ¥'; there
exists a bounded sequence of numbers A, such that:

| O + Am — 1 in L=(Q)—weak*, and strongly in LY(Q), m — w;
(3.42) is established.
Remark 3.5. Certain a priori upper bounds for u result from the foregoing:
(3.83) |ull Loy < Mo = max (| @] Loy M1)
(by (3.54), (3.55) and (3.59)).

\

(3.84) lerad u| o < c(Mo)(l + J g(x, o(x), grad o(x) dx)

Q2

(by (3.20), (3.49), (3.64), (3.83) and Fatou’s Lemma).

(3.85) (4]l o) < €O, 2, M), VO <0 < Q,
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(3.86) [#u0y S (0, 2, M), VO c0cQ,
(by (3.57), (3.58), (3.60), (3.61)).

QOrientation

Theorem 3.1 has been completely proved using the supplementary hypothesis
(3.46). It is now necessary to suppress (3.46) and to replace this hypothesis
with (3.36).

3.7. Conclusion of the proof of Theorem 3.1

We shall proceed by approximating ¢, the idea being the same as for the
proof of Theorem 2.1, but with several additional technical difficulties.

Just as in (2.8), (2.9), there exists a sequence of functions ¢, € H'(Q) N
L*(), such that
(3.87) $n—>¢ in WHY(Q),
(3.88) I mll o < |l Loy

We then call 5% the solution of problem (3.17) corresponding to ¢,, and p*
the solution of problem (3.17) corresponding to ¢. We call u,, the generalized
solution of problem (3.3) corresponding to ¢,,.

We ignore, for the moment, the existence of a generalized solution of problem
(3.3) associated with ¢ and our purpose is to demonstrate its existence.

To do this, we shall give a priori estimates on p¥ and u,,, and pass to the limit
m—> ©,

Lemma 3.4. .
(3.89) p* remains in a bounded subset of L* () x L*(Q)", as m — >w.
Proof. Since p} is the solution of (3.17) corresponding to ¢,
~ (p* Ay > — G¥(— p*) < (Pp, 49,,> — G*(— Pn),
whence:
(390)  G¥(—P}) + (Pn A%, > < G —P*) + (p* A¢n>
£¢c< + w0,

as G*(—p*) < +o and (j*, A¢,,» is bounded due to (3.87).
It is now necessary to show that (3.89) is a consequence of (3.87) and (3.90).
This can be done if we show that:

(3.91) ¢ + [lg*|y. < G*g*) — (g% 44, Vg* e Y*,
with ¢ independent of m.
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Let # be the ball of radius unity of Z5(£) x L1(Q)".
It follows from (3.10) that G is bounded on the bounded sets and thus:

(g + A4 ,) S ¢ < + o, Vge B, Vm.
This implies that:
(3.92) Glg + Ad,,) < ¢+ Xglg), VqeV,

where x4 is the indicator function of 4. Inequality (3.92) passes to the conjugate
functions; using 1(4.5), 1(4.9), I(4.10), and noting that:

15la®) = {la*{ v
we find exactly (3.91).

Lemma 3.5. When m — o, p% — p* in L*(Q) x L™(Q)", in the weak* sense.

Proof. The reasoning is standard with (3.89) and the properties of G*
(convexity, 1.s.c.).

Lemma 3.6. The sequence u,, is bounded in L*(Q) and W*+(Q). Furthermore
Jorall 0 < 0 < Q:

(3.93) lumliwsz @) < €0, 2 M),

(3.94) ” um“m(a) < 0, 2, My).

Proof. This depends essentially on Remark 3.5, where we replace ¢ and u by
¢, and u,,.

The fact that u,, is bounded in L*(Q) is a consequence of (3.83) and (3.88);
u,, is bounded in W*-1(Q) by (3.84), (3.10) and (3.87).

The upper bounds (3.93) and (3.94) result directly from (3.85) and (3.86).

Lemma 3.7. When m — «, u,, — u, where u satisfies (3.38) to (4.32) (i.e.
the conclusions of Theorem 3.1).

Proof. This is accomplished by extracting a suitable subsequence, using
Lemma 3.6, then repeating the reasoning of 3.4, 3.5 and 3.6.
Theorem 3.1 is completely proved. W

3.8. Proof of Proposition 3.2

Let us assume that (3.43) holds true. Then |grad#(x)| is bounded on an
open set Q24 = B,(x,) N Q, B,(x,) = some open ball centred at x, with radius
p > 0. As well as (3.81) (which is (3.39)), we have

(3.95) S!l)lp |Au(x)] < + oo.
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Because of (3.35) and (3.95), we can recommence the reasoning of Section
3.6, with 0 = Q.

If {v,,} is a bounded minimizing sequence, we thus obtain the existence of
a subsequence v, , such that:

(3.96) Um,—u+c stronglyin L),
0D [0, —> OufOx, stronglyin L'(Q), 1<i<n,

where u is one of the functions given by Theorem 3.1 and ¢ € R an appropriate
constant.

Since v,, = ¢ on I', we have v,, = ¢ on I'y= 80, N I' and hence at the limit
(3.97) u=¢+c¢ on T,

The constant ¢ is thus independent of the subsequence v,,, under considera-
tion and it is the whole subsequence v,, which gives rise to the convergences
(3.96). We can then take ¢ =0, as because of (3.97) and (3.40), the function u
is defined in a unique way.

The reasoning which we have just provided in the neighbourhood of x,
can be reproduced in the neighbourhood of any point x € I' such that

lim |grad u(y)| < + oo.
Vet

Remark 3.6. Results of the same type as those given in Theorem 2.2 are
available for problem (3.3) too. Also, using the same techniques as in Section
2.3 we can associate with (3.3) problems similar to that of De Giorgi (2.37),
or more generally (2.57).

4. OTHER PROBLEMS
Orientation

In this section we shall give two other examples which are related to the
examples in Sections 1, 2 and 3: only the order of the operator (Section 4.2)
or the boundary condition (Section 4.1) vary. The situation is then very differ-
ent and much simpler, but the comparison seems interesting to us.

4,1. A Neaman type problem

We consider a function g =g(x,u,f) defined over 2 x R*™!, three times
continuously differentiable and satisfying the same hypotheses as in Section 3:
namely (3.1), (3.2) and (3.20) to (3.35).
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We are now concerned with problem (4.1)

@1 wwl.l%g)fnym) I:J g(x, u(x), grad u(x)) dx].

This is a Neuman type problem.
For this problem, the situation is much simpler than in Sections 2 and 3, for,
as we shall see, the problem possesses a solution.

Proposition 4.1. The open space Q is assumed to be of class €>.

Under hypotheses (3.1), (3.2) and (3.20) to (3.35), problem (4.1) possesses a
solution ue W*(Q) N L*(Q) and this solution is unique except perhaps to
within an additive constant.

Proof. We shall demonstrate the existence of a solution for regularized
ellipticforms of problem of (4.1), give a priori estimates and obtain the existence
of a solution of (4.1) by passages to the limit.

For fixed ¢ and 1 > 0, we consider the problem (cf. (3.47))

(4.2) veH’(})I)lrfL“(.Q) {L [% |grad v|® + 2|v|* + g(x, v, grad v)] dx}.

The existence and uniqueness of a solution u,, of (4.2) follow from Propo-
sition I1.1.2, because of the hypotheses for g.

We shall show that:
(4.3) H"u”yl(m < C/\/;,
(4.4) ”uel“Lm(Q) <M,

(¢f (3.30) and (3.31)), where c is independent of ¢ and A. Effectively
j [—;— |grad u,,|* + A |u,,|* + g(x, u,,, grad uu):| dx
Q

< j g(x,0,0)dx < ¢,
[

and then, with (3.20),
(4'5) H grad ux}.”U(_Q)n < c/\/f;;

(4.3) is a direct consequence of (4.4) and (4.45).
Let us demonstrate (4.4); we shall merely make explicit the proof of:

(4.6) u (x) < M, ae xe®.
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But u,, satisfies (¢f. for example 11.2.1):

4.7) ‘[ [a(grad u,;  grad o) + Aa |u,,|* " 2u,,v +
0
= ov
+ Z ( (x, u,;, grad uu)-a—c—)+

+ % (x, u,,, grad ue,.)] dx =0,
for all v € H'(Q) N L¥(Q).
Taking v = (u,, — M,),, we obtain with (3.30)~(3.31):

J [e |grad u,|* + Ao u,|*~ 2u,(u,, — M,)]dx = 0.
2nfug >Mi)

This implies that (u,, — M,), = 0 and (4.6) is proved.
A first passage to the limit A — O shows that there exists 4, € H ()N
L>(Q), solution of

& 2
: £ orad
(4.8) %H.(}ir,lrl:u(m {L [2 |grad o|* + g(x, », gra v)] dx}

which satisfies furthermore

(4.9) lull Loy € M, (independent of &).

The function u, is possibly only unique to within an additive constant.
This function u, satisfies the Euler equation of (4.8):

(4.10) ¢ Au, + Z dé (x, u,, grad u,) = g—% (x, u,, grad u,),

and this implies that u, € #%(Q) (¢f. for example Ladyzenskaya and Uralceva
[2].

By virtue of (4.9) we can again apply Theorem 1.1 of Temam [3] (¢f: Lemma
3.3) to obtain

(4.11) ”“ ”Wlao(m 0, Q,M,),

(4.12) ”u ||H2(0) (0, Q, H,),

for any openset 0 < 0 < Q.
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On the other hand with (3.20), we easily obtain:

(&.13) [t <

With (4.9), (4.11), (4.12) and (4.13), we can see that there exists a sequence
&,, — 0 such that

(4.14) u, — uin L*(Q)—weakx ,
4.15) g—;a»aa’; VO<dcQ 1<i<n,
(4.16) u, |o — ulp weakly in H2%(0), VO c 0 c Q,
4.17) u, |o— ulg strongly in H'(0), VO <0 c Q,
u, (x)—u(x) ae.
(4.18) Quy,(x) _ Ou

X;

ax (x) a.e.

(as in Section 3.4, we have made use of compactness results and of the diagonal-
ization process).
By Fatou’s lemma, (4.13) and (4.18), we have u € W'-1(Q); hence

ue Wh(Q) A L%(Q), u|l,e HHO)AW'2(O) VO <0 cQ

Finally, we verify that u is a solution of (4.1). Effectively, if ve H}(Q) N
L*(Q), we verify as in (4.7) that

(4.19) j [sgradu grado + Z 06 X, c,gradu)a
Q

dg -
+ =, (x, u,, grad ua)v] dx =0,

With (3.21), (3.23), the convergences (4.14) to (4.18) and Lebesgue’s theroem
we can pass to the limit in (4.19) in order to obtain

i=1 i

n 6g ov dg . _
(4.20) L[Z 3 (x, u, grad u)- T +—a-;(x, u, grad u) v] dx = 0.

By density, since H*(2) N L*(Q) is dense in W1(Q) N L=(Q), we deduce
that (4.20) is true, Vo € W1(Q) N L*(Q) and so (¢f. Proposition I1.2.1), u
is a solution of (4.1).
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The uniqueness of u to within an additive constant results from the fact that:

(4.21) & = g(x, u, &) is strictly convex,
VxeQ, YueR, ¢eabounded set of R;

(due to (3.24)).
Proposition 4.1 is proved. w

Remark 4.1, The existence result given in Proposition 4.1 seems new; it
was announced in R. Temam [4].

Duality for (4.1)
We set
V= W'{Q)n L{Q),

Y = [§Q) x LYQ)", V*=1V, Y*=I7Q) x [*(Q),
Au = {u,gradu },

F(u) =0, YueV,
G(p) = f g(x, p(x)) dx, VpeY.
o]
The problem

Inf[F(u) + G(Au)]

uelV

is indeed identical to (4.1).
We have

F*(A*p*) = + oo exceptif A*p* =0,
which means (¢f. Lemma 2.1) that,
(4.22) div p¥ = p3, ptvlr = 0.

The relation (3.12) is still valid with regard to G*.
The dual problem of (4.1) can be written

4.23 S — | ¢*(x, — p*(x))dx |.
(4.23) p,eL;.im;lyLm(m"[ Lg (x, — p*(x)) x]

vp*=p3
* -
pivir =0
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Proposition 4.2, Problems (4.1) and (4.2) are mutually dual and

(4.24) inf # = sup 2#*

Problem (4.1) possesses a solution i which is unique except perhaps to within
an additive constant. Problem (4.23) possesses a unique solution p* and we have:

(4.25) g*(x, — p*(x)) + g(x, u(x), grad u(x)) =
= — p¥(x)- u(x) — p¥(x): grad #(x),a.e. x € Q.

Proof. This can be proved with the help of standard reasonings and that of
Section 3.

Remark 4.2. Compare (4.23) with (3.17).

4.2. A higher order problem

Let Q be a bounded open set and let ¢ be given in H*(Q). We consider the
problem

(4.26) Inf [J (1 +|Auf)? dx].

uep + H%(.Q)

We set:
V = H}(Q), Y = LY(Q), A=A,
V* = the dual of Hz(Q), Y* = L2(Q),

0 if ueop + H(Q),

F(u) = ' |
+ oo otherwise,

6(p) = f [1 + [p(xf]7 dx.

We have
* A if * =0,
F’“(A*P*): <P, (P> l.AP
+ oo otherwise.
GHp*) =| J [1 =P al) 2 dx i p*(x)f < 1 ae.
a
+ oo otherwise.
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Problem (4.26) is thus of the type III(4.16) and its dual can be written as

w2)  swp [ [/ 1= #7(s) 0ta) + (1 = Ipray ) dx].

prel?
Apr=
[p¥(x)|<1 ae
By Proposition I11.4.1, there exists a solution j* of (4.27) (which is unique
by strict concavity) and inf? = sup#*. Since Ap* =0, p* is analytical in Q,
and as p*(x) is not identical to +1, we deduce from the maximum principle
that:

(4.28) Sgp p*(x)| €1 — 1, n=n0,2¢) YOcOcQ.

Using the techniques of Sections 2 and 3, we arrive (much more easily this
time!) at

Proposition 4.3, Let ¢ given in H*(Q). Problems (4.26) and (4.27) are mutually
dual and

(4.29) inf # = sup 2*.

Problem (4.27) possesses a unique solution p*, a harmonic function satisfying
(4.28).

Moreover, there exists a function u which is analytic in Q, which satisfies
Aue LY(Q) and

p*(x)
4.30 Au(x) = — VxeQ,
(30 R TR
Au
4.31 A——-——=0in Q.
30 (1 + [
Any minimizing sequence {v,} of (4.26) converges to u in the
(4.32) Jollowing sense:
Av,, - Au in L'(0), VO c 0 c Q.

Finally u is the solution of (4.26) if such a solution exists. W



CHAPTER VI

Duality by the Minimax Theorem

Orientation

We consider a minimization problem

(0.1) Inf &(u).

ueV

Let us assume that we can write ®(u) as a supremum in p of a function L(x, p):

(0.2) D(u) = Sup L(u, p), YueV.

peZ

As the convex Ls.c. functions are the pointwise suprema of their affine con-
tinuous minorants, we can in general write ®(u) in the form (0.2) and often
in several different ways.

Problem (0.1) then takes the form

(0.3) Inf Sup L(u, p).

ueV pel

It is convenient to term the problem

(0.4) J) Inf L{u, p),

ueV

the dual problem of (0.1).

We propose to study the connection between problems (0.1) (or (0.3)) and
(0.4) somewhat as in Chapter III. This presentation of duality has implicitly
appeared in Section 3 of Chapter III and we shall take up this point of view
in a more systematic manner. This investigation is based upon the classical
minimax theorems of Ky-Fan [1] and Sion [l1]. The results which we will
derive are essentially the same as those of Chapter III (their application to
examples will also lead to the same conclusions). However, it may happen

that one of the two approaches is more appropriate for a particular problem.
165
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1. SADDLE POINT OF A FUNCTION. PROPERTIES

Our starting point is a function L = L(u, p) defined on a product space and
which we shall term a Lagrangian function. In Chapter III, it was convenient
to consider functions with values in R, and this was justified by the fact that
convex 1.s.c. functions only “rarely” take the value —o. On the other hand,
the Lagrangian functions which we are going to consider may generally take
any value in R, and as the algebra of such functions is awkward, we shall
restrict the domain of definition of L in order to limit ourselves to the pairs (u, p)
Jor which L(u, p) is a real number.

We therefore take a function L defined on a set &/ x # with real values.
Ultimately the nature of the sets &/ and # will be stated precisely, but for the
first results and definitions given below, &/ and # are merely two arbitrary sets.

Our first result is as follows:

Proposition 1.1. If' L is a function defined on of x B with real values,
(1.1) Sup Inf L(u, p) < Inf Sup L(y, p).

pe® ued ved peR

Proof. Indeed we have

Inf L(4, p) < L(v, p) Yvesd, Vpe B,
ueof
whence
Sup Inf L(u, p) < Sup L(v, p)
peR ucoS peR
and

Sup Inf L(u, p) < InfSup L(v,p). W

peR ued vef ped

Remark 1.1. In connection with what we said in the Introduction, this
Proposition 1.1 can be compared with Proposition II.1.1. w

Let us now recall the definition of a saddle point:

Definition 1.1. We say that a pair (i, p) € o x & is the saddle point of L
onsd x Bif

(1.2) Lz, p) < L(#, p) < L(u, p), VYue o, Vpe B.

The following proposition gives an existence criterion of a saddle point.
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Proposition 1.2. The function L defined on s x & with real values possesses
a saddle point (i3, p) on s x B if and only if

(1.3) Max Inf L(u, p) = Min Sup L(y, p), ¥,
PER  ueod uesd peR

and this number is then equal to L(i1, p).

Proof. Let us assume that there exists a saddle point (&, p); then, from (1.2),

(1.4) Sup L(&, p) = L(&, p) = Inf L(u, p).
peR ue A

But

(1.5) Inf Sup L(u, p) < Sup L(, p),
ucAd peR pe®R

(1.6) Inf L(u, p) < Sup Inf L{u, p),
uess peR  uest

so that

(1.7) Inf Sup L(u, p) < Sup Inf L(y, p),
uesA pes peR ued

which together with (1.1) implies that (1.7) is in fact an equality. This further
implies with (1.4) that (1.5) and (1.6) are also equalities and we then have

L(u, p) = Sup L(&, p) = Min Sup L(u, p) = Inf L(y, p) =
peR uew pedR ue o

Max Inf L(w, p).

peR  ue.o

Conversely, let us assume that (1.3) holds, the minimum being attained in
#z and the maximum in p. Clearly,

(1.8) InfL(u, p) < L(u, p) < Sup L(%, p),
ue o

pe#

and from (1.3), the inequalities of (1.8) are in fact equalities, which shows
that (@, p) is a saddle point of L.

Remark 1.2. If the function L possesses a saddle point, we then have, in
particular

(1.9) Sup Inf L(4, p) = Inf Sup L(w, p).

pe# uesd ucof ped

) We recall that the replacement of Inf (Sup) by Min (Max) means that the infimum
(supremum) is attained.
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We note the following criterion

Proposition 1.3. If there exists u, € o, p, € 8 and o € R such that

(1.10) L(ug, p) < o, Vpe &,
(1.11) L(u,py) = a, Vue o,

then (uy, po) is a saddle point of L and

(1.12) a = Inf Sup L(u, p) = Sup Inf L(u, p).
ue st peR pe B uesHA

Proof. Obviously we have « = L(uq, po) and
L(ug, p) < L(ug, po) < L(u, po), Yue o, Vpe &.
Proposition 1.4, The set of saddle points of L is of the form sf, x B, where
Aocf and B, < B.

Proof. We have to verify, for example, that if (1, po) and (u,, p,) are two
saddle points of L on & x &, then the same holds for (u,, po).
From Proposition 1.2,

a = L(ug, po) = L(uy, py);
and by definition of (1, po), (41, py),

L(u,,p) € a, Vpe A,

L(u, po) > «, Vpe .

Proposition 1.3 implies that (u,, po) is the saddle point.

Hypotheses concerning L

We take two reflexive Banach spaces, ¥ and Z, and we assume henceforth
that

(1.13) of < Vis convex, closed and non-empty,

(1.14) # < Z is convex, closed and non-empty.

The function L of of x # — R satisfies

(1.15) Vue o, p - L(u, p) is concave and u.s.c.,
(1.16) Vpe B, a— L(u, p) is convex and Ls.c.
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We can now make more precise the result of Proposition 1.4:

Proposition 1.5. Under hypotheses (1.13)-(1.16) the set of o x By of the
saddle points of L is convex.

If {p — L(u, p)} is strictly concave, Vu e o, then B, contains at most one
point. If {u— L(u, p)} is strictly convex, Vp € B, then f contains at most
one point.

Proof. Let us assume that of, x %, is non-empty, and let

« = InfSup L(u, p) = Sup Inf L(u, p).
ue s peR peR uesd

If u,, u, € fy and A € |0, 1[ we have,
L(u,, p) < o, L(u,, p) € o, Vpe A,
and thus, from (1.15),
L(Au, + (1 = Auy,p) € a Vpe &.

On the other hand L(u, p,) > o, Vu € o, which shows, with Proposition 1.3,
that (Au, + (1 — ) u,, p,) is the saddle point of L and Au; + (1 — L)u, € .

If L is strictly convex with respect to u, Vp € 8, then 7, is reduced to one
point since if u,, u, were two distinct points of o4, we would have

L(Auy + (1 — Auy, py) < AL(uy, py) + (1 — )L(uy, py) = ,
which is impossible as
L(Au, + (1 = Duy, py) =

Characterization of a saddle point (differentiable functionals)

We shall now give a useful characterization of a saddle point, in the case
where L is a differentiable function.

Proposition 1.6. We assume, in addition to (1.13)-(1.16), that
(1.17) Yue o, p — L(u, p) is Giteaux-differentiable,

(1.18) Vpe B, uw— L(u, p) is Giteaux-differentiable.
Then (i1, p) € of X B is the saddle point of L if and only if

(1.19) (%ﬁ—‘(ﬁ, Phu—u) 20, Vued,
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oL ,_ _ _
(1.20) <FE(“’ Php—-p5><0, Vpe &

This is a special case of the proposition given below.

Proposition 1.7. We assume that L = m + ¢ with

(1.21) VYue A, p— lu, p) isconcave and Géteaux-differentiable,
Vpe®B, u— flu, p) isconvex and Giteaux-differentiable,

(1.22) Yue o, p— m(u, p) isconcave,
Vpe B, u— m(u, p) is convex.

Then (i1, p) € o x B is a saddle point of L if and only if

¢
(12 (Q@Phu—a>+mup) —mup) >0  Vued,

ot _ _ _ ~ =
(124) - <5;(u’ p)a p—p > + M(u, P) - m(u’ P) 2 0, Vp ERB
Proof. If (a1, p) is a saddle point of L, then

L(ﬁ, 13) < L((l — l)ﬁ + A#, ﬁ) YueA,
€@, p) + m(r, p)< A(1 — A)a + Au, p) + m((1 — A)a + Au, p)
< (by the convexity of m)
< i + Mu — @), p) + (1 — Am(#, p) + Am(u, p),
whence
f(ﬁ + A‘(u - ﬁ)a p) - f(ﬁ’ P_)
A

+ M(u, 13) - m(ﬁ, p) =0,

which implies (1.19) when A ™\ 0,
The proof of (1.20) is analogous.
Conversely, if (@, p) satisfies (1.23) and (1.24), then

Yue o, Au, p) — @, p) — < gg(ﬁ, p)u — @ )> =0 (convexity of £),

so that
f(u, p) — u, p) + m(u, p) — m(z, p) = O,
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or
L(ﬁ, I_)) g L(ua ﬁ), Yu e

In the same way, we could prove that
L(# p) < L(7, p), Ype B,

and the result follows.

2. EXISTENCE RESULTS FOR SADDLE POINTS

2.1. Main results

Proposition 2.1. We assume that the conditions (1.13)~(1.16) are satisfied
and additionally that

(2.1) o and B are bounded.
Then the function L possesses at least one saddle point (i, p) on & x B and
(2.2) L(@, p) = Min Max L(u, p) = Max Min L(, p).
uesd peR peB  ued

Proof. First of all, we consider the case where we also have
(2.3) VYpe B, u ~ L(u, p) is strictly convex.

Since ¥ and Z are reflexive, &/ and # compact for the weak topologies of
V and Z respectively. Moreover, the properties (1.15) and (1.16) of semi-
continuity of L are also true for the weak topologies.

Under these conditions, for all p € 4, the function u — L(u, p) being
weakly Ls.c. is bounded from below on o/ and attains its minimum at a
unique point by virtue of (2.3). This minimum is denoted by f(p) and the
point where the minimum is attained by e(p) € & :

(2.4) fwh=ygumm=mem.

The function p — f'(p) is concave and weakly u.s.c. as a lower bound of
such functions; it is therefore bounded above and attains its upper bound
at a point p:

(2.5) 7 (p) = Max f(p) = Max Min L(y, p)

peR peR uest

(2.6) f(p) < L(u, p), Vue o.
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Now, forue o, p e # and A € ]0,1{, and by virtue of (1.15),

L(u,(1 = 4)p + 4p) = (1 — A)L(u, p) + AL(4, p).

In particular, by taking u = e, = e((1 — 1) 5 + Ap), we obtain

fp) = f((1 — A)p + Ap) = L(e, (1 — A)F + Ap)

= (1 — A)L(e,, p) + AL(e,, p)

2 (1 = Af(p) + AL{e;, p),

whence

(2.7) f(B) = Lie,, p), Vpe A.

Since &f is weakly sequentially compact, we can extract from e, a sequence
An — 0 with e, converging weakly to some limit @. We have & = e(p) and this
limit i is thus independent of p and of the selected sequence A,:‘" indeed, by
definition of e,,

Lie;, (1 — A)p + Ap) < L(u, (1 — A)p + 4ip), Yuesd,
and from (1.16)
(1 — A)L(e;, p) + AL{e,, p) < L(u, (1 — A)p + Ap) Vued

Since L(e;, p) is bounded from below by f(p), the passage to the limit in the
latter inequality, A, — 0, yields, because of (1.16):

L(@ p) < lim L(e,,p) < lim L(u, (1 = 2)p + 4,p).
1.—0 " =0
and hence i = e(p).
We can now pass to the limit in (2.8). Using (1.15) again, we find
(2.8) f) > L@ p),  Vpes.

By virtue of (2.5), (2.8) and Proposition 1.3, (, p) is the saddle point of L,
and the proposition is proved by means of the supplementary hypothesis (2.3).

If hypothesis (2.3) is not satisfied by L, we introduce the perturbed
Lagrangians L,,

L(u,p) = L(u, p) + & |ul,, &> 0,
defined on & x %, which satisfy the same hypotheses as L and also (2.3).®

M By virtue of (2.3).
@ Since Vis a reflexive Banach space, we may assume that the norm of Vis strictly convex;
¢f. E. Asplund [2].
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By applying the above reasoning, we obtain the existence for L, of a saddle
point (i,, p,) on of x &
(2.9) L@@, p) + ¢ ||a.|y < L(@, D) + ¢ @]y
< L{u, p,) + € ful,. Yued, Vpe A.
By the weak compactness of sf and 4, there exists a sequence &, — 0, with
i, — u weakly in¥,
P, — P weaklyinZ.
Passing to the limit in (2.9), using (1.15), (1.16), we have
L(#, p) < L(u, p), Yue &, Vpe %,
which proves that (%, p) is a saddle point of L and so proves the proposition.

Proposition 2.2. We assume that conditions (1.13) (1.16) are satisfied and
also that

(2.10) 3p, € # such that
lim Ly, py) = + o0,
ue.f
ull =0
(2.11) Juy € A such that
lim L(uo, p) = — 0,
e R

fell = +wo
Then L possesses at least one saddle point on L and

(2.12) L(i, p) = Min Sup L(u, p) = Max Inf L(u, p).

uesd pedR peR pesd
Proof. For u> Oﬁxed, let
={ued||u| <p
={pe®||p]| <u

The sets &/, and %, are closed, convex and bounded and Proposition 2.1
shows that L possesses a saddle point (i, p,) on &, x &,

(2.13)  L(u, p) < L(8,,p,) < L(u, p,), Yue o, Vpe B,
Assuming that  is sufficiently large so that u, € &, and p, € %,, we also have

(2'14) L(ﬁu’ pO) g L(ﬁu’ ﬁu) g L(uO’ I_’u)‘
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The function u+~ L(u, po) is convex, ls.c. and coercive; whence by
Proposition II.1.2 it is bounded from below

(2.15) ~ o < a < Ly, py) Yue A

In particular

(2.16) — o < a < L(i, po) Y.
Similarly p — L(uq, p) is bounded from above

(2.17) L(ug,p) < b < + oo, Vpe &,

and

(2.18) L(ug, p,) < b < + oo, V.
With (2.14) (2.16) and (2.18) we obtain

(2.19) L(u, po) < b < + oo, Yu,

(2.20) L{ug,p,) 2 a > — o, Yu.

By virtue of (2.10) and (2.19) (resp. of (2.11) and (2.20)) the sequence
i, (resp. p,) is bounded independently of y. Since the numbers L(4,, p,) are
also bounded, there exists a sequence u; — o such that

(2.21) L(a,,p,) — o,
(2.22) u, —u weaklyin o,
(2.23) p,,— P weakly in %.

By virtue of (2.13)
L(#, p) < o < L(u, p), Vue s, Ype B,

and (u, p) is a saddle point of L on of x 4.

Remark 2.1. Proposition 2.1 may be easily extended to the case where &/
and # are compact subsets of separated topological vector spaces.

The hypotheses of Propositions 2.1 and 2.2 can be combined to result in
the existence of a saddle point when

(2.24) oA is bounded and (2.11) is satisfied,
or else

(2.25) A is bounded and (2.10) is satisfied. =
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2.2. A partial result
Proposition 2.3. With the hypotheses (1.13)~(1.16) and

(2.26) o is bounded or else (2.10) is satisfied,

then

(2.27) Min Sup L(u, p) = Sup Inf L(y, p).
uced ped pe® ued

Remark 2.2. From Proposition 1.2, Proposition 2.3 only provides part of
the information necessary for the existence of a saddle point of L: The equality
inf sup = sup inf and the fact that the infimum is attained for the inf sup,
giving thus the existence of the first component # of the saddle point.

Remark 2.3. By virtue of the symmetrical role played by u and p, we have
an analogous result:

If # is bounded or if (2.11) is satisfied
(2.28) Inf Sup L(u, p) = Max Inf L(u, p). B

ued peR pe®  uedAd
Proof of Proposition 2.3.For fixed & > 0 we consider
L,(u, p) = L(u, p) — ¢ ]|p|. uesd, pe B.

The hypotheses of Proposition 2.2 are satisfied (if necessary, see Remark
2.1); we thus deduce the existence of (i,, p,) € &/ x % such that

(229)  L(i,p) — e|p| < L(@,p) — & |p.| < L(w5,) — ¢||5.|,
Yuedd, Vpe B.
From (2.29) it follows that
(2.30) L(u,, p,) < L(u, p,), Vue o,
(2.31) L(u, p,) < InfL(u, p,) < SupInfL(y,p)=1y.
ue A peR uecsd

By setting p = p, (in the case of hypothesis (2.10)), we also have
(232) L(as’ pO) 3 "pOH + L(as’ I_’s) s € “pOI] + 7

Let us assume that y <+ (we shall ultimately consider the case y = +).
In this case (2.32) means that L(3,, p,) is bounded from above when ¢ — 0
and, from (2.10),

(2.33) 4, is bounded for £ — 0.

This conclusion is immediate if, instead of (2.10), o7 is bounded.
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There then exists a sequence &; — 0 and @ € &, such that
(2.34) i,, — u weakly in of.
If p € & is fixed, then by (2.29) and (2.31),

L(l;, p) S li_m L(uaj’ p) g E@_L(aej’ ﬁej) é y'

ej-»O z,—*O

Whence

(2.35) Inf Sup L(u, p) < Sup L(u, p) < y = Sup Inf L{u, p).
uesl peR pe® pe® uesd

Due to (1.1), all the inequalities of (2.25) are in fact equalities and the result
is established.
There remains the case when y = +; from (1.1) we then have

+ oo = Sup Inf L(u, p) = Inf Sup L(u, p) = Sup L(&, p), Vied,
peR ued ued ped pe®

and the proposition is trivial in this case. m

Finally, there is another existence result for saddle points which is more
general than Propositions 2.1 and 2.2.

Proposition 2.4. We assume that conditions (1.13)~(1.16) are satisfied and,
moreover, that

(2.36) & is bounded, or else there exists p, € # such that
lim L(u’ pO) = + o0,
fulf =+ + o
ue
(2.37) 2B is bounded, or else
lim Inf L(u, p) = — 0.
o=+
peR

Then L possesses a saddle point on sf x 8.
Proof. From Proposition 2.3, (2.36) shows that

(2.38) Min Sup L(u, p) = Sup Inf L(y, p).
ued pe® peR uesf
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Now the function p — Inf, ., L(u, p) is concave, u.s.c. and coercive on #
(unless # is bounded) and so Proposition II.1.2 shows that the problem

Sup Inf L(u, p)
pe®B uesd

possesses a solution:

(2.39) Min Sup L(u, p) = Max Inf L(y, p),
uesd pe® pe®  ued

and, with Proposition 1.2, the result follows.

Remark 2.4. Clearly, we can interchange the roles of & and # in
Proposition 2.4.

3. APPLICATIONS TO DUALITY. EXAMPLE
Orientation

In this section we shall show how the theorems of minimax allow of a
different and direct approach towards duality. This point of view is developed
in Section 3.1. All the examples of Chapters IV and V can be re-examined
from this standpoint and we shall limit ourselves to a single example, to be
developed in Section 3.2.

In the following section we shall render somewhat more precisely the
analogy between this method of dualization and that of Fenchel and
Rockafellar studied in Chapter III. Nevertheless, we wish to emphasize once
more, and this will be even clearer after Sections 3 and 4, that these methods
of duality are fundamentally the same as those in Chapter II and that they
only differ in their concrete and practical way of dealing with a particular
problem.

3.1. Use of the saddle point theorems in duality
We start with an optimization problem £:
(3.1) Inf F(u)

ueV
which we can write, setting o = dom F, &/ < V, in the form

(3.2) Inf F(u).
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As we indicated in the introduction to this chapter, we initially arrange to
write Fin the form of a supremum

(3.3) F(u) = Sup L(u, p), Vued,
pe®

so that (3.2) becomes
(3.4) Inf Sup L(u, p).

uesd ped

Writing F in the form (3.3) is done essentially by using the theory of
conjugate convex functions. For example if

(3.5) F(u) = Fo(u) + F,(u), YueV
and if F, is convex, Ls.c. and proper on V, then (¢f. Chap. I):
(36) Fy(w) = Sup [Cwu* > — Fi(u)]

where F* € I'o(V*) is the conjugate functional of F; (V* and V being in
duality). We then have

(3.7 F(u) = S‘u’P‘ [Cu,u*) + Folu) — Fu*)], Yued,
which is indeed of the form (3.3) with & = V*, p = u* and
(3.8) L(u,p) = {u,p) + Fo(u) — Fi(p).

Similarly if A is an operator, possibly non-linear, of ¥ in another t.v.s. ¥
and if

(3.9) F(u) = Fo(u) + F,(Au),
where F; € I'y(Y), then we write
(3.10) Fy(Au) = Sup [{Au,p> — Fi(p)),

where Y and Z are two locally convex t.v.s. in duality, and F* € I'y(Z) is the
conjugate functional of F,.

Problem (3.2) can then be written in the form (3.4) with & = Z and
(3.11) L(u, p) = Fo(u) + { Au,p > — Fi(p).

Having reduced the primal problem 2 to the form (3.4), we term problem
2* the dual problem of 2

(3.12) Sup Inf L(u, p).
peR uesd

W) Possibly a subspace of Z.
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Let us now interpret the results of Sections 1 and 2.
Proposition 1.1 means that
(3.13) — 0 <Sup2* < Inf? < + o,

and it must be compared with Proposition IT1.1.1.
Proposition 2.3 gives a criterion which ensures that

inf # =sup P*, and P has a solution.

This is essentially the stability of problem 2* (cf. Proposition II1.2.1).
Remark 2.3 gives symmetrically a criterion which is sufficient to show that

(3.14) inf # = sup #*, and P* has a solution.

This is the stability of problem 2.

Finally, Propositions 2.1 and 2.2 give criteria which determine whether
2 and 2* are both stable; they are to be compared with Proposition 11.2.5.
When inf sup L = sup inf L, the existence of a saddle point for L is equivalent
to the existence of solutions for 2 and 2* with together the stability of these
problems. The saddle point is equal to the pair of solutions of # and 2* in
this case.

There remain the extremality conditions. These are, when (i,p) is a saddle
point, the relations

(3.15) L(a, p) = Sup L(#, p),
pe®
(3.16) L{@, p) = Inf L(u, p).

Remark 3.1. 1t is clear that writing an optimization problem such as (3.1),
(3.2) in the form (3.4) can be envisaged without difficulty in non-convex
situations (¢f. the passage from (3.5) to (3.7) or from (3.9) to (3.11)). Neverthe-
less, the duality theorems of Sections 1 and 2, which are valid for non-convex
situations, are useless here. Duality for non-convex problems is one of the
topics considered in Chapters IX and X.

Orientation

The foregoing was a general description of the application of saddle point
methods to duality,™ and of a purely heuristic parallel between this duality
and that of Frenchel and Rockafellar.

O From the single viewpoint of the calculus of variations.
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The object of Section 3.2 is to give an example of the use of duality by
minimax. Section 4.1 and 4.2 will take up in a more exact manner the analysis
of the connection between these two methods of duality.

3.2. An example

The preceding point of view applies to all the examples in the foregoing
chapters. We shall limit ourselves to a single example: the second way of
dualizing Mossolov’s problem (Chapter IV, Section 3.1, (3.15) et seq.).

Problem (3.1) is here

(3.17) ue}II‘l(f:Q) [L (g lgrad ul® + B|grad u| — fu) dx],
with f given in L%(Q).

By means of an analogous idea to that used in (3.10) we write (cf. the
calculations in Section IV.3.1)

L (% |grad u(x)|* + B |grad u(x)l) dx

= 38,4 [[ o et - g - Jox }

Then, problem (3.17) in its form (3.4) can be written as

(3.18) Inf Sup L(u, p),

ueH}(Q) peL2(Q)
with
1 2
(19) Lis.p) = [ [ = 2 srad u(s) = 7)) — (o0 - B2 | e

The dual problem is (¢f. (3.12))

(3.20) Su Inf L(u, p).

peL2(Q)" ueHL(D)
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But

ueH‘(.Q)

Inf f(~ )+ grad u(x) — f(x)u(x)) dx

= Inf f(— p(x) grad u(x) — f(x)u(x)) dx

ueZ{N) o

_ } 0 ifdivp=/,
— o otherwise.

Problem (3.18) is thus

(21) sep | - | (o = o2 x|

divp=f

The above proposition applies (in the interchanged circumstances note
in Remark 2.4). We therefore have the existence of a solution # of the proble:
(and this solution is unique), of a solution p of problem #* and, finall
inf # =sup #*. The extremality relations (3.15) and (3.16) give, as .
Chapter 1V,

(3.22) grad u(x) = — aTg(CJ)cH (|p(x)| = B)+, ae. xeQ

We can proceed in an analogous way for the other examples.

4. COMPARISON OF THE METHODS OF DUALITY

We shall now specify, in a less heuristic way than in Section 3, the parailel
which exists between duality by minimax and the duality of Fenchel and
Rockafellar. We shall not proceed by an elaborate comparison of the two
methods of which neither seems to be a consequence of the other. We shall
restrict ourselves to the simple case where the functions are convex and Ls.c.,
and we shall see that in this case the two methods are identical. This is the
purpose of Section 4.1. In Section 4.2 we shall recover by a direct demonstra-
tion the duality theorems of Arrow and Hurwicz and of Kuhn and Tucker
proved in Chapter III, Section 5. We shall also ascertain that the results are
far more easily established here.
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4.1. Comparison of the methods of duality

Part of this comparison has been made in Chapter III.3. Our purpose here
is essentially the inverse process of reducing the problems of type (3.4) to the
situation of Chapter III.

In order to facilitate the comparison of the methods, we here denote by
L(u, p*) the Lagrangian function defined on of x &, where &/ <V and
% < Y* Vand V* on the one hand and ¥ and Y* on the other hand being
two locally convex t.v.s. in duality.

Taking our inspiration from II1(3.2), we set, forue Vandpe Y,

(4.1) D(u,p) = + oo if u¢ o, Vpey,
(42)  @(u, p) = Sup [ p. p*> + L(u, p*)], Vue s, Vpe.
Lemma 4.1. For all ue V, p — ®(u, p) is convex and l.s.c. on Y.

This lemma is obvious.

Lemma 4.2. We assume that

4.3 oA < V is closed and convex

4.4 Vp* €E, u — L(u, p*) is convex and l.s.c.
Then

4.5) (u, p) — D(u, p) is convex and l.s.c. on V x Y.

Proof. With (4.4), (u, p) > <{p, p*> + L(u, p*) is convex and ls.c. on
of x Y, Vp* € B. The same therefore holds for &. With (4.1) and (4.3) we
can then see that & is convex and l.s.c. on the whole of the space V' x Y. u

We now turn to the optimization problem (3.4), i.e.

(4.6) Inf Sup L(u, p)-
uesd peR

Clearly, this problem is now identical to problem III(1.1)~(1.2), i.e.

(4.7) Inf &(u, 0).

ueV

The dual of problem (4.6) is the problem

(4.8) Sup Inf L(u, p*),
pe® ued
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while the dual problem of (4.7) can be written as

(4.9) Sup [ — @*(0, p*)].

-
Proposition 4.1. We assume that

(4.10) #B < Y*is closed and convex,

(4.11) Vue o, the function p* — L(u, p*) is concave and u.s.c. on A.

Then problems (4.8) and (4.9) are the same and the two concepts of duality are
identical to each other.

Proof. From (4.1) and (4.2)

®*(0, p*) = Su:g [<p*.p> — Pu, p)]-

peY

Then, with Chapter I:

¢*(0’ P*) = Sl.lp [ - L(u’ P*)]
uesd

4.12
(4.12) — &*(0, p*) = hg L(u, p*),

which demonstrates the identity of problems (4.8) and (4.9). m

In the case where hypotheses (4.3), (4.4), (4.12) and (4.13) are satisfied,
there is identity between the two dualities and the comparison of the results
is easy. Proposition 1.1 is identical to Proposition ITI.1.1. The identity between
Propositions 2.3 and II1.2.2 results from the following lemma.

Lemma 4.3, Under hypotheses (4.10) and (4.11) the fellowing two conditions
are equivalent to each other

(4.13)  ug € V, such that the function p — D(ug, p) is continuous at 0.

(4.14)  Jug e V, such that {p* € Y*|L(uo, p*) > p} is bounded in Y*,
VpeR.

Proof. This is a direct consequence of Proposition 1.4.3.

Remark 4.1. Under the conditions of Proposition 2.3, condition (4.14) is
equivalent to a condition of the type (2.10), i.e.

(4.15) 3JuyeV, L(ug, p*) > — o0, si p*e Y*, |p*|ys— + 0.
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4.2, New proof of the Arrow—Hurwicz and Kuhn-Tucker theorems

By the intermediary of Section 4.1, we can obtain the results of Section IT1.5
(Propositions II1.5.3 and I11.5.4) as consequences of the minimax theorems
of Sections 1 and 2. Here we shall give a much shorter direct proof of these
results.

The notation used is that of Section II1.5, and the hypotheses are those of
Proposition II1.5.3.

The optimization problem III(5.14), i.e.,

(4.16) Inf J(u),
o

can be written as

(4.17) Inf Sup [J(u) + ( p*, Bu )],

uesf p*e€*

where €* < Y* is the polar cone of .
We denote as
(4.18) L(u, p) = J(u) + { p*, Bu ),

the Lagrangian function defined on & x €*. Obviously, the dual problem of
(4.17) can be written as

(4.19) Sup Inf L{u, p*).
Pre€*uecd
Proposition 4.2. We have
(4.20) Inf Sup L(u, p*) = Max Inf L(u, p*).
ueof p*c®€* p*e®® ucsf

Proof. This is a direct consequence of Proposition 2.3 and of the following
lemma. ®

Lemma 4.4. Hypothesis I1I(5.24)® is equivalent to
(4.21) lim  (p* Bu,) = -~ .

scE*
lp* IY*~> +

Proof. Let ¥ e I'(Y*) be the function defined by

(4.22) P(p%) = ~ {p* Buy ), if p*e¥*,
+ oo otherwise.

() L.e.—Bug € € = the interior of €.
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Condition (4.21) is equivalent to

(4.23) {p*e Y*| ¥(p*) < p} isbounded, VpeR.
By virtue of Proposition 1.4.3, the latter condition is equivalent to
(4.24) ¥* e I'(Y) is continuous in 0.
Now
(4.25) w(p) = 0 if —p— Buye¥,

+ oo otherwise,

and therefore (4.24) is equivalent to the qualification condition
(4.26) — Buge €.

Remark 4.2. Lemma 4.4 gives an interpretation, which appears to be new,
of the qualification hypothesis (4.26).

Remark 4.3. Proposition 111.5.3 (and hence 111.5.4) is now a direct conse-
quence of Proposition 4.2.



CHAPTER VII

Other Applications of Duality

Introduction

In this chapter, we shall develop other applications of duality:

in numerical analysis, where duality yields in certain cases algorithms
suitable for the numerical solution of problems;

in optimal control theory;

in mechanics, where duality allows us to describe precisely the relationship
between different energy principles which govern certain non-linear problems;

lastly in economics, which was the source of many theories of duality and
where this concept linked with that of price plays an essential role.

This chapter is in no way a complete study of these applications of duality.
We shall in fact limit ourselves to some simple remarks and to some significant
examples.

1. NUMERICAL ALGORITHMS BASED ON DUALITY

Orientation

In this section we shall describe two optimization algorithms whose basic
idea depends on duality. We shall describe these algorithms and study their
convergence under relatively restricted hypotheses. These algorithms, how-
ever, may also be applied to many other situations.

1.1. Uzawa’s algorithm

Let ¥ and Z be two Hilbert spaces and
(1.1 & <V anon-empty closed convex set,
(1.2 #<Z anon-empty closed convex set.

Let L be a function of & x # into R. We assume that the optimization
problem is given in the form envisaged in Chapter VI,

(1.3) Inf{ Sup L(u, p) }.
186
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In addition to the usual hypotheses (convexity, continuity, coerciveness),
which we shall specify, we make the restrictive hypothesis that
the function p — L(u, p) is affine continuous,
that is,

(1.4) L(u, p) = J(u) + ((p, 2(u)));

where J is a mapping of &/ into R, and & is a mapping of &/ into Z (not
necessarily linear).
We assume that

(1.5 % is bounded,
(1.6) J is Gateaux-differentiable from 7 into R,

(L7) (V') - J'(v)yu — o))y, = au — o7, x>0, Vuved,

(1.8) Vpe 4, the function v — ((p, B(v))), is convex and l.s.c. on &,
(1.9) @ is lipschitzian from ./ into Z, i.e.,
|#w) — )], <clu—vf3,  Vuvew,
By virtue of (1.6) and (1.7):

Lemma 1.1. J is a convex and l.s.c. mapping of & into R, and

(1.10) J(u) = J(®) + ((J'(e),u — V) + % |u - o3, Yu, ve o,
(1.11) lirg J(u) = + o0.
[fullv—=

Proof. The convexity follows from Proposition 1.5.4. From the inequality
1(5.15)

J@) = J(u) + (J'(u),v — u),, Vu,ve of
and if therefore v — u either weakly or strongly in ¥, we have

liminf J(v) = J{u),

v=u

which proves the semi-continuity.
Finally for u, v € o and ¢ € [0, 1], we have from (1.7)

(Vo + tlu = 2))u = v))y = (J(e)u — )y +at | u—o3)
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By integrating with respect to ¢ over [0, 1], we obtain (1.10) and then (1.11)
is a consequence of this inequality. =

Before describing the algorithm, we prove

Lemma 1.2. Under hypotheses (1.1) (1.2) and (1.4) to (1.9) the function L
Dpossesses at least one saddle point (i1, p) on of x &: the first component i is
uniquely determined and it is the solution of the optimization problem (1.3).

Proof. We will prove the existence of a saddle point using Proposition
VI.2.2 (¢f. also Remark 2.1 and (2.25)). We shall show VI(2.10): if p, is any
element of # we have,

L(u, p) = J(u) + ((po, P(u)))z-
Since @ is lipschitzian, if #, is a fixed element of o7,

(1.12) || @(x) — Buo)|; < cfu - oy,
| @(u)], < | @(uo)llz + ¢ llu — uo]y-
Then

(L13) Ll p) 2 J) = [pollz [@mo)lz — ¢ |pollz 4 — uov

and VI(2.10) results from this inequality together with (1.10).

The uniqueness of the first component i of the saddle point results from
Proposition VI.1.5 as u — L(u, p) is strictly convex, Vp € #. Also, it is clear
that since {@, p} is a saddle point of L on & x &, # is the solution of the
optimization problem (1.3). =

Our aim is to approximate the solution # of the optimization problem (1.3).
Since {i, p} is a saddle point, we have:

(1.14)  J@) + (P, @)z < J(2) + (P, ()2, Vve,
and

(1.15)  J(@) + (¢, ®(®)), < J(@ + (B, ®()));, Ve %,
whence

(1.16) (4 -5 o@); <0,  Vqe,

which, from II(2.17), is equivalent to:

(1.17) p=1I4(p + po(u), Vp >0,

where

(1.18) I14 = the projection in Z, on #.



OTHER APPLICATIONS OF DUALITY 189

Description of the algorithm

Making use of (1.14) and (1.17), Uzawa’s algorithm is based on the con-
struction of two sequences of elements u" € o, p" € 8, defined in the following
way: we start with any

(1.19) ple®
we calculate 4°, then p?, u?, etc.

(1.20)  p" being known, we determine u” as the element of of which
minimizes J(v) + ((p", $(v));.

Then we define
(1.21) prit = Hg(p" + p,u")),
where p, > 0 will be chosen later on.

Remark 1.1. The dual problem of (1.3) can be written as
Sup Inf { J(u) + ((p, P(v))), }-

pe® uest

With regularity hypotheses which are far stronger than previously and which
are very restrictive, we can show that the function

p — Inf {J(u) + ((p. O(w):}

is differentiable, with differential &(u). Uzawa’s algorithm appears then as
the standard gradient algorithm of optimization theory applied to the dual
problem (¢f. among others Céa [1], Polak [1]). =

Proposition 1.1. Under hypotheses (1.1), (1.2) and (1.4) to (1.9), the algorithm
defined by (1.19)—(1.21) is convergent in the following sense:

(1.22) w—>ainV,
where 1 is the solution of the problem (1.3) provided the p, satisfy
(1.23) 0<py <p,<p), o, sufficiently small.

Proof. From (1.17), (1.21) and the property 1I(3.11) we have

(1.24) Itz < e + ol @) — 2@)],
where
(1.25) ¥ = p" — p.

) An estimate of p4 is provided in the course of the proof.
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From I1(2.2), (1.20) is equivalent to

(1.26) (J'W), 0 — u"), + ((p", H(v) — B(u")); > 0, Voed,
and (1.14) is equivalent to
(127) (V@0 — @)y + (B, P(v) — B(W)));. Voed.

Taking v = # in (1.26), v = u" in (1.27) and adding the equalities we have
obtained, we find that

(1.28) (V') = J'(@), v — W)y + (p" — b, 2" — (@), < 0.
With (1.7) and (1.9) this implies
(1.29) ofut — @y + (p" — P, Pu") — H@), <O
oflur —aly < [p" - bl 2" - @),
<c|p” = Bl v — 3.
By virtue of (1.5), || p" — pllz is bounded and we deduce that

(1.30) the sequence u" is bounded in V.
From (1.24)

7712 = )2 + 20,00 D) — B@) + 02 |0 — 2@
< (with (1.9) and (1.29))
< 13 = 2ap, |u — @l + 22 o — a2,

Let us assume that p, and pj are chosen in such a way that

(1.31) 2ap, — pa 2 >0 if p,e[p,, py -
Then
(1.32) =2z + B llu" — aly < [z

Thus |Ir*|l% decreases with », and converges for n — o to a limit #; (1.32)
then implies

Blu —uly -0,
whence (1.22). w

Remark 1.2. We can replace (1.5) by
(1.5) & is bounded.
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However, we must also assume the existence of a saddle point (i, p) which
in this case does not follow from the hypotheses. The proof of Proposition 4.1
can be developed in an identical fashion up to (1.28). Property (1.30) is a
direct result of (1.5"). The reasoning subsequent to (1.30) is valid as it
stands. ®

1.2. Arrow-Hurwicz’s algorithm

Uzawa’s algorithm is not completely determined since in (1.20) we have a
choice of the algorithm for calculating u™. The Arrow~Hurwicz algorithm is
a variation of this algorithm which specifies the algorithm for calculating "

We shall make this study with more precise hypotheses than in Section 1.1
and which we now specify: ¥ and Z denote two Hilbert spaces and let:

(1.33) # c Z be a non-empty closed convex set.

Let #e #(V,Z)and A€ L(V, V') (V' is the dual space of V) satisfying
(1.34) A = A*

(1.35) CAv,v) 2 alv|}f, a > 0.

Denoting by ¢ an element of V’, we set

(1.36) J(v) = Av, 0y — 2(F,v)..
As in (1.3), we are interested in the approximation of the problem
(1.37) Inf {Sup L(u, p) }.
ueV pe#

Since all the hypotheses of Lemma 1.2 are satisfied, L(u, p) possesses at least
one saddle point (#, ) on ¥ x # and # is the unique solution of (1.37).
In the present case relation (1.14) is equivalent to

CI@), ) + (5, #v), = 0, YoeV,
or
(1.38) J(@) + &*p =0
(1.39) Al — | + *p = 0,

while (1.16) and (1.17) remain unchanged:
(1.16) (a-5o0),>0  Vge@
(1.17) p =H4(p + pPu), Vp > 0.
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Description of the algorithm

We start with an arbitrary p°,
(1.40) PeB;
we then calculate u!, then p?, u? etc.

p" being known, we determine #"** by

1.41
(141) "Lyt p ST Au" - €+ d*p)

u

where p; > 0 will be stated precisely later on and

(1.42) S = the canonical isomorphism of ¥ onto V.
Next we define

(1.43) prt =Hg(p" + p,du"*?).

Proposition 1.2. Under hypotheses (1.33) to (1.36), we can choose'® p, and
02 > 0 so that the algorithm (1.40)—(1.43) converges in the following sense:
(1.44) ' inV,
where i is the solution of the problem (1.37).

Proof. We set
(1.45) w' = u" — 4,

(1.46) m=p"—p
As in (1.24), we have
22

L

From (1.39) and (1.41)

n+1

witl = w" — p STHAW" + &*r")

(1.47)

<+ p, a>w"“||’
<

17 + 204((r", @W"* 1), + p, || DwW"* 12

and taking the scalar product in ¥ with w**!, we find that
(L.48) |w"* |Z =(((I = o, ST AW, w" 1Y)}, — p, (S~ 1 d*r, W+ Dy
For p, sufficiently small,

1 — 08 ' Algwy < B <1,

M The conditions on p, and p, are stated precisely in the proof.
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and hence
(I = py ST AW w* ™)), < B Wy w1, -
We also have
(S @*rm, w't ), = CP*r", w1 ) = ((r", Pw"H 1)), .

After this (1.48) yields
(149)  pul(" ew ) < Bwty W — Wt
Byon B "
<B4 (B 1)

Substituting this majoration in (1.47), we obtain

I 2 < P2 + 280w )7 = 1w 13
+ (A%l @] + 248 - 1) w15

where 1 = p,/p,.
But for A sufficiently small, p, having already been selected,

ol @f + 248 - 1) < —y <0,
so that
(1.50) (r"* )z + 28 w13 — (2 + A8 [wn[3) < — v w5

Thus the sequence |ir?||3 + A8|lw"||> decreases with n and converges to a
limit ¢, and it then results from (1.50) that {jw™*!||> — 0 when n — .

Remark 1.3. We can show for the two preceding algorithms that any
cluster point p of the sequence p" is such that (&, p) is a saddle point of L on
o xB(resp. Vx %) u

2. ANOTHER EXAMPLE IN NUMERICAL ANALYSIS
Orientation

In Remark 1.1 we pointed out that Uzawa’s algorithm was equivalent to
the application of the gradient algorithm to the dual problem. This idea can
be developed in different contexts: it may be that a dual problem #* is easier
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to tackle than the primal problem 2. We can then think of approximating
2*, for instance with a gradient method, and then using the primal-dual
relationship to deduce from this an approximation for 2. This is the method
of approach which we shall develop in two examples in this section and
the next.

2.1. The exact problem. Properties

Let £ be a bounded open simply connected set in R?, and fe L*(Q) and
a € ¥%(Q), with

(2.1) a(x) = n >0, Vx e Q.
We set
¢ = {ve HY(Q)| |grad »(x) < 1 almost everywhere}.

We are concerned with the following optimization problem, which is
related to the Maxwell equations

(2.2) }:1%{ |:— La(l — |grad u?)'? dx + j

Q2

fu dx].

We have
Proposition 2.1. Problem (2.2) possesses a unique solution i.

Proof. We apply Proposition I1.1.2 in the space V = H}(€Q), with
(2.3) Ju) = — fa(l — |grad ul*)"/* dx + J Sfudx.
Q Q

The set € is bounded and the functional J is continuous and strictly convex
since
s =21 —s?

is strictly concave on [0, 1]. The result follows. ®

The dual problem

Problem (2.2) is difficult to tackle numerically, due to the nature of the
convex set € and the non-differentiability of the functional J. We shall now
specify the dual problem of (2.2) which is more amenable.
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In order to put the problem in the context of Chapter I11(4.16), we set

V = HY(Q), V* = H Q) = the dual of H),
Y = Y* = L)%, A = grad,

and

(2.4) F(v) = J Sfvdx, YoeV,
e

andforpe Y

(25  G(p) = 'L"“"P‘z)”zdx if |p(x) <1 ae.

+ oo otherwise.

It is easily verified that F (or G)is l.s.c. and convex on ¥ and that the problem

(2.6) Iri,f{ F(v) + G(Av) }

is identical to problem (2.2). If we therefore call F* (or G*) the conjugate
functional of F (resp. G) which is 1.s.c. and convex from V* (resp. Y) into R,
then the dual problem to (2.3) can be written as (c/. I11(4.18)):

27) Sup [~ FX(4*p%) = 6*(= p"));
We have

Lemma 2.1.

(2.8) FHAYpY) = lo if divp* = f,

+ o0 otherwise
(2:9) G*(p*) = f ClaG)® + [p*(x)[*]'"2 dx.

Proof. By definition of A
F¥(A*p*)

§El:,p [{ A*p*, v ) — F(v)]
Sup { f — divp*, v),

veH}(2)

whence (2.8).
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Similarly

G*(p*) = S";gyp [<p*p> — G(p)]

i U [p*(x)- p(x) + la(0)] V1 = [p(0)*] dx]

|p(x)] < 1a.e.

From Proposition I11.1.2 it suffices for the calculation of this supremum to
determine for almost all x in Q the supremum

(2.10) Sup [p*(x)- & + |a(x)] (1 = &[],
I¢|s1

This supremum is attained at

2.11 - P*(x)
@i T TR + T

and its value is
(2.12) [p*)f + la(x)*1*2.

From this we deduce (2.9). m
Problem (2.7) (or 2*) the dual of (2.2) (problem #) can be written

(.13) sup |- [[ e + (7 x|
peller o
If ¢ € HY(£) satisfies
(2-14) -Ap = f,

then setting p* = g* — V¢ we can also write (2.13) in the form

1) suw [- f [latf + () = A1 ex].

‘eL192
acl (92 )

Primal-dual relations

The relations between 2 and #* are as fuo 'ows:
Proposition 2.2,
(2.16) Inf 2 = Sup 2* and this number is finite.



OTHER APPLICATIONS OF DUALITY 197

Problem P* possesses at most one solution p* and if this solution exists it is
linked with the solution i of P by the extremality relation

217) Vi) = () e xeQ.
(217) #(x) [Il_’*(x)lz PRI ae x€Q

Proof. Let us assume (2.16) for the time being (see below). If #* possesses
a solution p*, this is necessarily unique by the strict convexity of G*; we also
know from Proposition I11.4.1 and I1I(4.23) that 5* and & are linked by the
extremality relation

(2.18) G(Au) + G*(— p*) = — { p* Au ).

From the proof of Lemma 2.1 (see in particular (2.11)), the relation (2.18) is
equivalent to (2.17). m

Proof of (2.16). Criterion I11(4.21) which usually ensures that (2.16) is true
is not directly applicable here, either to problem (2.2) or to the dual problem
(2.13). Nevertheless, we shall see that it applies to a modified form of these
problems.

Since the open set Q is simply connected, if divg* =0 and ¢g* e L*(Q),
there exists o € H(Q) such that

do/ox, = — g3, da/0x, = qf.

Problem (2.15) after a change of sign then becomes

do i) 2 do do e
2 —— — o—— m—— m———s
(2.19) Jnf L |:a + (axz axl) + (ax, + ax2> dx.

Setting ¥ = HY(Q), V*=(HY(Q), Y= P*=L%Q)*, A=grad, F=0,

G(n) = f [a® + (r, + 89/0x,)* + (n, — de/0x,)*]/? dx, VreY.
Q
The problem
(2.20) Inf [F(e) + G(A0)]

is thus identical to problem (2.19) and we can verify that its dual problem

(2.21) Sup [ — F¥(A*r*) — G*(— #*)]

m*eY*
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can be written
(2.22)
a a
S [+ (-5 g2+ mg2 + lEd - |n*12>”2)dx].
In‘(f)l < l)l.e. Q 2 t

diva*=0
®*v=0 on dQ

If z* € L%(Q)? and div n* = 0, there exists v € H() such that
+ n}¥ = 0v/ox,, — n%¥ = 0v/0x,,

andn*-v =0 on dQ implies that dv/d7 =0 on 21, that is v € H}(Q) since v is
only defined to within an additive constant.
We then verify with (2.14) that

[(—— nt 0p/0x, + n¥ dp/0x,)dx = — j (Vv- Vp)dx
e

2
= - j fo dx
2
so that problem (2.2) can be written as
(2.23) Sup [ f |E| (1 = |P6])72 — £(p) dx],
reH1(2)
[ Poj<®lae L0

which is indeed problem (2.13) except for the sign.
We now note that there exists g, € H1(2) such that F is finite at g, and G
finite and continuous at Ag,: for example g, = 0. From Theorem I11.4.1:

Sup for (2.22) = Inf for (2.19),
which is equivalent to (2.16). ®m

Remark 2.1. We do not know if the dual problem (2.13) effectively possesses
a solution as it is not coercive (or it is only coercive in the non-reflexive space
LY(2)?). The form (2.19) of the problem leads us to conjecture, by comparison
with the results of Section V.4.1 that the problem possesses a solution.®

Remark 2.2. The function u is not exactly the unknown function in the
“physical” problem. The physical unknown is the vector £ whose com-
ponents E,, E, are defined as follows

) Cf. also Remark 2.2 below.
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(224) F,=—ld o8
(1 — [vaP)2 ox,

o
2.25 E, = — |a o
(2.29) 2 (1 — [vaP)i2 ox,

When (2.15) possesses a solution j*, the vector E can then be expressed
simply as a function of p*:
(2.26) E, = b}

E, = - pb}.

Before tackling the approximation of #, we must note that no regularity

property can be attributed a priori to E, and E, since nothing is known about

the set of x’s where |grad éi(x)| =1. It is thus useful to take note of the
following result:

Proposition 2.3. E;, and E,, defined by (2.24) and (2.25), are two functions
belonging to L\(Q).

Proof. Let p* be a maximizing sequence of the dual problem 2* (i.e. (2.13)).
We have:

p* e L}(Q)?, divp* = f, Vn,
and

(2.27) - f (@ + [p2)'"? dx = Sup 2% — p,,
0

where p, > 0 Va, and
(2.28) o= 0, n— .
By virtue of (2.16), we can write (2.27) in the form
— F¥(A*py) — G¥(— py) = Inl 2 — p,
= F(u) + G(44) - p,,
whence
{F() + PY(%p}) — CA*phoud) +
+{6(Aa) + GX—py) - —pi. Au )} = py
As each expression between braces is positive, we deduce that
0 < F(u) + FX(A*p)) — { A*pr.u ) < p,

(2.29) D _ _
0 < G(Au) + G¥(~ py) ~ < — pr, Au ) < p,
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or

(2.30) A*py € 0, F(a),
— p¥e 0, G(Aq).

We can apply Theorem 1.6.2 on ¢-subdifferentials: we obtain the existence
of g, and g} such that

(2.31) 4,.q% € LA(Q)%,

(2.32) ”‘1: - P:”LZ(Q)Z < VP> ”qn - Aﬁ“mmz < \/;n
and
(2.33) — gq¥ €0G(g,)

From the proof of Lemma 2.1 (cf. also the proof of (2.17)), the relation
(2.33) means that

4x(x)
q.(x) = £ ae. xeQ,
(la(x)]* + lg¥(x)|?)*
which is equivalent to
(2.34) lg{x)] < 1 ae xeQ,
and
(2.35) g*(x) = —L9x)a,(x) ae. xeQ.

(1 = Jg.(x)*)"?

From (2.32), there exists a sequence extracted from # (still denoted by n)
such that

q,(x) = Au(x) ae xef.
Hence

la(x)] Ai(x)

[1 — |Ai(x)]2]1/2 ae xeQ.

(2.36) q¥(x) -

As p} is a maximizing sequence of (2.13), this sequence is bounded in
L(Q)? and the same is true of the sequence g¥, from (2.32). With this remark
and Fatou’s lemma, we deduce that:

_‘ﬂl_‘ﬂl__e Ll(Q),

(1~ iy
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and since the measurability of the functions £, and E, is obtained,
|a| Au
e LY{(Q)?,
(1 ~ |A=|?)L2 @)

which proves the proposition. m

Remark 2.3. If we set p¥f = —E,, p% = E,, then from Remark 2.2 and the
preceding proposition we may think that p* is the solution in L¥(Q)* of
problem (2.13). In this case it remains to be proved that div p* = f. This is

the difficulty, by no means insurmountable, which we meet in the proof of
the existence of a solution for (2.13).

However, this is of little importance since we have the existence and unique-
ness of a solution for the primal problem which is of greater interesttous. ®

2.2. Approximation of problem (2.3)

As the direct approximation of problem (2.3) is not easy, we shall show
how a gradient algorithm applied to the dual problem (2.13) enables us to
approximate the solution of problem (2.3).

To simplify the notation, we shall denote by p,g,..., the elements of
Y* = Y =L*Q)? and we shall set:

(2.37) J = G*.

Differential of J

Lemma 2.2. The functional J is two times Géteaux differentiable in L*(Q)?
and

(2.38) HJ,(p) "L“’ (Q)Z $ 1,
(2:39) 17PN,y < €1 = ciln, Q.
Proof. By applying Lebesgue’s theorem, we verify that for p, g € LX(Q)?

J(p+lq)—J(p)_,f P44,
Z ola® +{pP)2

this means that

2.40 J(p) = —L——e LX),
o O e

) ¢, = ¢,(n, 2) = constant only dependent on n and £.
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and hence
(2.41) |7(pXx)| < 1 ae xeQ.

By a new application of Lebesgue’s theorem we show that

J(p + 13) — J'(p) S T(p) g for A—»0,
with

242  J'(p)-q =J — 4 ___4x - J _ppa)

n(aZ + p2)1/2 (lalz + lpl2)312 )

We have:
(243) (p)e 2(LHQ), LHQY)
and
1/2 ‘ 172
o < (|, o) (Ko
With (2.1)
(2.44) 1@ <222 4 cn) mes 2 = cn, 9),

n

where con) represents the maximum on [0, +o], of the function s2/(n? + s2)3/2,

Description of the algorithm

Let p, be a sequence of positive numbers for which we shall specify the
hypotheses later on. Starting with

(2.45) P°eY = L¥Q)?
satisfying
(2.46) divp® = f,

we define by recurrence the elements p” of ¥, setting

(2.47) p"tt=p"+ p(J(= P") + VO,
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where 6" is the solution in H'(Q2) of the Dirichlet problem

2.48 "~ divJ(— p") = di P .
( ) Af ivJ'(- p" v ((|E3|2 n lpn|2)l/2>

We shall study the behaviour of this sequence p”, when n — 0.

It is easy to verify that J'(—p™) + V8" is the projection in ¥ of J'(—p") on
the subspace of the p’s such that

(2.49) divp = f

Effectively, from (2.48)

(2.50) div(J'(—p) + V8") =0

and from the generalized Green’s formula (¢f. Lions and Magenes [1])
(2.51) (Ve q) = 0, Vg e L*(Q)* such that divg = 0.

From (2.45) and (2.46) we thus obtain

(2.52) divp" = f, ¥n >0,
Lemma 2.3.

c 1
(2.53) H=p""Y) < J(=p) + (—21 - ;) [+t = o3

Proof. We write
JH=p""N)=H=p)=J(= P+ H=p""' + pN]iZo -

='[ d%[J(— P+ A— Pt + )] dd

- f (= 7" + A= p* 1+ p) (= 71 + Py di
= (= ) (= P+ Py

¥ f (U= 7" + A= 9 + 5 = T(= 9] [= 7 + 0Dy di
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From (2.47), (2.51) and (2.52),

= Ph (=27t + 2y = = 1" =
From (2.39)
(2.54) 17() = J@ly < 1 lp — gl ¥p.qeY,
so that
(2.55)

1J(=p" + M=p""" + D7) = T(= Py < csd |p"** ~ p"|y

From this we obtain
1
J (V'(=p"+U=p""' +p) =T (=" — p"*' + Py di
o

1
Scdprtt - p"||,,j AdA,

0

whence finally (2.53). =

Lemma 2.4. We assume that the sequence p, satisfies
(2.56) 0 < Cz s pn s Cs < + 00, Vn.
Then {—p"} is a maximizing sequence of the dual problem (2.13).

Proof. As the sequence J'(—p") is bounded in Y and the sequence p, is
bounded in R, there exists a subsequence still denoted by # such that

(2.57) J(—p") > x weaklyin Y,
(2.58) P = Ps
where p satisfies
(2.59) c; € p<c;.
From (2.52) and (2.53)
- J(=p") < = J(=p") < sup 2¥,
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which shows that the sequence —J(—p") is convergent towards a limit
£ < sup P*.

Let us assume that £ < sup 2*. Then there would exist p € Y such that
div p = fand

(2.60) £< — J(— p) < sup P*.
As J is convex, we have
(2.61) J=p)=ZJ(=p)+ (=P =P+ Py
We set ¢ = —[¢£ + J(—p)]/2. Since from (2.57)
(= 2™ Py = (%> Py

when m > «, there exists m* such that m > m,, implies that
—e<((U(=P) - 0wy S FE
and hence from (2.61)
J(=p) =2 J(=p") — (xP)y + (= P") Py — &
Since J(—p™) = £, we find that for m > m,
(2.62) (=P = P"Dy = — (X, D))y + &
Now from (2.47), (2.51) and (2.52)

((pn+l _ pn — p",]'(-— p"), P"+l))l' = 0.

Whence
(@ =p"p" My = (" = Py — 2T (= PP Dy =
(2.63) = = p((J(~ P Py
From (2.53) and (2.56)
(2.64) Ip"*t - p"|y = O, n - .
Thus
(=" "Ny = (F(= ), ")y + o(1)
and

[p"=* = "y = o(1).
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We then find in (2.63) that

9413 = 020 + 10" = 23 = 2640~ 2% Py
= = 20((K. Py + ol1).

For n > m,, we have, using (2.62)

12" 3 — 12”13 — 200X, PY)y + 2p.8 < = 2p((x, P))r + o(1).

Let us sum this latter inequality from m, to m(m > m,). After dividing by
m —m, we obtain:

T —2m ( ) p..)((x,p))y +o _2,,, ( 5 P..>3 < = pl(% Py

k \n=m, * \n=m,

1

m-—m

+

i o(1).

x n=m

From Cesaro’s theorem and (2.58), the passage to the limit in this latter
inequality gives

— 2p((X, P))y + 208 < — 2p((X, D))y>
which is impossible since & > 0.
It is then impossible that £ < sup #*, and the lemma is thus proved. =
Lemma 2.5. Whenn — o,
p" ~ . r20N2
2,65 ——e— 5 AU in LHQ)2
269 @ + [P

Proof. We repeat the proof of Proposition 2.3, with the sequence p"
replaced by the sequence p¥, because of Lemma 2.4. We alsc note that

- i < el - atly 0
@+ pPy7 (@ gy S T

Since the limit is independent of the chosen subsequence in (2.57), (2.58),
the whole sequence is convergent. m

The convergence result

The above results are summarized in the following proposition.
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Proposition 2.4. We consider the sequence p" defined by (2.47), the gradient
method for (2.13), and we assume that the p,’s satisfy (2.56).
Then for n — o« the sequence p" approximates ii in the following sense

p’ =
(2.66) m - Au in LZ(Q)z. ]

3. APPLICATION TO A PROBLEM IN OPTIMAL
CONTROL THEORY

In this section we describe the application of duality to a problem of optimal
control theory for a system governed by partial differential equations with a
constraint on the state. ®

3.1. The control problem and its dual

Let Q be an open set in R", T> 0, Q=0 x 10, T[, and y, € L*(Q) and
fe L¥Q)be given. For all u e L¥Q), there exists a unique y, y =y (x, t, u)V
belonging to L([0, T']; Hi(Q)) and satisfying in a weak sense (c¢f. Lions and
Magenes [1]):

(3.1) dyfet — Ay =f +u inQ
(3.2) y=0 on L =30Q x 10, T[
(3.3) W0, x, u) = yy(x) x e Q.
We now define the cost function
(34) Jw) = Liy(u) ~yltdxdr.
(v > 0) and we are concerned with the following problem:
3.5 Minimization of J(&)
amongst those u’s such that
(3.6) ue LX(Q),
(3.7 |grad y(x, t,u)l <1 ae. (x,t)e Q.

) We shall occasionally denote this by y(#) when only the dependence on u plays an
interesting role.
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Problem (3.5) (3.6) does not necessarily admit of a solution in Z*(Q) but
by enlarging the class of admissible controls we obtain

Proposition 3.1. Let us assume that there exists admissible controls u such
that condition (3.6) is satisfied.

Then problem (3.5) (3.6) has a unique solution in a functional space V con-
taining L*(0).®

Proof. By setting

(3.8) ¢ = y0) (yforu=0)

and

(39) 2(u) = y(u) — y(0)

(3.10) zy = ys — W0).
Then z = z(u) is a weak solution of

(3.11) % — A4z =u inQ,

(3.12) z=0 onZ,

(3.13) 2(0, x;u) = 0.

The mapping ¥ — z(x) from L*(Q) into L*([0, T']; Hi(Q)) is linear and con-
tinuous and from Lions and Magenes [1], it is an isomorphism of V into L*(Q).

The function # — J(u) is thus a strictly convex continuous function of V
into R. From Proposition I1.1.2, if the set

(3.14) ¢ ={ueV| |grady(x,t;w)| < 1 ael}

is non-empty, the function J attains its minimum on € in a unique point 2. m

The dual problem

We return to the situation of Chapter I11(4.16) and so set ¥ and V* as in
footnote <

@ This holds in particular if the norms of y, and of fare not “too large”.

2 In the notation of Lions and Magenes [1] (¢f. Vol. II, Chap. IV, Remark 12.3 especially),
we have V= E-2-1((Q) which is the dual of ¥V* = £2'((Q). The precise definition of these
spaces is not very important here. Let us only recall that both are Hilbert spaces and that
LY Q) < ¥, V* < L¥Q), with continuous and dense injection. Furthermore, V is a distribu-
tion space (and it is obvious that V'* is a space of functions).

3 We must notice that the solution & of this problem is very easy to determine, at least
formally: ¥ is indeed a closed convex subset of L2(Q) and (%) is the projection of y, on
€ in L*(Q); then Z is given by (3.1). However, the techniques used in this section apply as well
to similar “non-trivial” control problems; ¢f. Remark 3.4.
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Y = Y=Y, x Y, = Q) x LA(Q),

Au = (A,u, A,u),

Au = z(u), Ayu = grad z(u),
where z = z(u) is defined by (3.11)—(3.13); the elements of Y are denoted by
(P:l’ P2)’ D€ Y= Lz(Q), D€ YZ =L2(Q)n'

We write
(3.15) F(u) = 0, YueV,
(3.16) G(p) = G,(p,) + G,(p,).
1
(3.17) Gy(py) = EJ Py — z,* dxdt, Vp,eY,,
Q

0 if |(p, + grad @)(x, )| <1 ae,

3.18 G =
( ) 2(p2) '4— o otherwise.

It is easily verified that F and G are convex, Ls.c. and proper and that the
problem

(3.19) Inf { F(v) + G(Av)}

veV

is indeed the problem (3.5), (3.6).
We easily get

(3.20) Gﬂm>=jlpﬂd+%wdﬂdxm
Q

(3.21) G3(p,) = J [lp,| — p, grad o] dx dr.
Q

For F* we have

Lemma 3.1.

(3.22) F*(A*p) = ’0 if py = divp,,
+ o0 otherwise.

Proof. Forpe Y*=1Y,
(3.23) F*¥(A*p) = Sup{ p, Au ).

ueV
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But

{p, Au) = j [piz(u) + p, grad z(u)] dx d¢
Q

and since z(1) =0 on Z, this is equal, by the generalized Green’s formula, to
j(pl — div p,)z(u) dx dt,
Qe

(cf. Lions and Magenes [1]).
Now let ¥ be the unique solution in L*([0, T']; H3(Q)) of the parabolic
problem

(3.24) —-%?——A‘I’ =p, —divp, inQ,
(3.25) =0 onZ,
(3.26) Y(x,T) =0 inQ.

We have, from integration by parts and from (3.11)—(3.13) and (3.24)~(3.26)

~

{p,Au) = | (p, = divp,)z(u)dx dt =
Jo
= ("%? - A‘I’)z(u) dx dt
Jo
n
= | Yudxd:.
vQ

Then the supremum (3.23) is equal to

Su J Yu dx dt,
),

and this supremum takes the value 0 if ¥ = 0 and +« otherwise. Now from
(3.24)-(3.26), ¥ =0is equivalent top, =divp,. m
We are now in a position to state explicitly the dual problem of (3.19):

(3.27) Sup { — F*(4%p) = G*(- ) }.
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It can be written as

(3.28)  Sup U [~ 31pif* + pyzg — |Pa| — P, grad @] dx dt
Q

p1el2(Q)
prel2(Q)”
p1 = div P,
where ¢ is defined by (3.8).
Proposition 3.2.
(3.29) Inf @ = sup P* and this number is finite.

If the problem P* possesses a solution p* = (pY, p%) then it is linked to the
solution ii of the problem P by the extremality relations:

(3:30) p¥ = (@) — Yo
(3.31) [Ba| + P, grad y(ii) = 0 ae.

that is, since |grad y(i2)| < 1 almost everywhere,
- D, =
rad y(i) = — 1= a.e. when 0.
grad y(i) = — =4 |Pa(x)] #

Proof. As in the example described in Section 2, criterion I11(4.21) which
usually ensures (3.29) applies here neither to the problem (3.5) (3.6) nor to
the dual problem (3.28). We will prove (3.29) in Section 3.2 with the help of a
passage to the limit, the problems 2 and 2* being approximated by the
problems#, and #* with

inf Z, = sup 2¥
inf Z — inf 2, sup ¥ - sup 2.

We cannot assert that problem (3.28) possesses a solution. But if it does

admit of a solution p*, then by provisionally allowing (3.29), Proposition
111.4.1 (cf. 111(4.27)) permits us to write the extremality relations as

(3.32) Gy(2(@) + G¥(= py) = — < =(@), 5} ),
(333)  Gi(grad 2(8) + G¥(~ p,) = — grad z(a), 5, )

which implies precisely (3.30) and (3.31). =
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3.2. Approximated problems

We shall approximate the problems 2 and 2*, by the problems 2, and 2*
respectively, in order to prove (3.29) and also to give a numerical approxi-
mation procedure for the control problem.

The functional frame being the same as in (3.15)-(3.18), we set, for ¢ >0
fixed,

(3.34) G,(p) = G,(p,) + G,(p,),
where
1
(3.35) G, lp,) = ZJ (lp, + grad | — 1)2 dx de.
7]

It is easily seen that the conjugate function of
1 2
éE - Z(K + grad o(x)| — 1)%
is the function
E 2 ]ex? + [¢¥] — & grad o(x),

and hence the conjugate function of G,, can be written as:

(336)  Gips) = f

€
I:EIP;P + |P2| — p, grad (p] dx dt.
2]

We now define the problem 2,; it is
(3.37) In'f{ F(v) + G,(Av)}
or, alternatively

Eg,f [J(u) +-:;j (lgrad y(u)] — 1)2 dx dt].
4

Its dual is the problem £

(3.38) Sup { — F¥(A*p) — G¥ - p)}

peY*=Y
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or, alternatively

1
3.39 ——lp.|?
( ) Plesl}lz%) |:J‘Q ( 2 ‘pll + P124

Py ELZ(Q)"
pi1 = divp,

g
) p,|* — le| ~ p, grad cp) dx dt],

Remark 3.1. The problems 2, are penalized forms of the problem 2: we
have penalized the constraint (3.6) with the help of the penalization function
G,,. See e.g. Courant [1], Lions [4] for penalization.

The problems 2% are the regularized forms of the problem £*: they are
more regular since they are coercive in Y which ensures that they possess a
solution (see below).

In this special case we can verify a completely general property: penalization
and regularization are mutually dual methods of approximation (for a different
application of this, see Bensoussan and Kenneth [1]. =

Proposition 3.3.

(3.40) inf 2 = sup #¥ and this number is finite.

Problem 2, possesses a unigue solution i, €V, problem P possesses a
unigue solution p, and

(3-41) P, = y(ﬁg) = Y4
IVy) = 1 if |py]=0
(3.42) _
Vi@,) = ”Zfl(l +elpal) U [Pl # 0.

|

Proof. The existence and uniqueness of a solution of 2, can be proved as
in Proposition 3.1.

Theorem II1.4.1 and Remark II1.4.2 apply, condition III(4.21) being
satisfied. We obtain (3.40) and the existence of a solution of Z*. Since G%, is
strictly convex, the solution of 2 is unique. Finally (3.41) and (3.42) express
the extremality relations

a-1]

2e

Gl(z(az)) + GT(— plc) = - <Z(175), l_’1£>
G,(grad z(u,)) + G, (— p,) = — < grad z(),p,,>. ®
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The behaviour of the approximating problems when ¢ — 0 is given by

Proposition 3.4. If problem ? possesses a solution i, then when ¢ — 0

(3.43) inf 2 - inf 2,

(3.44) sup #* - sup P*,

(3.45) u, —u stronglyinV,

(3.46) Pi. = Y) — yy strongly in LXQ).

Proof. By definition of #,
(3.47) G(Aa,) < G(A7) = G(Aq),

and hence the sequence y(#,) is bounded in L*(Q) and the sequence i, is
bounded in V.
By extracting a subsequence, we obtain

(3.48) i#, —>u weaklyin ¥,

(3.49) y(#,) — y(u) weakly in LXQ),

(as A, is weakly continuous from ¥ into L%(Q) weakly).
From (3.47)

j (|erad y(@,)| — 1)2 dx dt < 26G(Aa),
Q

which implies by lower semi-continuity:

(3.50)

J (lgrad y(u)| — 1)3 dx dt < limgnfj (lgrad y(@,)] — 1)% dx dt = 0.
) 0 Je

Thus y(u) satisfies (3.7). On the other hand,
(3.51) J(u) = G,(A,#) < lim %nfG,(Alﬁ,) < (by (3.47))
£ G,(A,7) = G(An)

and hence u is the solution of the problem (3.5) (3.6). As this solution is
unique, u = & and the convergences (3.48) (3.49) hold for the whole sequence &.
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With (3.47) and (3.51) we again have
G(Au,) = inf . — G, (Ai) = inf P
which yields (3.43) and, with (3.50),
GalA,i) > 0,
(3.52) Gy(A,a,) = l)’(ﬁ yd'LZ(Q) = Gy(A,4) = |y() = Y4lr2y
With (3.49) and (3.52), we obtain
(3.53) y(u,) — y(ir) strongly in L%(Q),
and as .1, is an isomorphism of ¥ in L% Q), we deduce (3.45) from this.
Since the property (3.46) is a direct consequence of (3.41) and (3.53), it only

remains for us to prove (3.44). To do so, we note that

Sup #* > — G*(— p,) > (for G¥ > G¥)
= - GX—p)=Sup? > - GXg)

for VgeY such that g, =divg,, When &¢-—>0 we easily obtain
—G¥(g) - —G*(q), and thus

Sup #* > lim sup [~ G*(— p)] > lim inf [ - G*(— p)] > — Gl9)

Sup 2* > lim inf [sup 2*] > lim sup [sup *] = — G(g),
£+ 0 e~ 0

for Vge Y, g, = div ¢g,. Then by taking the suprema for the ¢’s under con-
sideration, we obtain

(3.54) — G*(— p,) - Sup 2%,
(2.55) Sup # = — GX(— p,) - Sup #*,
which is none other than (3.44). =

Remark 3.2. With (3.40), (3.43) and (3.44), we have proved (3.29) as we
stated in Proposition 3.2. =
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3.3. Approximation of the control problem

Apart from a change of sign, problem (3.28) can be written as

Dgivel — g Eirz
regg(fz)" L[2|d1v r? —divr.z; + 2|r| +|r| + r.grad go] dx de,

where we have set r = p,. We can also write

(3.56) Inf Sup L(r, A),
reL2(Q)"  AeL¥H(Q)"
jAx) <1 ae.
where
(3.57)

L(r, 4) =J Ii%]div r|2 — divr.z, -4—%|r[2 +rgrad ¢ + r.),] dx dt.
Qe

By replacing V by {r e LX(Q)"|div r e L(Q)} and Z=L*Q), we satisfy
the conditions for the application of Uzawa’s algorithm of Section 1; we
set rand A instead of v and p, & = V

B ={iecLHQ)||iMx)| <1 ae.}.

We start with A% € #; when A™ is known, we determine r™ as the element of
L¥(@)", such that div r € L%(Q) and which minimizes L(r, ™). Next we set

1m+1 — HQ(A’" + pmrm).
As the selected p, satisfy
0<p, <pPu<pe with suitable p,. o),
we have from Proposition 1.1 and the above:
morF=p in L*Q),
divr™ - divF = divp,, = p,, in L*Q),

when m — .

Then for m large and ¢ sufficiently small, div 7™ tends to y(i#) — y,; in the
norm of L%(Q). When we know y(i7), “the optimal state”’, we deduce from (3.1)
the optimal control &.

@ Here we use the fact that ¢ > 0. Condition (1.7) is not satisfied if £ = 0.
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The process is clearly very simple since the calculation of r™ and A™** is
very economical.

Remark 3.3. We can show that problem 2* allows of a generalized solution
B, with py € L*(Q), p, = bounded measure on  with values in R, j, = div j,.
When & — 0, we have p,, — p, strongly in L?(Q), any limit point §,, being a
possible value of p, (7, is not unique, 5, = div 5, is unique).

Remark 3.4. Many applications of duality to optimal control problems
for systems governed by partial differential equations are studied in
J. Mossino [1]. For the numerical approximation of these problems, see
J. Mossino [2].

4. APPLICATIONS OF DUALITY IN MECHANICS
Orientation

We shall show by some simple examples that the fundamental principles of
elasticity termed principle of potential energy and principle of complementary
energy are in duality. The primal problem has as its solution the displacement
field. The solution of the dual problem is the field of constraints. =

In the following section we shall apply the considerations of Chapter III,
Section 4. With the usual functional context, the primal problem can be
written as

(4.0) Inf { F(u) + G(4u) }.

The results of Section III.4 were obtained by considering the perturbation
function

&(u, p) = F(u) + G(Au —~ p).
We can equally well consider the perturbation function
®(u, p) = F(u) + G(Au + p).

This only results in a few changes of sign. The dual problem of (4.0) relative
to these perturbations can be written as

(4.1) Sup { — F*(— A*p*) — G*(p*) }

preY*
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and when they have been satisfied, the extremality relations can be written as
(4.2) F(u) + F¥(— A*p*) = — { A*p* i)

(4.3) G(Au) + G*(p*) = ( p*, A .

Theorems I11.4.1 and I11.4.2 and Proposition II1.4.1 are easily adapted to
this situation.

Owing to this modification, the solution of the dual problem will have a
more standard mechanical meaning. u

4.1. Equilibrium of an elastic body on a rigid base

We consider an elastic body filling a set Q of R? and in contact with a rigid
base on a subset I'y of Q. We assume the contact to be bilateral, which
means that the contact takes place effectively over all I',, We denote by
Iry=r-r, r=09.

The body is subject to some forces applied to the boundary I'; denoted g
(e.g. g € LY(I',)?) and to the body forces f ( f e L¥Q)?).

The space V is the space of displacement fields v, one of the unknowns of
the problem being the displacement field i € V for the equilibrium position of
the body Q. Here we shall take

(4.4) V ={ve H(Q)*|y,0 = 0 sur I, },

which is a Hilbert space for the usnal norm.
For a given displacement v € V, the internal energy of the body is G(Av)
where

1/dv, vy
4. Av ==& L %
(43) ! 2(ax,. +0xi>
and
(4.6) o > G(g) is a strictly convex L.s.c. function coercive on L*(Q)?,

finite and continuous at 0.
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The energy corresponding to the applied forces is

(4.7) - (f; U)oy — (9, YoV)rar,)y
and the total potential energy can be written as
(4.8) { F(v) + G(Av)}.

According to the principle of Virtual Work, the displacements from
equilibrium realizes the minimum of the potential energy among the v’s of V:
this is the primal problem.

Let us specify the dual problem (4.1). We set

Y = Y* < L}Q)f,
and the elements of Y are the symmetric matrices
o = (o)), 0ij = 0, € L*(Q).
The space Y is a closed subspace of L%(Q)°.
Lemma4.1. Foroe Y

60..
; i 4 — [¢})
O lf a ; f; 0’

4.9) F*(— A*o) =
+ oo otherwise.
Proof.
F¥(— A*g) = 5"::1}) [—<Ca,Av) — (f,v) — (g, 701)]
> Sup [—<o,Av) — (£0)]
ve?(52)3

Now
do..
~<o o) ~ (fo) = (G2 - £ 0>,
Xj
The latter supremum (and a fortori the former) equals + unless

(4.10) Ty f =

U In this section we use the repeated index summation convention.
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When (4.7) is satisfied, the vector 8, = (o1, 0,5, 643) € LA(2)? and div 0 € L*(Q);
we can thus define the trace on I' of

(4.11) 0,y = o,v,€ H-V*(I),

and we have Green’s theorem (cf. Lions and Magenes [1])

(4.12)

j‘ dive,.wdx + j 8; grad wdx = {0,y y,w D, Ywe HY(Q).
(24 [
Then for o satisfying (4.7)

< g, AU > = < aijv_,',vi) - (f; U),

and

F*(— A*a) = Sup [~ Coyv;,0, > — {g;,0: 0]

veV

and this supremum equals +c unless
(4.13) oV, +g;=0onT,
in which case the supremum is zero (we note thatv =0on I';). ®

The dual problem can be written as
(4.14) Sup { — G*(a) }

among the o € Y satisfying (4.10) and (4.13). This problem coincides with the
principle of complementary energy: in equilibrium the constraints achieve
the maximum complementary energy among all the fields of admissible
kinematic constraints (i.e. satisfying (4.7) and (4.10)).

Proposition 4.1. With the above hypotheses (and in particular hypothesis
(4.6) for G), problem (4.8) possesses a unique solution &. The dual problem (4.14)
possesses at least one solution & ; we have

inf # = sup #*
and i@ and & are linked by the extremality relation:

(4.15) G(AT) + G*(3) = (&, A ).
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Proof. The existence and uniqueness of the solution of (4.8) is easily shown:
the minimizing functional on ¥ is strictly convex, 1.s.c. and coercive; the
coerciveness results from Korn’s inequality (see Lions and Magenes [1]):

(4.16) lolly €clavlly » VoeV.

We have inf 2 =sup #* and the existence of & because of (4.6) and of
Theorem II1.4.1. Finally, (4.15) is none other than (4.3).

Remark 4.1. In the special case of linear elasticity,
1
Gle) = 3 A;inifijCar dx
2

-_— -_— o0
where ;.. = @, = ay,;.€ L*(Q) and

@ iniijCpr = XE;;E -

In this case relation (4.15) is

(4.17) ;= &mEmlith

tJ
where
eplit) = Au,

and (4.17) is the elastic law for the behaviour of the material.
Generally, relation (4.15) when solved for &,

(4.18) o = ¥Y(An),
is the relation for the behaviour of the material. =

Remark 4.2. We can associate with problems 2 and #* different Lagrangian
and different saddle point problems for which (i, &) is the solution. For this
see Fremond {2]. m

4.2. Case of a unilateral contact

When the contact between @ and the base is unilateral, which means that
it can be broken on a subset of I'y, the principle of Virtual Work tells us that
the field of displacements at the equilibrium minimize the potential energy
among the » € H(Q)? satisfying

(4.19) v.v<0 onT,
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We now take V= H(Q)3, Y= Y* as before,
Flo)= — {fiod =g 70> + xilv),
where yx is the indicator function of the convex set
K={veH(Q)’|v.v<Oonl,};
A and G are unchanged.
Lemma 4.2. Force Y

0 if(4.10) and (4.13) hold and
(4.20) F¥— A*¢s) = 8,=0 and 6,<0o0nr,,

+ o0 otherwise,
where 8 is the vector 8,;v;, 8, and 8, its normal and tangential components.
Proof.

F*— A*0) = SHI}(%) [— <o, Avd — (£, ) = (9, yov)):
v.v<0Oon Ig

As for Lemma 4.1 this supremum is +<o if (4.10) and (4.13) are not satisfied.
When o satisfies (4.10) and (4.13), there remains

F*(—A*O')= SUP [—<&ravf>_<6v’vv>]
veH1(2)
v.vg0onlo

where v, = (v-v) and v, = v — v,. The Lemma follows. =

The primal problem being,
{4.21) lI’g}'{ F(v) + G(Av)}
the dual problem can be written as
(4.22) Sup { — G*(0) }
for ¢ € Y and satisfying (4.10), (4.13) and (4.23)
(4.23) 6, =0, 6,<0 onl,

It is the principle of complementary energies which is expressed by (4.22).
For the existence of a solution, since Korn’s inequality is not true for
Vv e H(£2), we have to make the following hypothesis (¢/. Fremond [1]):

(4.24) Let U={veV|v=a+bAx,pp<0,0#0}.
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We have
LY +<g, 90> <0, Voe U.

We can then prove
Proposition 4.2, With the above hypotheses, especially (4.6) and (4.24),

problem (4.21) possesses a unique solution 1, and problem (4.22) has a solution G,
we have

(4.25) inf # = sup #*
and @ and G are linked by the extremality relation
(4.26) G(Au) + G*(a) = { 7, Au ).

Proof. The only new feature is the coerciveness of F(v) + G(Av) on K; for
this we refer to Fremond [1]. m

5. APPLICATIONS IN ECONOMICS

We shall be interested in economic activities concerning goods. The
amount of each article is measured by a real number so that to each vector
x = (xy,...,X,) of R7 there is associated the quantity x, of article i. The price
of article i is fixed at ¥, so that the sum to be paid to acquire x € R% is

m
(n*x) =Y n¥x,
i=1

Firms produce certain of these articles to the exclusion of others; in this
context, where they do not influence the price and when they are sure of
being able to dispose of all their production, they merely seek to maximize
their profit. We are in the domain of micro-economics.

5.1. Micro-economic theory of the factory

For all x e R™ we term x* the vector with components x; = max {x;, 0} and
x~ the vector with components x; = —min {x;, 0} so that:

(51) x=x7 —x".

We shall characterize a factory by its production set ¥ < R™ To say that
y € Y means that the factory is in a position to produce articles y* while
consuming articles y~. Thus, for example, to say that O € ¥ means that
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inaction is possible, and to say that R™ < Y means that it is possible to destroy
any quantity of goods. We usually make the following hypotheses:

(5.2) Y is aclosed convex set containing R™.

To a product y € Y costing >7_ n*y~ and giving as return 2n mEyT s
attached a profit;

m
(5.3) L - T mtyi=(n%y).
i= i=

Let us assume that ¢, is the maximum quantity of article i that the company
can buy on the market at price n¥. The vector ¢ = (cy,...,¢,) thus constitutes
the initial resources. The company seeks that production § which allows it to
maximize its profit without exceeding its initial resources. This is the solution,
if it exists, of the optimization problem:

sup {n*,y)

yeY

(2) .
vi2—¢ for i=1,.,m.

Let us recall the method of Chapter III. To each p = (py,..., Pn) € R™ we
associate the perturbation problem.®

@) S}:? {n*y>

p

Vi Z2 — ¢ — P
and the concave function:
(5.4) h(p) = sup (Z,).

Thus A(p) is the new profit which the company can realize if its initial
resources are improved by p. Proposition 5.1 of Chapter III then shows us
that if

(5.5) Ya{-c+R"} 2@

then the problem (&) is stable with respect to the perturbations under con-
sideration. Condition 5.5 is satisfied if, for example, ¢, > 0 for all i, that is
all the articles are initially disposable in non-zero quantities.
The dual problem can be written as (Chapter I11(5.23) and note "’ before):
(2% Inf Su‘p [{n* +p*y) + {p*c)]

P* >0 ye

1 Here, as in Section 4 before (see (4.1)(4.3)), we change p in —p, so that the *“prices”
appearing as the solutions of the dual problem will be >0.
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Under hypothesis (5.5) problem (2) is stable, and thus the problem (#*)

possesses solutions and these solutions p* are the over-gradients of A at 0
(Prop. 2.2, Chap. III)

(5.6) ~ p* € d(— h)(0).

The economic interpretation can be developed more easily by assuming
that 4 is Gateaux-differentiable at O and that the problem (%) has an optimal
solution y. Equation (5.6) then becomes:

ok

*

(0) for i=1,.,n.

In other terms, —p} is the marginal cost of the ith constraint: if it changed
from ¢, to ¢, + p;, the profit would be improved by p¥ p, to first order. In an
equivalent way, if a small additional quantity p, of article i can be disposed
of at price n¥, the profit will be increased by n¥p,. Let us state this latter
point more explicitly.

The company produces j* while consuming y~, and this activity uses to
the best advantage the resources ¢ which are available at price n*. Let us then
assume that it is offered to it additional quantities of article 7 at the price
nf + A¥. Should it be interested in acquiring a quantity p, > 0? This reduces
to introducing the additional quantity p, in the full market against a payment
of Afp;. The maximum profit realizable will be h(p,) — A} p,, which must be
compared with 4(0). Because of (5.7) and the concavity of h, we obtain:

(5.8) 3p, > 0:h(p) — 4¥p; > W(0) = AF < p}.

The company will only buy if i¥ < p¥. Thus, (n} + p}) represents the
threshold below which the company proceeds to buy article i. We immediately
deduce that:

if , > —¢,, there remain in the market some unused quantities of article i
at the price n}. Therefore n¥ is greater than or equal to the intervention
price n}¥ + p¥, and so p¥ =0;

if p¥ > 0, the market price is lower than the intervention price n} + pf.
Then the company wishes to buy additional quantities of article i at price n}.
If it does not do so, that is if 7, is optimal, that means that there is a shortage,
and so y, = ¢,.

We recognize the extremality relations which have been recovered by
purely economic reasoning. The economic interpretation of the multiplier
p* does not stop there: there is also a decentralization effect which we shall
see better by enlarging the framework.
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5.2. Decentralized management of a firm

Let us consider a firm which comprises N factories. The production set of
enterprise »n is Y,, and the profit which it takes from the product ye ¥, is
u,(y). Unlike in (5.3), we assume that various phenomena (saturation,
taxation, costs) prevent the linear growth of profit with production. Qur
hypotheses are that, foralln e {1,...,N}:

5.9 Y, is a closed convex set containing R”,
(5.10) the function n,: Y, — R is concave and u.s.c.

As previously, we denote by ¢=(cy,...,c,) the initial resources; thus the
quantity of article i disposable on the market is limited to ¢,. But some
enterprises of the firm can produce article / and supply it to others. In total,
the firm can assign to the enterprise n the product y(n) € Y, under the condition
that, globally, these constraints are satisfied:

N
(5.11) Y yn)z —¢; for i=1,..,m

The firm seeks to determine j(1), . . ., J(N) so as to maximize its total profit,
that is the sum of the profits of its members. We must solve the optimization
problem:

Sup [u,(¥(1)) + .. + ux(¥(N))]

y(n)eY

@) |
Z vin) = —c, for i=1,.,m
=1

With each p = (py,...,p.) € R™ we associate the perturbed problem
Sup [u(¥(1)) + ... + up(¥(N))]

y(n)eY..

(2
’) Z yn)y =2 —¢; —p; for i=1.,m
=1

From Proposition 5.1 of Chapter 111, if
N 0
(5.12) Y Yn{-c+R"}
n=1

(if, for example, ¢, > O for all i), then the problem (#) is stable relative to
the perturbations under consideration. The dual problem can be written as

(2%) Inf Sup [i (n)) + < p*, Zyn)+c>]

p*20 y(n)eY,
1gngN
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Under hypothesis (5.12) the problem (£*) possesses some solutions j*.
From Proposition 5.3 of Chapter 111, the problem () and the problem

Sup [Z w(y(n) + Cp% S vin) + e >]

y(n)eY = -
lsnsﬁ n=1 n=1

have the same solutions. To simplify the interpretation, we assume that there
exists a unique solution (ji(1), ..., j(n)) (which takes place if, for example, the
u, are strictly concave or the Y, are strictly convex).

We rewrite the latter problem in a more convenient form by omitting the
constant {p*, ¢> which does not interfere with the optimization:

(Q Sup i [u(¥(n)) + (5% y(n)>].

ymeYn , =1
g ngN
But the problem (@) is the sum of N independent problems; it can be also
written:
N

Q) X Sup [u(ym) + <p*y()>]

The problems (#) and (Q) have the same solution. This means that two
attitudes can be adopted by the firm:

it can determine for itself (ji(1),..., j(n)) by solving the problem (2)
directly;

it can restrict itself to calculating 5*, and let enterprise n have the responsi-
bility of determining j(n) by solving the problem:

(Qn Sup [u(y(n) + < B*, y(n) D).

In this second case, the decision is decentralized to the extent where each
factory determines for itself its own production without having to concern
itself either with the other factories or with the initial resources. The firm
achieves this decentralization by an accounting artifice: it imposes on its
factories shadow prices p¥ for the articles i, 1 < i < m. The production (or the
consumption) of one unit of article { must produce a shadow income of pf¥
(or a shadow expenditure of —p*), to be added to the real profit. The object
of factory » is to maximize the sum:

real profit + shadow profit
wV(n) + {p* n) )
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which leads to the problem (@,). It has a unique solution which is indeed
that j(n) € Y,. If the choice of shadow prices p* has been properly made, that
is if it is effectively a solution of (#*), the individual components of the N
enterprises contribute to the communal wealth, that is that the total demand
for each article does not exceed the available assets (3., y,(n) > —c; for all i)
and that the total (real) profit is at a maximum.

It is well known that the difficulty consists in effectively calculating the
shadow prices p*. We can, for example, proceed in the following way. The
firm states a system of shadow prices p*® € R™. Each enterprise n then states
that its production will be y(n) at price p*°. The firm then calculates >)_, y(n);
the negative components constitute the total demand which the firm will
compare with the available assets c. If

N
- Z yi(n) - Ci 2 O’
n=1

there is excess demand over supply and the firm increases the shadow price
p¥° by a quantity proportional to this excess. If

N
- Z yi{n) —¢; <0,
n=1

there is an excess of supply over demand and the firm diminishes the shadow
price p#° by a quantity proportional to this excess—always taking care not
to make the price negative. The firm then states the new pricing system p*!
(we denote by p a constant > 0):

N

if Y y{n)+¢; =0 pr'=Sup [0, p° - p(c,- + él ys(n)>]

n=1

. N N

if ¥ y(m)+c; <0, p¥=pr— p(ci + ) y;(n)).
n=1 n=1

And we start again. Thus a dialogue arises between the centre (the firm) and
the periphery (the factories), as a result of which we obtain a sequence p*°,
p*, ..., p*, ... of systems of shadow prices. This procedure is standard in
economic theory under the name of Walras “tdtonnements”. The reader will
have recognized Uzawa’s algorithm; we set out in Section 1 of this chapter
some conditions under which the sequence p*" converges to p*, the solution
of (#*), which is the required system of shadow prices. m
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CHAPTER VIII

Existence of Solutions for Variational Problems

Orientation

In this chapter, we shall study non-convex problems. In Section 1, we shali
introduce normal (not necessarily convex) integrands, an important class of
functions of two variables without any convexity; we shall establish their
main properties, including a measurable selection theorem, and we shall
recall the characterization of weakly relatively compact subsets of L.

In Section 2, these results will be applied to the study of a non-convex
optimization problem, and a sufficient condition for the existence of solutions
will be given. The final sections will show that a number of problems in the
calculus of variations (Section 3) and in optimal control (Section 4) can be
put into the above form and from this we deduce theorems on the existence of
solutions.

1. NON-CONVEX NORMAL INTEGRANDS

1.1. Definition and main property

We recall that the Borel g-algebra of a topological space is the s-algebra
generated by the closed subsets; in other words, the Borel subsets are the sets
obtained from open and closed subsets by denumerable union, denumerable
intersection, complementation and by any denumerable combination of such
operations. A mapping f into R will be called a Borel function if f~'(F) is
Borel for every closed set F. For instance, continuous functions are Borel.

Let Q be an open subset of R” provided with the Lebesgue measure. All the
Borel subsets of Q, especially the open and closed sets, are measurable. We
recall that a mapping /: 2 — R is measurable if the inverse image under f of
every closed subset of R is measurable. The Borel functions are measurable
and, in general, we have at our disposal the following criterion for measur-
ability:

Lusin Theorem. A function f:Q — R is measurable if and only if, for every
compact set K < Q and all ¢ > 0, there exists a compact set K, < K such that
meas(K — K,) < & for which the restriction of f to K, is continuous.

231
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The integrands used in the calculus of variations are functions of several
variables playing different roles; by and large, they are measurable with respect
to some variables and l.s.c. with respect to others.

Definition 1.1. If B is a Borel subset of R?, a mapping f of Q x B into R is
termed a normal integrand if’

Py Sfor almost all x € Q, f(x,.) is Ls.c.on B

(1.2) there exists a Borel function f:Q x B —R such that f(x,.)=
J(x,.) for almost all x € Q.

A first consequence of this definition is that for all a € B, f(.,4) is measurable
on . Better still, if ¥ is a measurable mapping of Q into B, the function
x > f(x,u(x)) is measurable on Q. Indeed, it is almost everywhere equal to the
function x — f(x, u(x)), which is measurable since fis Borel. We note that this
property is no longer satisfied if, instead of assuming that /'is a normal inte-
grand, we merely assume it to be measurable in x and Ls.c. in a. Later on, we
shall see that functions measurable in x and continuous in ¢ are normal inte-
grands. Furthermore, it follows from the definition that:

if fis a normal integrand, Af is a normal integrand for all 1 e R;

if fand g are normal integrands, (f+ g) and inf( £, g) are normal integrands;

if (f,)nen is @ denumerable family of normal integrands, sup, . 5 f, is @ normal
integrand.

The study of normal integrands depends on the following characterization,
which is a Lusin theorem ‘“‘uniform” in the second variable:

Theorem 1.1. Lez B be a Borel subset of R?. For f:Q x B — R to be a normal
integrand, it is necessary and sufficient that for every compact set K, < Q and all
£ > 0, there exists a compact set K, < K such that meas(K — K,) < & for which
the restriction of f'to K, x Bis Ls.c.

Proof. The sufficient condition is obvious: we take e=1/n and let K’ =
Unen Ki/n- Then meas(K — K) = 0, K’ is Borel, fis Borel on K’ x Band f(x, .)
isls.c. forall xe X",

To show the necessary condition, we begin by modifying f on a Borel set of
Q with null measure so that f(x, .) becomes l.s.c. for all x € Q and f becomes
Borel over all of Q x B. Using if necessary an isomorphism of R onto [0,1],
we may assume that ftakes its values in [0,1].

Since B is a subspace of R?, it possesses a denumerable basis % of open sub-
sets. Let us denote by & the family of Ls.c. functions of B into [0,1] defined by

@ ={k L|lue# keQ;0 < k <1}, where Q is the set of rationals.
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Clearly @ is denumerable and for all L.s.c. functions 4: B — [0,1] we have
h =sup{p|e € ® and ¢ < A}. Setting @ = {@,} e, then:

E, ={xeQ|f(x.)>e()}
G, ={(x,a)e 2 x B|f(x,a) < ¢,(a)}.

Since f'is Borelian and ¢, is 1.s.c., G, is a Borel subset of Q x B. Its projection
on Q which is none other than the complement of E, is thus measurable.()
Hence E, is measurable in Q. Now for all x € , f(x, .) is a L.s.c. mapping of B
into [0,1]

S(x, a) = sup ¢,(a)15,(x).

If the compact set K < Q and the number ¢ > 0 are given, we choose for
all ne N, by virtue of Lusin’s Theorem, a compact space K, < K such that
meas(K — K,) < €271 and that the restriction of 1z to K, be continuous.
Let K, = Upn K, Then meas(K — K,) < ¢ and the restriction of ¢,1, to
K, x Bisls.c.for alln. Since f'is the least upper bound of the ¢, 1,  its restriction
toK,xBislsc. =

1.2. First example: indicator function of a varying closed set

We give here an important example of a positive normal integrand. Let
C be a Borel subset of 2 x B; we shall assume that for almost all x € 2, the
trench C,={a e B|(x,a) € C} is closed in B. Then the indicator function
fof C:

f(x,a) =0 if (x,a)eC,
flx,a) = + o if (x,a)¢C,

is a positive normal integrand since it is Borelian and trivially satisfies (1.1).
In particular, for all measurable mappings u of Q into B the following three
conditions are equivalent to each other:

(1.3) (x,u(x))e C ae.
(1.4) ux)eC, ae.
(1.5) Jf(x, u(x)) dx < + co.

) We admit here the fact that the projection of a Borel set is measurable. This is a difficult
result; it is a consequence of, e.g., Choquet’s capacity theorem.
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1.3. Second example: Carathéodory functions

Definition 1.2, Let B be a Borel subset of R?. A mapping f-Q x B—>R is
said to be a Carathéodory function if

(1.6) for almost all x € Q, f(x, .) is continuous on B,

(1.7 Jor all ae B, f(.,a) is measurable on Q.
Proposition 1.1. Every Carathéodory function is a normal integrand.

Proof. By modifying f on a Borel set of Q with null measure and by using an
isomorphism of R onto [0, 1], we may assume that f'is measurable in x for all a,
is continuous in 4 for all x, and takes values in [0,1].

Once again we introduce a denumerable base of open sets % of B and the
family @ of ls.c. functions of B into [0,1] defined by &= {kl,juec %,
keQ,0<k<1}). For all Ls.c. functions # of A4 into [0,1] we have
h=sup{p € ®| ¢ < h}. We now introduce a dense denumerable family 2.
Enumerating ¢ = {¢,},n and for all n e N and a € & let us set:

En,a = {erIf(x,a) = (Pn(a)}

Since f(.,a) is measurable, E, , is measurable and hence E, = ,.g En , IS
measurable

E,={xeQ|f(x,a) = ¢,(a) Vaec #}.

Now f{(x, .) is continuous, ¢, is 1.s.c. and 4 is everywhere dense. We deduce
that

E,={xeQ|f(x,a) = ¢,(a) Yae B}.
And by definition of the family &:

f(x, a) = sup ¢ (a)1(x).

neN

For each ne N, there exists a Borel subset C, of Q such that 1z =1,
almost everywhere. Let:

F(x.a) = sup g,(a)1c,(x)
The function f'is Borel on 2 x B as the least upper bound of Borel functions,

andf(x, .) = f(x, .) for almost all x. Hypothesis (1.2) is thus verified ; hypothesis
(1.1)is covered by (1.6). m
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In this particular case Theorem 1.1 takes the following form, known as
the Scorza-Dragoni theorem:

Scorza-Dragoni Theorem. A mapping f:Q x B—R is a Carathéodory
Sunction if and only if for all compact sets K < Q and all ¢ > 0, there exists a
compact set K, < K such that meas(K — K,) < ¢ for which the restriction of
fto K, x B is continuous.

Proof. Let the compact subset K and ¢ > 0 be given. Since f is a normal
integrand, there exists a compact set K, < K such that meas(K — K,) < ¢/2
and that the restriction of fto K, x Bis L.s.c. But —fis also a normal integrand
and we can thus find a compact set K_ < K such that meas(K— K_) < ¢/2
and for which the restriction of —fto K_ x Bis l.s.c. If K, = K, N K_, f will
be l.s.c. and u.s.c. and hence continuous on K, x 4 and meas(K— K,) < e.
The converse is an easy consequence of Theorem 1.1. =

1.4. A measurable selection theorem

We shall now assume that B is a compact subset of R”. For almost all
x € Q, there thus exists an a(x) € B where f(x,.) attains its minimum. We will
show that we can choose a(x) in such a way that the mapping a defined from
Q into B is measurable,

Lemma 1.1. Let B be a compact subset of R? and g a normal integrand of
Q x B. We set

(1.8) do(x,a) =0 if ¢(x,a) = min { g(x. b) }

golx,a) = + o if g(x,a) > I})li;l {g(x, b)}.

Then gq is a normal integrand.

Proof. Using an isomorphism, we may assume that g takes its values in
[—1,1]. For every ¢ >0 and every compact K < 2 we can find a compact
subset K, = K such that meas(K — K,) < ¢ and that the restriction of g to
K, x Bisls.c. Define ¢: K, - [-1,1] by:

@(x) = min { g(x, b) }.
beB

Let us show that ¢ is L.s.c. Let (x,),.5 be a sequence of K, converging to
X%. We extract a subsequence x, such that:

(19) lim (x,) = lim g(x,).

n— o n' = ©
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Since B is compact, there always exists @, € B such that ¢(x,) = g(x,,
a,). We can extract a subsequence a,~ converging to a € B. Since g is 1.5.c. on
K, x B we have:

llm g(xn”7 an") = g(fy E)

m
n -

and a fortiori

(1.10) lim ¢(x,.) = o(X).
Whence by comparing (1.9) and (1.10), the lower semi-continuity of ¢
follows. Let us then introduce C < K, x B defined by

C={(xaekK, x B!g(x,a)=(p(x)}.

This is the set of points where two ls.c. functions coincide and is thus a
Borel subset of K, x B. Moreover, for all xe K,, C,={ae B|(x,a) e C}
is closed since it is the set of points where an ls.c. function attains its
minimum. This means that g,, which is none other than the indicator function
of C, is a normal integrand of K, x B.

In particular, we can find a compact subset K;, < K, such that
meas(K, — K,,) < 2¢ and for which the restriction of g, to K, is L.s.c. Let us
collect our results together: for all ¢ > 0 and all compact sets K € Q, we have
found a compact set K,, < K such that meas(K — K,,) < 2¢ and for which
the restriction of g, to K, x B is l.s.c. Hence g, is a normal integrand of
QxB n

Theorem 1.2. Let B be a compact subset of R? and g a normal integrand of
Q2 x B. Then there exists a measurable mapping ii:Q — B such that for all
xe Q.

(1.11) g(x, #(x)) = min { g(x, a) }.

Proof. We define g, by formulae (1.8). We then take a sequence a,, n > 1,
which is dense in B. We now define by induction a sequence g,,, n > 1, of normal
integrands in the following way:

h(x, a) = g,(x,a) + |a - a,]
9ui1lx,a) =0 if h(x, a) = Tigl { h(x, b) }
Jus1(x, @) = + 0 -if h(x,a) > Tiz?{h"(x’ b) }.
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Successive applications of Lemma 1.1 show that the g,, neN, are all
normal integrands. Thus £ = sup,.g, is also a normal integrand. But it can
be easily verified that domg(x, .) has been reduced to a point for all x € Q,
i.e. g is of the form:

g{x,a) =0 if a=u(x)
glx,a) = + oo if a #* #(x).

The function # thus defined is measurable, since g is a normal integrand
and satisfies (1.11) since g > g,.

In particular we deduce that the mapping x > min,z{g(x,a)} of Q into R

is measurable. Theorem 1.2 includes as a special case the following measurable
selection theorem.

Corollary 1.1. If B is a compact subset of R?, if C is a Borel set of 2 x B
whose sections:

C.={aeB|(x,a)eC}

are closed and non-empty for almost all x, then there exists a measurable map-
ping ii: Q — B such that for almost all x

u(x)e C,.
We say that & is a measurable selection of C. This corollary is proved by
applying Theorem 1.2 to the indicator function of C.
1.5. Polars and bipolars of normal integrands

Let us now take B = R¥, and consider a normal integrand f: Q2 x R? — R.
For all fixed x € @, the polar of the function f(x, .) will be a mapping of R?
into R denoted by:

g = [¥x;8%):

Proposition 1.2, If f is a normal integrand of Q x R?, then f* is a normal
integrand of Q x R®.

Proof. For all xe Q, f*(x,.) is a convex ls.c. function. It only remains
to verify hypothesis (1.2) for £*. To do this we define:

fx 8 =+ if |{>n
Sl 8 = flx, 8 if ¢ <n
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We have /= inf,y /;, hence (by 1(4.6)), for all x € Q:

(1.12) f*x;) = sulg SHx;.).
By definition
(1.13) fHx; &) = sup {68 - fi(x, 9}

For all x € Q, f¥(x;.) will be either identically equal to —o, or a finite
convex function of R? into R.

Let us take £* € R?, and any compact set K < Q. For all ¢ > 0 there exists
a compact subset K, < K such that meas(K — K,) < ¢ and for which the re-
striction of £, to K, x R? is Ls.c. Since the balls of R? are compact, the family
of mappings —f,(.,&) + <(&,&*, for |¢] <n, will be equi-ls.c. on K,. From
equation (1.13) we also deduce that f,*(.;&*) is u.s.c. on K,. Since >0 is
arbitrary, f;*(. ;£*) is measurable on K. Since the compact set K is arbitrary
F*(. ;&%) is measurable on Q.

For all n € N, fis therefore a Carathéodory function, and a fortiori, a normal
integrand. We thus have £*(x; .) = f*(x; .), for almost all x, where /,¥ is Borel.
From (1.12) we deduce that f*(x;.)=f*(x;.) for almost all x, where

F* = sup,n/* is Borel. Whence (1.2) for f*. =

By repeating this operation, we arrive at the I'-regularization of the function
f(x, .) which will be denoted by : € > f**(x; £). We at once obtain the following
corollary of Proposition 1.2:

Proposition 1.3. If f is a normal integrand of Q x RP, then f** is a normal
integrand of Q x RP.

1.6. Lower semi-continuity of integrals

Let us now pass from the questions of measurability to those of integrability.
Here we give an easy consequence of Fatou’s lemma which will be extremely
useful to us in the future:

Proposition 1.4. Let f be a normal positive integrand of Q x R? and (u,),en
a sequence of measurable mappings of Q into R?, converging almost everywhere
to ii. Then we have:

(1.14) J f(x, #(x))dx < r}!:n?lo j S(x, u,(x))dx.
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Proof. We have a sequence of positive measurable functions to which we can
apply Fatow’s Lemma:

(1.15) jh_m fx,u(x < lim '[ S(x, u{x))d

n""‘ © =%
But since f(x, .) is Ls.c. for almost all x € Q:
(1.16) Sl i(x) < lim f(xux) ae.
Whence the result, on substituting (1.16) into (1.15). =

Corollary 1.2. Let f be a normal positive integrand. The function
F:uem j S (x, u(x)) dx,
Q

is positive and Ls.c. of L*(Q) into R, for all o, 1 € a < o,

1.7. Weak compactness in L'()

To conclude these preliminaries, let us recall the characterization of the
weakly relatively compact subsets of L'(Q).

Theorem 1.3. Let F < LY Q). The following statements are then equivalent
to one another:

(@) from any sequence (u,),.x Of F, we can extract a subsequence which is
weakly convergent in L*;

(b) for all ¢ > 0, there exists A > 0 such that:

Vue #, j lu(x)| dx < &;
(Il > 2}

(¢) for all ¢ > 0, there exists & >0 such that we have [ |u(x)|dx < ¢ for all
u € F and all measurable B of measure < §;

(d) there exists a positive Borel function ®: [0,0[ >R, such that
lim,,,(®(#)/t =+ and

sup [@Polul < + .
ue F
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Condition (b) is called equi-integrability. The equivalence (a)<>(b)<>(c)
is Dunford—Pettis’ compactness criterion. The equivalence (b)<>(d) is due to
de la Vallée-Poussin.

Lemma 1.2. The function & introduced in (d) can be assumed to be convex,
Ls.c. and increasing.

Proof. To say that lim,,, ®(¢)/t =+ means that for all m € R, & admits
an affine minorant with slope m. Then so does ®**, and hence &**(¢)/t —
+c when ¢t — +. The function $** is convex and L.s.c. and attains its mini-
mum 4 at {:

a = inf ® = min d** = d**(f).

It decreases on [0,7], then increases over [f,+[. Let us define a convex
function @, increasing and Ls.c. on [0,+[ by

~

$(t)=a on [0,7]
&(t) = ¢**(1) on [i, + oof.
We have & < &, and thus

5ol < ‘
ile.l})jd)olul ig£j¢olu|<oo ]

Theorem 1.3 is a very deep result. We are going to use it to prove a generaliz-
ation of Lebesgue’s theorem which will be extremely useful in what follows:

Corollary 1.3. Let (1,),en be an equi-integrable sequence of L'(Q) such that
u,(x) — u(x) almost everywhere. Then u is integrable, and u, — u in L*(Q).

Proof. We begin by showing that, under the given hypotheses, the sequence
u, converges weakly to u in L!(Q). For this it is sufficient to show that we can
extract from it a subsequence converging weakly in L(Q) to u. Now there
exists a subsequence u,. converging weakly in L(Q) to a function v (Theorem
1.3, (b)=(a)). From Mazur’s lemma, we can find a sequence of convex com-
binations v, € 0 U, »» {1, } converging to v in L'(£2), and so we can extract
a sequence v,.- converging to v almost everywhere:

(1.17) v,(x) = v(x) ae.

But by hypothesis:

(1.18) va(x)eco |J {u,(x)} - u(x) a.e.

pan’
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Comparing (1.17) and (1.18), we obtain v = u almost everywhere, and the
sequence u, thus converges weakly to u.

We immediately deduce from this that it also converges in the norm: it
is sufficient to apply the preceding result to the sequence of functions [u, — u|.
We can easily verify that it is equi-integrable and that it converges almost
everywhere to zero. It thus converges weakly to zero, and in particular:

j ) = u() dx >0, uy —ulp »0. m

If for example there exists a € L1(Q) such that for all n, u,(x) < a(x) almost
everywhere, the sequence (u,),ey Will then be equi-integrable. We thus recover
Lebesgue’s theorem.

2. AN OPTIMIZATION PROBLEM

2.1. The integrand f: definition, first properties

Let @:[0,+o[ - R U {+»} be a non-negative increasing, convex, l.s.c.
function such that

(2.1) lim gt(i) =+ ©
= o
Let us consider a mapping f of & x (R x R™) into R. We shall assume that
it is a normal integrand, i.e. that it satisfies (1.1) and (1.2) with B=R¢ x R™,
and that we have the estimate

(2.2) ®([¢]) < flx,5,€)

In particular, f is non-negative, f(x, ., .) is Ls.c. for almost all x € Q, and
f(.,s,£) is measurable for all (s,&) € R x R™. By epif(x,s) we shall denote the
epigraph of the function f(x,s,.) in R™x R. We shall now prove a
continuity property of the multi-valued mapping (x, s) — oepif(x,s).

Lemma 2.1. Let E be a metric space and ¢ a l.s.c. mapping of E x R™ into
R, satisfying

(2.3) Veec E, ?(|¢]) < ole, &).
Then, for all é € E, we have
(2.4) 1 ¢ | epid(e.) = oepi &)

>0 le-élge¢
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Proof. 1t is trivial that the right-hand side is included in the left-hand side.
For the converse, take any:

(2.5) (€, d) ¢ co epi (&, ).

There exists an affine hyperplane of R™ x R which strictly separates (,4)
from €o epi@(é, .). If this hyperplane is non-vertical, it is the graph of an affine
function # over R™ such that:

(2.6) a<t(
2.7) v¢eR", £(&) < 9, ).

If the hyperplane in question, denoted by J#, is vertical, there exists an
affine function ¢ over R™ such that /'(¢) =0 for ({,a) e #,£'(¢) >0 and
2'(&) < 0 for £ e dome(é,.). But, from (2.3), ¢ is non-negative; the function
¢ =ct’, for ¢ > 0 sufficiently large, will thus also satisfy (2.6) and (2.7).

From (2.3) we deduce that there exists M > 0 such that

(2.8) &1 2 M = ® (I€]) > £€).C)

Since the balls, of R™ are compact, the family &(.,&), for [l < M, of
mappings from E into R, is equi-l.s.c. Let p be an increasing homeomorphism
of R onto [-1,1]." We then set:

(2.9) m = min {pooel) —pof(d)}

It is the minimum of a Ls.c. function on a compact set. It is thus attained and
we have m >0 from (2.7). By equi-lower-semi-continuity, there exists & > 0
such that |e — &} <& and |£| < M imply that:

(2.10) poge,f)y=zpooeé —m
(2.11) po@lel)=porl)
by (2.9).

Finally, let:
(2.12) le —el <& and Il < M = g(e, &) = £(8).

Grouping together (2.8) and (2.12) and taking (2.3) into account, we see
that:

(2.13) le~el<E=>VYEER™, g¢le§) > LE)

4 For example p(s) = (2/7) arctan s.
()See an erratum concerning the next few lines at the end of this chapter.
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But (2.6) means that (£,a) belongs to the lower open haif-space determined
by ¢, and (2.13) means that |, <z €pi¢(e, .) belongs to the upper closed
half-space. But then €0 .z >z €Pi@(e, .) also belongs to the upper closed
half-space, and hence:

((,a)¢co | epiofe. )

le—&lg&

A fortiori:

(2.14) (&, ay¢ Nco Y epiole.)

£>0 je-e| e

The fact that (2.5) implies (2.14) gives us the desired inclusion:

coepip(é,)= [1co () epigle,) ®

>0 le—e|l<e

Corollary 2.1.If f is a normal integrand of 2 x R’ x R™ satisfying (2.2),
we have for almost all x € Q,

(2.15) N @ U epif(x,s) = coepi f(x,3).

e>0 |s~5lge

Proof. 1t is sufficient to apply Lemma 2.1 to the function f{x..,.) over
R’ x R™, at any point x € Q which makes it |.s.c.

2.2. A lower semi-continuity resuit

We are now in a position to state the fundamental result of this chapter
which yields a property of lower semi-continuity:

Theorem 2.1. Let [ be a normal integrand of Q x (R’ x R™), such that:
(2.2) o(18) < f(x5.9)
where ®:R, > R, is a convex increasing l.s.c. function satisfying (2.1) and,
(2.16) V(x,5)e Q@ x R, f(x,s,.) is convex over R™.

Let (pu)nen be a sequence converging weakly to p in L'(Q)" and (Up)en @
sequence of measurable functions converging almost everywhere to ii. Then:

1) | st ) dx < fim [ sl po)
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Proof. Since f'is a normal non-negative integrand, all the written integrals
have the same sign. If the right-hand side of (2.17) takes the value +co, the in-
equality is trivial. Otherwise, by extracting a subsequence, we may assume that:

(2.18) lim j‘ S(x, u(x), p(x))dx = ¢ < + o0,

n—aw

We now apply Mazur’s lemma (¢f. Chap. I, Section 1) to the sequence p,, which
is weakly convergent in L. There exists a sequence of ¢onvex combinations
Sk %D, With >0 and SV_. &, = 1, converging to j in L. We can thus
extract a subsequence >y, ap, converging almost everywhere to p:

N

(2.19) Y opdx) > b(x) ae.as n — oo

k=n’

Let us take a point x € @ where the convergence (2.19) occurs and where
u,(x) — #(x) as n— . A fortiori, i, (x) — i#(x) when n' — . In R™ x R,
for all n’, we have:

220) (% wadod 3 s ohpi) eco U epi £ o)
and a fortiori:
221) (3 wpe) 3 o (x (el p eco U epi fix ul)

We now take £ > 0. From (2.13), there exists ng sufficiently large to give us
|uz(x) — @#(x)| < ¢ for all ¢ > ng. Hence for all n’ > ng, we have:

N

222) (3 apd) 3 af(nm(x)pdxeco | epi f(x,s)

k=n' k=n’ Is—a(x)<e

By making n’ go to infinity, we obtain from (2.19):

N

(223)  (p(x) lim ¥ apf(x, ulx)px))eco  |J  epif(x,s)

no o k=g Is—id(x)l<e

and as this is true for all ¢ > 0:

N

(2.24) ( () im Y o f(x wx) ple 1 & U epi f(x,s).

"o ® k=n £>0 [s-u(x)|<e
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From Corollary 2.1, we have:

(2:25) U co U epif(x,s) = coepi f(x,i(x)).
£>0 s —u(x)| <e
But because of hypothesis (2.16), the function f(x,i(x),.) is convex and
1.s.c., and its epigraph is therefore closed and convex. Finally (2.24) can be
written as:

226) (0. m 3 2 (x wlxh pio) € epi S, i)
which by definition means that:
21 Sl E) € Hm Y o) i)

We now integrate both sides over Q:

N

@26) [ sl s dx < [ Jim 3 (s, o) pile) b

QW0 k=n

But all the integrands are positive, which allows us to apply Fatou’s lemma:

n' o k=n

(229) f Bm S gy (x wy(x), pul)) dx

< lim_ ZN: O J S (x, wy(x), pi(x) dx

n—=w k=n'
_ _ . N
(2:30) j £, a@(x), B)) dx < fim ¥ o j (e 1), py() .
o n' o k=n' 0
But from (2.18) it is easy to deduce that the right-hand side of (2.30) is equal

to ¢. Indeed, for all ¢ > 0, we can find », such that

(2.31) Vn = n,, c—¢e< j fxu(x)p(x)dx <c +¢

N

(2.32) c—¢ < Z o, j S (e, u(x), pu(x)) dx < ¢ + ¢,

k=n
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whence finally

(2.33) lim Z a, | f(x, u(x), pu(x))dx = c.

n—'aok" o

Returning to (2.30) and (2.18), we obtain the desired result:

n- o

ff (x, u(x), p(x)) dx = lim jf(x, u(x), p(x)) dx. =

2.3. The case where f'is not convex in ¢

We now return to the general case where fis a normal integrand satisfying
(2.2) but no longer satisfying (2.16). Then, of course, we no longer have
Theorem 2.1 at our disposal. It is natural to introduce f**(x,s;.), the I'-
regularization of the function f(x,s, .). From the results of Section 1, this is a
normal integrand of (2 x R¥) x R™, but the question arises as whether it is a
normal integrand of Q x (R¢ x R™).(")

Proposition 2.1. If f is a normal integrand of Q x (R x R™) satisfying

(2.2) &(|&) <€ flx, 5 &)

where @ answers to the above description, then f** is also a normal integrand
of Q@ x (R’ x R™) and satisfies

(2.34) o(|E]) < f*(x,558).

Proof. By (2.2), the convex ls.c. function &(].[) is everywhere less than
f(x,s,.). Taking the I'-regularization of both sides, we obtain (2.34).

Let us now take any compact subset K < Q, and £ > 0. Since f'is a normal
integrand, we can find a compact subset K, < K such that meas(K—K) < ¢
and such that the restriction of f to K, x R x R™ is ls.c. (Theorem 1.1).
Moreover we know that epif**(x,5) = Coepif(x,5). From Lemma 2.1 applied
to fover (K, x R) x R™, we have

(2.35) epi f**(X,5) =[] co |J epif(x,5s)
£E>0 ‘x—flsc
s—8lge

™ We already know that £ **(x, 5; .) is Ls.c. in &, but we are not yet in a position to state
that f**(x, .; ) is L.s.c. in (s, &).
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But it is clear that:

(2.36) co U epif(xs)> U coepif(x,s)

|x-Xl<e |x—X| <e
Is—3l<e Is~3)ge

which enables us to write (2.35) in the form:

(2.37) epi [**(%,5) > ) U coepi f(x,5)

>0 jx-Zlge
ls-5lge

or again, replacing Coepif(x,s) by epif**(x,s),

(2.38) epi f**(X,5) > N U epi f**(x, 5).

e>0 |x—-Xlge
Is—5lge

Let us now take a sequence (x,,s,,¢&,), n €N, converging to (%,s,¢) in
K, x R’ x R™. We obtain:

(2.39) (%,5 & lim f**(x,,5,;E) e 1 U epi f**(x 9),
>0 x—X|<e
Is—5l<e

and by virtue of (2.38):
(2.40) (i, E’ E’ !l_m f**(xn’ sn; én)) € epl f**(x’ s)
which by definition means that:

(2.41) (% 5; ) < lim f**¥(x,, 5,; &,).

Thus we have shown that for any compact set K < Q and for all ¢> 0,
we can find a compact subset X, < K such that meas(K — K) < ¢ for which
the restriction of f** to X, x R x R™is L.s.c.

By Theorem 1.1, f** is thus a normal integrand of @ x (R x R™). =

We can now have a partial extension of Theorem 2.1 to the non-convex
case, making use of /**. The result is as follows:

Proposition 2.2, Let f be a normal integrand of Q@ x (R? x R™) satisfying

(2.2) P([¢]) < (x5, &),
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Let (py)nen be a sequence converging weakly to p in L,(Q) and (u,),.x a sequence
of measurable functions converging almost everywhere to i1. Then

(2.42) ff**(x iu(x); p(x)) d hm ff X, u,(x), p,(x)) dx.

Proof. 1t is sufficient to apply Theorem 2.1 to f**, and to make use of the
inequality /** < f. We obtain:

ff“mmmmmm <_mffﬂuuu)M)N

n—

hmffx () pl) dx.

2.4. Calculus of variations: existence of solutions by convexity

We shall now formulate an optimization problem, which embodies a large
class of problems in the calculus of variations, and apply to it the preceding
results. As before, we are givenal.s.c., convex, increasing function @: [0, 4+ [ >
R, which satisfies:

2.1) 1im?@d: = + .

t— o

By L7 we shall denote those (classes of ) measurable mappings p from Q into
R™ (modulo equality almost everywhere) for which [, @ o [p| < +=.®

From (2.1) it is clear that L% < LY(Q)™". If, for instance we took for @
the function ¢+ 1%, with 1 < « < «, the set L% would be none other than
L™ which will also be denoted by L. If we take for & the indicator
function of the interval [0,1], L7 coincides with the unit ball of L2(Q)™ (or
L)

We are given a normal integrand f of Q(R’ x R™) into R, such that there
exists a function a € LY(©2) which satisfies:

(2.43) a(x) + &(2]) < f(x,5,8).

O The LZ are Orlicz classes. For the theory of Orlicz spaces see M. A. Krasnosel’skii and
Ruticki [1], A. Fougéres [1].
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We are also given a weakly closed subset % of L;,, and a mapping 4 of
L% N % into Lf, with 1 < B < o, which satisfy the following property:

if a sequence (p,) of % converges weakly to j in L}, and if
(2.44) sup [o ® 0 |p,| <+, then we can extract from the sequence
(%p.) a subsequence which converges almost everywhere to 4p

Assumption (2.44) is satisfied if, for example, ¥ maps the sequences (p,)
which converge weakly to 5 in L} and are such that | & o p, < constant
V'n, into sequences (¥p,) which converge strongly to % in L{: we then say that
% is a (P, f)-compactifier. If &(¢) = 1%, 1 < o < o, this amounts to saying that %
maps the bounded and weakly convergent sequences of Ly into strongly con-
vergent sequences of L? ; indeed, the topologies o(L!,L®) and a(L? L*") coincide
on the bounded subsets of Lg, since L3 is dense in L%, 1/a + 1/a" =1, We say
that ¢ is an («, 8)-compactifier. Here are the main examples:

Proposition 2.3. Let £ < o < w. If 9 is a compact continuous linear mapping
of L}, into L8, with { < B < », then 9 is an (a, f)-compactifier.

We recall that, by definition, a continuous linear mapping of L2 into
L? is called compact if it maps the bounded subsets of L}, into relatively
compact subsets of Lf. Proposition 2.3 follows directly.

Proposition 2.4. If % is a continuous linear mapping of L., into L, with
1 < f < «, then & satisfies (2.44).

Proof. Since Q is bounded, L{(Q) < L}(2), and the bounded sets of L{(Q)
are weakly relatively compact in L1(Q). The mapping ¢ maps the bounded
sets of L,, into weakly relatively compact sets of L}; by Grothendieck [1},
theorem V.4.2 it will map the weakly compact subsets of L}, into compact
subsets of Li.

Let us now take ¢ into account. If the { @ o |p,|’s are uniformly bounded,
the (p)nn form a weakly relatively compact subset of L., (Theorem 1.3,
de la Vallée-Poussin’s criterion). The (¢p,),.~ thus form a relatively compact
subset of L}, and we can extract a subsequence (¥p,,)in COnverging in L.
Since the p, converge weakly to p, the 9p, converge weakly to 4p. The limit of
the sequence (#p,.)xen in L! can therefore only be 4p. Finally, we can extract
from (9p,i)ien @ subsequence which converges almost everywhere to 4p. ®

At last we are in a position to state the optimization problem:

(2) Inf 1 f(x, % p(x), p(x)) dx

pe¥NLy 0
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which can be put into the equivalent form:

(#) Inf f(x, ulx), p(x)) dx.
pea;ll'tgL,g Q
u=gp

From Theorem 2.1, we immediately deduce an existence criterion for solu-
tions to problem (#):

Theorem 2.2. Let f be a normal integrand of Q x (R¢ x R™) satisfying
(2.43) a(x) + (&) < f(x,5,8), withaeL'(Q)
(2.45) Y(x,5)e 2 x R, Sf{(x,s,.) is convex on R™.

Let % be a mapping of Ly, into L} and U a weakly closed subset of L! satisfying
(2.44). Problem (P) admits at least one solution.

Proof. We set g(x,5,&) =f(x,5,&) — a(x). This is a normal integrand such
that

(2.46) (&) < g(x, s, &)

(2.47) Y(x,s)e Q x R/, g(x, s,.) is convex on R™
It is clear that:

(2.48) jf (x, u(x), p(x)) = J g(x, u(x), p(x)) + J a(x) dx.

The last term is a constant. Let us therefore take a minimizing sequence
(Pwnen Of problem (#); and let us set u, = 9p,. By definition, p, € % for all n,
and:

(2.49) J g(x, u,(x), p,(x)) dx — inf (P) — J a(x) dx.

e
From (2.46) we deduce that:

(2.50) j @ o |p,| < constant,
Q

From Theorem 1.3, we can extract from (p,),.y 2 subsequence p, which
is weakly convergent to j in L.,. Since ¥ satisfies (2.44) we can extract a sub-
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sequence p,- such that p,. converges weakly to j in L}, and %p,- converges
to ¥p almost everywhere.
Applying Theorem 2.1:

(2.51) f g, (), 5(x) dx < lim j (%, uy(x), ) dx

n=ow

Adding |, a(x)dx to both sides:
@25 | 70w, dx < fim [ 7o) )
2
That is, as the sequence (p,) is minimizing:
(2.53) j f(x, u(x), p(x)) dx < inf(2).
2

But p e % is the weak limit of the p,- € %’s. From (2.53) we conclude there-
fore that i = p is the solution of (#).

2.5. Calculus of variations: relaxation

In the case where we no longer assume f(x,s,.) to be convex, problem
() in general no longer has a solution. We shall see that it is natural to associ-
ate with problem (&) the following problem, termed the relaxed problem,

@) Inf j £ **(x, 9 p(x); p(x)) dx

pe’llmL:

or again

Inf S **(x, u(x); p(x)) dx.
peé"'rfL,ﬂ Q
u=4% sl
From Theorem 2.2 we immediately deduce

Proposition 2.5. Let f be a normal integrand of Q(P* x R™), satisfying
(2.43) alx) + (&) < f(x,s,¢), withaeL'(Q).
Let 9 be a mapping which is a (@, B)-compactifier from L2 into L?, 1 < B < w,

and let U be a weakly closed set of L'. Then the relaxed problem (PR) has at
least one solution.
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Remark 2.1. Since f** < f, we always have min(#%) < inf(#). The sub-
sequent chapters will elaborate further on the comparison between (#) and
(2%); in particular they will treat the case when inf(2) = min(##%). For the
present, we shall consider some examples of situations in the calculus of
variations where Theorem 2.2 applies.

Remark 2.2. The relaxed problem (PR) arises in simple cases as problem
(2**), the bidual of (P) with respect to suitable perturbations,

3. EXAMPLES

We shall describe several examples of mappings 4, satisfying (2.44), and
arising naturally in variational problems. We shall use these examples in
the following chapter, where the relationship between problems (#) and (%)
will be stated more precisely.

Example 1

Let Q be a very regular open subset of R", and A the Laplace operator:
(3.1) Au = Au.

For p given in L2(Q), there exists a unique u in H §(Q) such that:
3.2) Au=p a.e.

and the mapping p > u is linear and continuous from L*(Q) into H ().
Since the injection of H}(L2) into L*(Q) is compact (¢f. Lions and Magenes,
[1]), the mapping p > u is linear and compact from L*(Q) into itself. If we call
this operator 4, it then satisfies property (2.44) trivially with @(s) = s2: it is
a (2,2)-compactifier.

Example 2

In a much more general way, % can be the Green operator of any regular
elliptic problem.

Let A be a differential operator of order 2m in a very regular open subset
2 < R" '

(3.3) Au = A(x, Du - ”% (— 1) D%a,,(x)D?u)
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with

(3.4) 2,5 € €<(Q)

and

(3.5) the operator A is uniformly elliptic in Q.

We denote by 27 u/9n? the j-th normal derivative of a function # on the bound-
ary 9%, as it is defined by the usual trace theorems (2?u/on’/ € H*~/~*(2Q)
ifue H" (Q)).

Under those assumptions, for p given in L?(€2), there exists a unique u in
H*™(Q) satisfying:

(3.6) Au=p ae. inQ
du ,

3.7 — =0 onad@for0<jsm-1
on’

and the mapping % :p > u is linear and continuous from L*(Q) into H*"(Q),
and thus linear and compact from L3(Q) into itself. It is a (2,2)-compactifier.

Example 3

A being defined as in the preceding example, denote by Q the cylinder
Q x (0,T) of R™1, with T a positive real number, and consider the parabolic
equation:

ou

(3.8) E) +Au=p a.e.in(Q

J
(3.9) %5:0 on 22 x (0,T), for 0 < j < m ~ 1
(3.10) u(x,0)=0 ae.in Q.

Forevery p € L*(Q) there is a unique solution u € H*™!(Q), and the mapping
% :p > uis linear and compact from L*(Q) into itself.

Example 4

Assume moreover that A is coercive on Hj(Q), and symmetric:

3e>0=<4p, ¢ 2 2 CH(""H@
Qg = gy
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Consider the hyperbolic equation:

@3.11) 2Lt du=p acinQ
(.12) 34‘ 0 ond@x(0,T),for0<j<m—1
(3.13) w60 =2 (x,0=0 ac.in®

For every p € L*(Q) there is a unique solution ¥ € H™!(Q), and the mapping
%:p > uis linear and compact from L2%(Q) into itself.

Example 5§

Let us now consider cases where % is non-linear,

If Q is bounded and if 1 < y < w, for p given in L' (2), where 1/y + 1)y’ =1,
we verify with the help of Theorem 3.1 and Remark 3.4 from Chapter II that
there exists a unique » in W37 (Q) which satisfies:

"R ou) _
ox,) = P

We term ¢ the non-linear mapping which results from this and which
sends LY () into L? (2). We now have the following result:

du

5 9
(3.14) Au = — ZK(K

i=1

Lemma 3.1. The mapping 4 defined by (3.14) is a (y',y)-compactifier.

Proof. We note that:

1y iy
dx = J pudx < (J |p}’ dx) (JIuP dx)
2

whence by Poincare’s inequality it follows that:

lullws.r < clplor

If now a sequence p,, converges to p weakly in L*' (Q), it is bounded in L' (Q)
and the sequence of u,, = 9p,,’s is bounded in W}'? (Q); by extracting a subse-
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quence we can assume that u,, converges to a limit ¥ weakly in W}7 (Q) and
hence strongly in L? (). Then:

- ou,\
s = § [ (2o

=jpmumdx ajpudx
o o

<Aum’um_u>_’0

which obviously implies that:

and we deduce, as in Lemma I1.3.3 that:

e § 2

i=1

ou | duY _
i ox; - P

Thus u,, = %p,, converges to u=%p strongly in L' (), which proves the
lemma. m

We can generalize this to the more general situation of Theorem I1.3.1.
Taking all the hypotheses of this theorem, together with (3.26), we assume
moreoverthat ¥ < LY () with compact injection and dense image, so that the
dual V' of ¥ contains L' (Q). In this case, for p given in L’ (Q) there exists a
unique u in V satisfying equation (3.2) of Chapter II, and the mapping 4 :f =
pr>ufrom L' (Q)into L” (Q) is a (y', y)-compactifier.

Remark 3.1. We could give a great many more examples of operators ¥
which are («, f)-compactifiers by considering evolution equations, as in Lions
[1], and inhomogeneous boundary-value problems as in Lions and Magenes
[1]: a large number of examples from this work would allow us to define in a
similar way the operators 4.

4. OPTIMAL CONTROL

We shall now apply Theorem 2.2 to the optimal control of systems governed
by ordinary differential equations. In this example we shall show how to pass
from a formulation of the “optimal control” type to a formulation of the
“calculus of variations” type.
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4.1. The optimal control problem

The evolution equation. We take a number 7" > 0, a metrizable compact set K
and a continuous mapping ¢ from [0,7] x R" x K into R" such that:
(denoting the unit-ball of R” by B)

(4.1) Sfor all p 2 0, there exists k 2 0 such that, forO0< t<Tandw e K:
) Vy’ yle {)B’ |¢(t’ ¥ (D) - (P(t, yla w)l < kly - y,|;
there exists a constant ¢ > 0 such that
(4.2) Y(t, y,w)e[0, T] x R" x K, [y ot y, ) < A1 + |y?).

Let us choose y, € R". The system is governed by the ordinary differential
equation:

(43) dy(t)/dt = (p(t’ y(t)9 w(t))
¥(0) = yo.
Lemma 4.1. For any measurable mapping :[0,T) > K, the differential
equation (4.3) has a unique solution y:[0,T] — R", and we have, for0<t< T:
(4.4) )] < (yof* +2¢T)"2e’T.

Proof. Since ¢ has been assumed to be continuous there exists ¢ > 0 suffi-
ciently small for the equation (4.3) to have a solution defined on [0,7]. By
virtue of the inequality (4.2), we now have, for0<t<~

cll}:i(tt)l2 _ zy(t).dé’_(tt) <201 + |y(e))

t
O < yol® +2¢7 + jZ/’]y(s)]2 ds.
0

By Gronwall’s inequality, for 0 < £ < t:

VO < (Jyol? + 2¢7) ¥ < (lyo]? + 2/T) ™.

Set p = (Jy|® + 2{T)e*T. It can be seen that the solution lies in the bounded
set pB, independently of . We know that in this case the solution can be ex-
tended to the whole of [0,T].

If there were two solutions of (4.3) on [0, T], they would both have values
in pB, and by applying the Lipschitz condition (4.1), we could show them to
coincide. m
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We term control any measurable mapping of [0, 7] into K. Once the control
has been chosen, the unique solution y of (4.3) is the trafectory of the system,
and y(?) is its state at the instant ¢.

Lemma 4.2, The set of trajectories of the system is relatively compact in
¢([0,T];R").

Proof. It is sufficient to note that the estimate (4.4) is independent of the
control w: along all the trajectories, |y(¢)| is bounded above by a constant p.
Let us now denote by p the maximum of the continuous function ¢ over the
compact set [0,7] x pB x K. By equation (4.3) we have:

dy()

(4.5) =

This means that all the trajectories are y-Lipschitzian. In particular, they are
equicontinuous and so form a relatively compact subset of ¢([0,T];R")
(Ascoli’s theorem). m

Constraints. We take a closed subset E of [0,T] x R* x K. For (¢,y) given in
[0,T] x R”, we denote by E, , the section:

(4.6) E,={weK|(tywekE}

We term a control @ and its corresponding trajectory y admissible if they
are linked by:

(4.7) vie [0, T], (t, ¥(t), (1)) € E.

Cost. We take a Carathéodory function f of [0,7T] x (R" x K) into {0,+o[.
We associate with an admissible control @ and its corresponding trajectory y
the cost function

(4.8) '[ St ¥(t), (1)) dt.

An admissible control @ will be called optimal if it minimizes (4.8); we shall
also call the corresponding trajectory y optimal.
Let us gather all the data:

T

to minimize J £t y(2), (1)) dt

0

(#) dy(t)/de = o(t, y(1), w(dt)) de
(z, ¥(2), ( NekE
0) =

=
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4.2. Compactness of the set of trajectories

For 0<¢< T and y e R", we denote by I, , the set of admissible speeds
at the instant ¢ at the point y:

L, ={oely o [(t,y, w)e E }
= o(t, 5, E, ).

This is 2 compact set in R", If moreover it is convex and non-empty it can be
shown that the set of admissible trajectories is compact and non-empty in
%({0,T];R™). We shall here be content with part of this result.

Proposition 4.1, If I', , is convex for all t € [0,T) and all y € R, the set of
admissible trajectories is compact in ([0, T};R").

Proof. In 4([0,T];R"), the set of trajectories is relatively compact (Lemma
4.2), and it suffices therefore to show that the set of admissible trajectories is
closed.

Hence, let (¥ )wn be @ sequence of admissible trajectories which converges
uniformly to a continuous function . For all k € N we have

(4.9) dy()/de = o1, y(1), w,(1))

(4.10) (t, yilt), (1)) € E

for 0<t<T, and y,(0)=y,. We must show that y also is an admissible
trajectory; we have immediately that $(0) = y,.

From the estimate (4.5), ||dy,/d¢| < ufor k € N. By extracting a subsequence
we can thus assume that dy,/dr converges to dy/d¢ in the topology o(L?,L?).
By Mazur’s lemma there exists a sequence of convex combinations
>N _« a,dy,/dt which converges to dy/d¢ in LZ(0,T) as k — . We can there-
fore extract a subsequence which converges simply to dy/dr on [0,7]. We
thus have for t € [0,T]:

(4.11) VkeN, %(t)e&{d{Tﬂt(’)lnzk}.

But we can summarize (4.9) and (4.10) by:

(4.12) SAUN

4 iy for 0<:t<T
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and on substituting into (4.1 1):

(4.13) Vke N, eco U iy fOr 0t < T,

Let us fix # € [0,7] and take ¢ > 0. Since ¢ is continuous and K is compact
there exists > O such that:

ly — 50| < n=lo(t,y, ®) — o(t, 5}t), w)| < e Vo e K.
Since y, converges uniformly to y, we can take k € N large enough for:
Vn =k, Lovaw © Ly + €B,

U y..(l) ry(r) + ¢B.
nzk

The right-hand side is the sum of two convex compact sets. It is thus a convex
compact set and:

4.14) co Uk Ly < Ly + €B.

Substituting this into (4.13):
dy(z)
dt
It only remains to let & tend to zero. Since I', 5, is closed, we obtain in the
limitfor0<¢< T

€ I",,;m + &B.

(415) -d—g(t—t) € r,jma
(4.16) DO e { pie, 70, @) 70, @) B}

There exists a Borel subset N < [0,T], with null measure, such that the
restriction of dp/dz to N is Borel. We can then define a Borel subset of (N x K
by:

(4.17) G = {(t, w)|(t ¥(t), w) e E and ¢(t, y(t), w) e dj(t)/dt }.
By Corollary 1.7 there exists a measurable selection @ of G. In suitably extend-

ing it over N, we obtain a measurable mapping @ from [0,7] into A4 which
satisfies

(4.18) dy(e)/de = o(t, ¥(t), @(1))
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(4.19) (& 70, Bt € E

and hence j is indeed an admissible trajectory. ®

4.3. Existence of optimal controls

Let us define a function g from [0,7] x R” x R" into R by:

(4.20) g(t,y,n) = min { f(t, y, )| (t, y, @) € Eand (1, y, @) = 1 }.
Clearly, g(t,y,n) eR, if n e I',,, and g(z,y,n) =+ otherwise.

Lemma 4.3. g is a positive normal integrand of [0,T] x (R" x R") into R.

Proof. Let us take & > 0. From the Scorza-Dragoni theorem, there exists a
compact subset C,  [0,7] such that meas([0,T] — C,) < ¢ and for which the
restriction of fto C, x R"x K is continuous. We now show that the restriction
of g to C, x R" x R" is Ls.c., which will prove that g is a normal integrand
(Theorem 1.2).

Let (¢,,¥» 1) be a sequence of C, x R" x R" which converges to (7, y,#).
Set:

(4.21) lim g(z,, Yo 1) = 7.

We wish to show that g(7,5,7) < ¢. If ¢ = +oo, this is trivial. If ¢ is finite, we
may assume that g(Z,, ., #1,) is finite for all zeN and converges to £. From (4.20),
there exists w, such that:

(422) (tn’ yn’ (O") € E and (p(t", yn’ (O") = ”n

(4.23) f (s Vo @) = gt Vs )

Since K is compact, we can extract from the sequence w,, n €N, a subsequence
, converging to a @ € K. We can then pass to the limit in (4.22) and (4.23):

(4.24) (t,y,0)e E and o(t,y,@) =17
(4.25) &5, @) =¢.

Whence necessarily, by (4.20):

(4.26) 9i.7,8) <t ®
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We can now state a sufficient condition for the existence of optimal controls:

Proposition 4.2. We assume the previous hypotheses. If for all (t,y) € [0, T} x
R™, the function g(t,y, .) is convex from R" into R, then there exists at least one
admissible optimal control.

Let us explain this condition. To say that g(¢,y, .) is convex means that its
epigraph is convex, i.e. that for 0 < ¢ < T and y € R", the set

(427){(n,a)eR" x R|IweE,, : ¢lt,y,w) = nanda > f(t, y, ®)}

isconvexin R" x R. This implies that its horizontal projection I', , is convex, i.e.
the set of admissible speeds is convex and compact.

Proof. Let w,, neN, be a minimizing sequence of admissible controls and
¥ 1 € N, their corresponding trajectories. By Lemma 4.2, there exists a con-
stant y such that for alln e N,

(4.28) ” %yt"-

< U

From Proposition 4.1, possibly by extracting a subsequence, we may assume
that there exists an admissible trajectory ¥ such that:

(4.29) y, = ¥ uniformly
(4.30) dy,/dt — dy/dt for o(L*®, L!).
It only remains to apply Theorem 2.1 to the integrand
git, yim) = g(t, ) + x.sln).

We obtain:

@ [ a0 Fore < i [ dnn g0

0

Taking (4.28) and (4.20) into account:

=]

3
!
8

N
o
~ 1~

(4.32) fﬂm@%@snfmwmgwwr

0

F(2, yalt), w,(2)) dt.
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The right-hand side is equal to inf(?). By the measurable selection theorem
(Cor. 1.7), it is easily shown that there exists a measurable mapping @:[0,7] —
Ksuchthatfor0<r<T:

o — — — dy
(c 70, B(0) € E and (s, 3(t), B(0) = 3 (0)
o _ . dy
S(e 3(8), o(t)) = gz, 5(1), 57 (1))
Thus @ is an admissible control and on substituting into (4.32) we obtain:

T
(4.33) j £(t, ¥(2), @(t)) dt < inf (2)

and @ is an admissible optimal control. =

ERRATUM

The authors are grateful to Michel Valadier for pointing out a mistake in the
proof of Lemma VIIL.2.1. The lines after formula (2.8) should be changed as
follows:

Since (e, &) > £(§) VE € B(0, M), there exists, for each &, some neighbor-
hood Vi x W of (¢, &) such that:

(¢',8") € Vg x Wy = ¢(e, &) > £()).
Let &1, .. ., &, be such that the Wy, cover the compact set B(0, M). We then have:
e e NV and |E'| < M = (', &) > £(E).

This replaces formula (2.12), at which point the proof resumes without further
changes.



CHAPTER IX

Relaxation of Non-convex variational Problems (I)

Orientation

We shall continue the study of non-convex problems in the calculus of
variations begun in the preceding chapter. The problems which we shall deal
with are of the type:

@) I | (s, (5, )
u=9¢ P, D€ LI(Q)"'.

We make no hypothesis concerning convexity, and as a result there is in
general no solution to these problems. We therefore consider the corresponding
relaxed problem:

Inf f F*4(x, u(x); p(x)) dx
u=%p, pelLl(Q"

(22)

This problem was introduced in the last chapter, where we showed that
Min (Z%) < Inf (#). We shall take this study much further, showing that
Min (#2) = Inf (&), and deducing that the solutions of problem (#%) are
the cluster points of the minimizing sequences of problem (). The solutions
of the relaxed problem thus appear as “‘generalized solutions” of the original
problem.

To establish these results, we proceed by stages. We start by studying the
case where u and p (the state and the control in terms of optimal control) occur
separately in the integrand, which is thus of the form g(x, u(x)) + f(x, p(x)).
The corresponding result is given in Section 3. We arrive at this result by
studying the mapping F: p - [ f(x, p(x))dx from L'(Q)™ into R: we show in
Section 1 that the I'-regularization F** of F coincides with its .s.c. regulariza-
tion F, and in Section 2 we calculate F**(p) = [q f **(x; p(x))dx. Finally, in
Section 4 we consider the general case by combining the above results with a
property of equi-integrability.

263
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1. IDENTITY OF THE I'-REGULARIZATION AND OF
THE L.S.C. REGULARIZATION

1.1. An approximation result

We fix the bounded open subset 2 < R", and a family (&,); <x<m Of real
positive numbers with sum 1. For i € N, we denote by X, the set of hypercubes
of Q, whose edges have length 2~! and are parallel to the axes of the co-
ordinates and whose vertices have multiples of 2~ as co-ordinates. In other
words, K e X, if:

K= 1] [m27"(m; + 1)277] = Q, wherethem,seN.

ji=1

We denote by B, the union of all K € ;. Clearly, B,<B,,, < Q and Q =
Ui~ B,. In particular, meas Q = lim,_,, meas B,.

For fixed i, we shall divide B, into m subsets Bf, 1 < k < m, corresponding
to the m numbers «,. To do this, we shall divide each hypercube K € X', into
m slices K*, perpendicular to the first axis of co-ordinates, the thickness of the
kth cut being o, - 2~%. In other words:

(1.1) K=T1[m2"(m+12]c@

1y re(m (e £ o]

x 1‘[ [m2", (m; + 12~

[
[]
—

(1.3) K=K

k=1
1.4) a, meas K = meas K*.

For fixed ie N and k € {1,...,m}, we denote by B¥ the union of the X*, for
Ke X',. Note that the hypercubes K*, for Ke A", and 1 <k < m are not
exactly disjoint. We shall therefore term N, the union of the faces of these
hypercubes, which is thus a set of null measure, and we set N = J,.n Ny,
which is hence of null measure. Then, for all fixed ie N, the Bf ﬂCN,
1 < k < m, are disjoint.
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Definition 1.1. Let f=(f1,...,/fm) €LY (QI". For all ie N, we define a
measurable mapping T, f of Q2 into R by:

Tf(x) = Alx) if xeB (N

1. m
(15) T.f(x) = fi(x) ifxeNu(Q—- L_J Bf)

Proposition 1.1. For all i € N, the mapping T, is linear and continuous from
[LYQ))" into L(Q). Moreover,

(1.6) hijf-— Z oz,‘ffk

Proof. From equations (1.5) it follows immediately that 7; is linear and
that:

1) LRSI

The linear mappings T, for i € N, are thus equi-continuous from (L!)" into
L, and the linear functionals f— [oT; f/ are thus equi-continuous over (L')™.
By Ascoli’s theorem, it is sufficient to prove the convergence (1.6) for all f
belonging to a dense subset of (L*)™.

We say that a function is J-tiered if it is almost everywhere equal to a
finite linear combination of characteristic functions of hypercubes of X', for
a sufficiently large value of i. Every uniformly continuous function over Q2 is a
uniform limit of J¢-tiered functions. But the continuous functions with
compact support are uniformly continuous over Q and dense in L!. The X -
tiered functions are thus dense in L! and the f with & -tiered components are
dense in (L')™.

Hence let f=(f1,...,fw) With X -tiered components. Let us choose i,
sufficiently large so that the f;, I < k < m are all constant on the hypercubes
of x;, foralli > i,:

(1.8) fo= Y filg, with K.e %,
£=1
We thus have
m r
(1.9) Tf=3 X filg: a
k=1/=1

(1.10) J’I}f = i 2': fi, meas K.
n k=1r7=1
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fnf=

From (1.4), let:

v % meas K,

—
\

n[\/]\
N L
M~

=1

fi, meas K,

-~

t 4
[}
I agRN _Mi
~
i
ot

n
-
5]
S

This latter equality, which is true for all i > #,, establishes a fortiori the
convergence (1.6) for the / with X "-tiered components, and thus for all the
fe(HY". =

Corollary 1.1. Let 1 < a < o and 1ja+ 1o’ = 1. The mapping T, is linear
and continuous from [L*(Q)I" into L*(R), and we have:

(1.11) Y wf =lim Tf for ofL% L)

k=1

Proof. We have

(112 /1< 5 14l

whence the continuity, the linearity being obvious. To obtain (1.11), we take
any he L*, and we apply Proposition 1.1 to hAf = (hf,..., ht,) € (LY)™. We
obtain:

(1.13) i1imj (hf) = 2 o, hfk.
Now, from (1.5), it follows that:
(1.14) T(hf) = WT.S).
Substituting (1.14) into (1.13), we obtain:
(1.15) lithT,.f =J hS o,
e o k=1

which means that T, ftends to Dx"., & fi for a(L%, L*). =

Proposition 1.1 will usually be most useful to us in the following form.
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Corollary 1.2. Let u,, . . ., u,, be m mappings from Q into some arbitrary set &
and let f be a numerical function on Q x & such that the functions x —f(x, u,(x))
belong to L\(Q) for all k. Let us define Tyu: Q— & by:

Tu(x) = u(x) if xeBf "N

(19 Tulx) = wlx) if xeNv (Q -9 B?)

Then, wheni — «:

(1.17) f f Tu(x) dx - 3 0, j £, ) dx.
o k=1 o
Proof. 1t is sufficient to apply Proposition 1.1 to the m functions:
(1.18) Lx) = f(x, u(x).
We obtain:
(1.19) jT,f " ff
o] k=1 o]

Comparing (1.5) and (1.16), we have:

(1.20) T.f(x) = f(x, Tu(x))
and substituting (1.20) into (1.19), we obtain (1.17). m

Remark 1.1. To conclude, let us note that all these results can be extended
unchanged to the case where £ is a bounded measurable subset of R™, and to
the case where Q is a compact manifold with boundary of dimension » and
of class C°. In the first case, it is sufficient to embed Q in a bounded open set
@ of R, and to extend by zero on Q' — Q the function given on Q. In the
second case, we proceed by local charts.

1.2. Application to the I'-regularization

First of all we recall some results from Chapter I. If V'is a separated l.c.s.,
if Fis a mapping of V into R, the I'-regularization of F, denoted by F**, will
be the largest convex L.s.c. function everywhere less than F, or again the upper
bound of all continuous affine functions everywhere less than F. We have:

(1.21) epi F** = coepi F.
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In the same way, we define the 1.s.c. regularization of F, denoted by F: this
is the largest L.s.c. function everywhere less than F. We have seen that:

(1.22) epi F =epi F
(1.23) Flu) = li_{r: F(v).

Clearly, F** < F. The technicalities of the preceding paragraph will allow
us to determine explicitly some (non-convex) functionals for which F** = F,
the space V being endowed with a weak topology.

We shall still denote by Q a bounded open subset of R?, and we are given
a positive normal integrand f of 2 x R™. We shall take for ¥ the space
L(Q)", 1 < « < », which we shall endow with the weak topology a(L% L*),
where 1/a + 1/’ = 1. We define a function F: ¥ - R, by:

(1.24) F(u) = J~ I (x, u(x)) dx.

Proposition 1.2. When fis a positive normal integrand and L*(S2)™ is endowed
with the topology a(L% L*), the I'-regularization of the function F defined by
(1.24) coincides with its L.s.c. regularization:

F** = F,

Proof. We already have F** < F. We now prove the converse inequality.
Let:

(5, @) e epi F**,
By (1.21)
(1.25) (v, @) e co (epi F).

For all £>0 and every neighbourhood ¥~ of the origin in the topology
o(L*, L*) there exists a family (i, ai); <k<m Of L7 X R and m numbers o, > 0
with 37, o, =1 such that:

(1.26) vk, (4, a,) e epi F
(1.27) u— Y aque¥y
k=1
(1.28) a—- Yy ogal<e
k=1
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By (1.26) we have F(u,) <+ for all k. The function x — f(x, u(x)) thus

belongs to L! for any k whatever. From the Corollaries 1.1 and 1.2, we can
take i sufficiently large that T, u satisfies:

(1.29) Tu— ) aquec¥
k=1

(1.30)

fo, Tu(x))dx — Z akffx u(x)) d

By taking (1.27) and (1.29) we then have:
(1.31) Tu — uely.
Then, on taking (1.28) and (1.30)

(1.32) a+22 Y wa, +¢ = F(Tu)
k=1

which means that:

(1.33) (Tu,a + 2e)e epi F.

Since ¢ and V are arbitrary, we deduce from (1.31) and (1.33) that
(2, 4) € epi F, and hence that

(1.34) epi F** c epi F,
and thus F< F**. m

Proposition 1.3. We assume that F satisfies the hypotheses of Proposition 1.2
and for all 1 € R we set

(1.35) S, ={uel®|F(u) <}

Let G € I'y(L%) be a function whose restriction to S, is continuous with respect
to o(L*, L*) for any A. We have:

(G + F)** = G + F** = (G + F).
Proof. First of all let us assume that G > 0. We have the inequality

(1.36) G+ F* < (G + F)** < (G + F).
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Indeed, G + F** is a l.s.c. convex function which is everywhere less than
(G+ F) and so less than its I'-regularization. To obtain the converse
inequality, we start with equation (1.23):

(1.37) (G + F)(u) = lim (G(v) + F(v)).

vu

Taking A > lim,_,,(G(v) + F(v)) = lim,_,, F(v), we clearly have:

(1.38) fim (G(o) + F(0)) = lim (G(v) + F(0)
(1.39) lim F(v) = li? F(v).

v—u

Whence on substitating into (1.37) and making use of the continuity of
G on S, and of Proposition 1.6:

(G + F)u) = G(u) + F**(u).

The inequalities (1.36) are thus equalities, and the proposition has been
proved for the case G > 0. If G is now any function in I'¢(L},), it has an affine
continuous minorant £. We thus have, on setting H=G -/ >0

(G + F)** = (f+ H + F)**
£+ (H + F)**
£+ H + F**
. G + F**_ ]

Corollary 1.3. With the hypotheses of Proposition 1.3, we have:
(1.40) inf (G(u) + F(u)) = inf (G(u) + F**(u)).

uel® uel®

It suffices to note that (G + F) and its I'-regularization have the same
lower bound.

Remark 1.2. These results, which depend essentially on Proposition 1.1,
remain valid under the more general conditions indicated in Remark 1.1.

2. CALCULATION OF THE I'-REGULARIZATION

Corollary 1.3 will be of use to us in ‘“making convex” those problems in the
calculus of variations which are stated in the form inf (G + F). To turn this
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to the best account, we have to make F** and hence F*, explicit. Let us
resume our notation. Q is a bounded open subset of R”, and f"a non-negative
normal integrand of 2 x R™. We put the space L%(Q)™ 1 € & < w, in duality
with L*(Q), 1/a+ 1/o’ =1, and we define a non-negative function F on
L, by:

(2.1) F(u) = j S{x, u(x)) dx.

Whence its polar F* on L% is,

(2.2) F*(u*) sup [( u,u*y — f S(x, u(x)) dx:l

sup [ L[u(x)u*(x) — f(xu)] dx].

ueld,

2.1. Calculation of the polar F*

Our principal tool will be the measurable selection theorem (Theorem
VIIIL.1.2).

Proposition 2.1. Let F be the functional (2.1) defined on L*(Q)", 1 € 4 < 0,
and let us assume that there exists uy € L, such that F(uo) < +o. Then for all
u* € L¥(Q)", we have:

(2.3) F*u*) = j S*(x; u*(x)) dx.
Proof. We fix u* € L%, and we inthoduce the functions:

(2.4) #(x) = sup { du*(x) - f(x. &)}

(2.5) @,(x) = max { &u¥(x) = f(x.8)}.

Clearly, the sequence &, is increasing, and &,(x) converges to ®(x) for all
x € Q. Furthermore, for all n 2 {juell,,, we have:

(2.6) B,(x) = uo(x)u*(x) — f(x, uo(x))
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the function appearing in the right-hand side being integrable over Q. From
Theorem VIIL1.2, for all neN, there exists a measurable mapping
ii,: Q — R™, such that |G|, <7 and:

(2.7) &, (x) = u,(x)u*(x) — f(x, #,(x)).

In particular, &, is measurable for all n, hence & is measurable and

(2.8) J P(x)dx = sep[ @ (x)dx

f [, () — 7o ()] dx|.

(2.9) J ®(x) dx = sup
0 n
Since @, € L2 < L, for all n, we obtain:

(2.10) j $(x)dx < sup J [u(x)u*(x) — f(x, u(x))] dx

uel%,
or, by (2.2):
(2.11) J &(x) dx < F*(u*).
o
Conversely, for all u € L},, we obtain from (2.4) the inequalities:
(2.12) u(x)u*(x) — f(x, u(x)) < P(x)
(2.13) J [u(x)u*(x) — f(x, u(x))] dx < f P(x) dx.
o Q

Taking the upper bound of the left-hand side in u € L},, we obtain
(2.19) F*(u*) j P(x) dx.
e
Comparing (2.11) and (2.14), we obtain:
(2.15) F*(u*) = J &(x) dx.
e

But, returning to (2.4), we ascertain that &(x) is none other than f *(x; #*(x)).
Whence the result. =
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Remark 2.1. Proposition 2.1 can easily be extended to the case where the
functional F'is defined over

V = L*Q) x .. x I'(Q), wherel < «; < + ,
this space being in duality with
V* = [%(Q) x .. x L*(Q), where 1/a; + 1/, = L.
Equation (2.3) is valid for all u* € V'*,
Using a translation, we can also replace the hypothesis /> 0 by:
1< <o, flx&>ax)- b__flléil“':

where a € L'(Q) and b > 0 (if some «, are +o, see below).

2.2. Calculation of the I'-regularization F**
It is sufficient to repeat the process.

Proposition 2.2, Let us assume that there exist vy € L7, such that F(u,) < .
and u¥ € LY, such that

Jf*(x;ug(x)) dx < o0.
Then we have:
(2.16) F**(u) = J- S*¥(x; u(x)) dx.

Proof. Let us consider the integrand :
(2.17) g(x, &) = f(x, & = ug(x)) — f(x, up(x)).

This is a normal integrand. Taking the polars and then the bipolars of
both sides:

(2.18) g¥(x; ¢%) = f¥(x;8%) + up(x)E* + f(x, uo(x))
(2.19) g**(x; &) = [*¥(x: & — ug(x)) — f(x, uo(x)).

These are normal integrands, by Propositions VIII.1.2 and VIIL1.3,
Moreover, we have g(x, 0) = 0, and g* is thus non-negative.
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We now set:
(2.20) G(u) = Flu — uy) — F(u,).
Taking the polars of both sides (¢f. 1(4.8) and 1(4.9)):
(2.21) G*(u*) = F*(u*) + {ug, u* > + F(ug)
(2.22) G**(u) = F**(u — uy) ~ F(u,).

Substituting for F*(u*) its value, given by Proposition 2.1:
(223) G*(u) = j L2363 4%(x) + uglW(3) + f(x, )] dx.
e
Or again, by (2.18):
(2.24) G*(u*) = J g*(x; u*(x)) dx.
e
By applying Proposition 2.1 to g*:
(2.25) G**(u) = J g**(x ; u(x)) dx.
Q

Or, by replacing both sides by their value, given respectively by (2.22)
and (2.19):
(2.26)

F¥*(u = ug) — Fluo) = j % 0x3 (x) — uglo)) — 1(x: uglo))] dx

(2.27) F*¥*(u — u,) = jf**(x;u(x) — up(x)) dx.

o
Whence the equation (2.16) follows immediately. m

Here is a simple case where there exists u§ € L7, such that F*(uf) < «. Let
us assume that there exists a function @: [0, o[ — R, which is convex and
increasing, such that:

(228) tim 20— 4 o

t— 0
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(2.29) P(¢]) < f(x, &)

Making use of (2.28), it is easy to see that the polar (® o |- |)* of the function
¢ — @(}¢}) is finite everywhere on (R™)*. For all £% € (R™)*, we deduce from
(2.29) that:

(2.30) IHx; &%) < o*(E3ly) <

and it is sufficient to take for u¥ the constant function equal to &¥.
Here is another case where the same conclusion holds:

Proposition 2.3. Assume that 1 < a < « and that there exists u, € Ly, such
that F(u,) < «. We then have:

(2.31) F**(u) = j f**(x; u(x)) dx.

Proof. We define a function F on L%, by:

(2.32) F(u) = j £**(x; u(x)) dx.

The integrand f/** is normal and non-negative (Prop. VIIL.1.3) and the
fanction F is thus strongly 1.s.c. on L%, (Prop. VIIL.1.4). Moreover, since it is
convex, it is also weakly 1.s.c. on L%, i.e. in the topology o(L}, L;,).® Thus
we have:

(2.33) F = (F*)*.
Since 0 < f** < f:

(2.34) 0 < Fug) < Flug).

We can now apply Proposition 2.1 to f**.

(2.35) F¥(u*) = j f***(x, u(x)) dx

= J F*(x; u(x))dx = F*(u*).

Hence we have F* = F* whence, by applying (2.33), F= F**, which is
the desired result. m

M 1t is here that we need the fact that a # 4.
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Corollary 2.1, The following statements are equivalent.

(a) FislLs.c.in the a(L? L*)-topology,
(b) f(x, .) is convex for almost every x € Q.

Proof. In Proposition 2.3 we have just proved that (b) = (a). Conversely,
assuming (a), we have by Proposition 1.2:

(2.36) Fu)=F(u)=F**u) Vu.
Or again, using Propositions 2.2 or 2.3:

2.37) j S(x, u(x))dx = J S **(x; u(x))dx Vu
o o

which proves, of course, that f(x, .) =f**(x; .) for almost every x€ Q. m

2.3. Recapitulation

We shall gather as a single theorem those results which we shall be using in
the following section, namely Propositions 1.3 and 2.2. We recall that, for all
A € R, we have written:

(2.38) S, = [u eLy

j S(x, u(x))dx < A:]

and that @: [0, o[ — R, is an increasing convex function such that

lim 2 = 4 o0.
t»o [

Theorem 2.4. Let f be a non-negative normal integrand. We assume that
there exists uy € Ly, such that [q f(x, #y(x))dx < +w, and if o=+, that
D(|¢)) <f(x, &). Let G be a function in [(L.) whose restriction to S, is
a(L%, L* )-continuous for every A. Then we have

(2.39)

inf [G(u) + j S (x, u(x)) dx] = inf [G(u) + j S *¥(x; u(x)) dx]

ueL$, ueld,

(2.40)  G(u) + L F**(x; u(x)) dx = lim [G(u) + Lf(x, u(x)) dx:l.

vu
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Remark 2.2. This theorem can obviously be extended to the case considered
in Remark 1.1.

3. APPLICATIONS TO THE CALCULUS OF VARIATIONS

3.1. Formulation of the problem

We shall now formulate a typical problem, which covers many of the
situations arising in the calculus of variations. As always, we consider an
open bounded subset Q < R”, and we take 1 < o < . Let ¢ be a continuous
mapping from I, to L4, 1 < B < «, which is /inear and an («, f)-compactifier:

3.1 the restriction of ¢ to the balls of L7, is continuous for the
topologies (L, L*) and {|.};.

From Proposition VIIL2.3, if 1 < « < <, it is sufficient for this that ¥ be
compact. Let g be a Carathéodory function on © x R’, fa normal integrand
on Q x R™, satisfying respectively:

3.2) for almost all x € Q, g(x, .) is convex.

(3.3) ' If 1 < B < o, there exists @, € L'(Q) and b, > 0 such that
e 0 < g(x,5) < a,(x) + b, s

(3.3) ' If B = <, for all k£ > O there exists a; € L}(£2) such that
e 0 < g(x,s) <ayx) for [s| <k

(3.4) l If 1 < o < o, there exists a, € L'(Q) and b, > 0 such that
S

f(x:8) 2 ay(x) + b, [[*.

If & = o, there exists a, € L'(Q) and a ball B with centre 0
(3.4), and radius r in R™ such that:

f(x,8) = ay(x) + d(¢| B).
(3.5) There exists p, € L (2)™ such that [ f(x, po(x)) < .

We consider the optimization problem:

(@) inf f [olx, u(x)) + f(x, p(x))] dx.

u,
peli,, u=9¥p
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3.2. The relaxation theorem
As in Chapter VIII, the following will be called the relaxed problem:

(PR) J[gx, ) + f**(x;p(x))] dx.

We now state the fundamental result relating the original problem (#) to
its relaxed problem (2%):

Theorem 3.1. Under the hypotheses (3.1) to (3.5), the problem (PR) has a
solution and

(3.6) min (Z2) = inf (2).

If (4, p), i=9p, is a solution of (PR), there exists a minimizing sequence
(Uns Pr)s U =9py, ne N, of (P) such that u, — @ in L8 and that p, — p in the
topology a(L?, L*'). If (1, p,), ty = 9p,, n € N is a minimizing sequence of (#),
there exists a solution (&, p), it = 9p of (PR) and a subsequence (u, )y en Which
converges to i in L}, (py,)een which converges to p for o(L%, L*).

For the proof of this theorem, we appeal to the following lemma.

Lemma 3.2. If ¢g: @ x R > R is a Carathéodory function which satisfies
(3.3), the mapping

(3.7 u - J g(x, u(x)) dx

Jfrom L& into R is continuous.

Proof. We already know that this mapping is l.s.c. from applying Proposi-
tion VIII.1.4. It is therefore sufficient to show that it is u.s.c. We therefore
take any sequence u, which converges to # in L?; if f= o, we take
k = sup |ju,l, in (3.3),. We define a positive normal integrand % by:

(B < ) h(x,s) = a,(x) + b, |s|’ — g(x, 3),
(B = ) h(x, s) = ay(x) — g(x, s).

We can apply Proposition VIII.1.4 to A, obtaining:

n—=w

lim j h(x, u,(x)) dx = J h(x, u(x)) dx
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Furthermore, on substituting its value into 4 and taking into account the
fact that o |u,(x)|?dx — Jo [u(x)]?dx (for B < =):

n=x

lim f g(x, u,(x)) dx < j glx, d(x)) dx. =

Proof of Theorem 3.1. From Theorem VIII.2.2, the problem (2#) has a
solution. To prove (3.6) we first note that by the preceding lemma the mapping
u —~ fq g(x, u(x))dx is continuous on L. We define a function G on L%, by:

(1 <2< o) G@)=jgu,@mnnu
(3.8) ?

= - . 0 iffple<r
(o = ) Gp) Lg(x, Fp(x) dx + {+oo otherwise.

From (3.2), it is convex. From (3.1), its restriction to the balls of L, is
a(L?, L*')-continuous. If « = «, dom G is contained in a ball, and thus G is
a(L>, LY-continuous and a fortiori G € Fo(LY). If 1 € o < =, the restriction of
G to the balls of L2 is ¢(L* L*)-continuous and hence continuous in the
norm topology. Thus G is convex and continuous on the whole of L;,, and so
G e I'(L}).

Replacing f(x, &) by f(x, &) — ay(x) if necessary, we can assume that
a,(x) = 0. We define a non-negative function F on L}, by:

(3.9) nm=jfmmnmx

For all 2eR, S, ={peL;,|F(p) <4} is a bounded set, by virtue of (3.4)
and the fact that g is positive. We have already seen that the restriction of G
to the S}’s is ¢(L*, L*)-continuous. Finally, the existence of a p¥ € L, such
that [ /*(x; p¥(x))dx < +o results from the inequality (3.4). The hypotheses
of Theorem 2.4 thus apply, and we conclude that min (%) = inf ().

Let i1 = 9%p be a solution of (?#). By Theorem 2.4:

(3.10) G{p) + F**(p) = lim { G(p) + F(p) }-

p—p
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Taking A sufficiently large, we can restrict ourselves to taking the weak
lower limit when p varies in §,. Now S, is bounded in Z:, and hence is
o(L*, L*)-metrizable. There thus exists a sequence (p,),n Of S,, converging
to p for a(L%, L*'), such that:

(3.11) G(p) + F**(p) = Lim { G(p,) + F(p,) }-

pn™p

As the left-hand side is equal to min (#4) and hence to inf (#), (3.11)
means that the sequence (p,), ¢y is minimizing. Finally, from (3.1), 9p, tends
to %p in the Lé-norm.

Conversely, let u, =%p,, ne N be a minimizing sequence of (#). The
sequence (p,)aen is bounded in L}, by virtue of the inequality (3.4). We can thus
extract a subsequence p,, converging to p in o(L% L*) and, from (3.1), the
sequence ¥p, will converge to 4p in the norm. Making use of the fact that
F**is Ls.c. or applying Theorem VIII.2.1:

G(p) + F**(p) < lim { G(p,) + F(py) }.

n -

But the right-hand side is equal to inf (), since the sequence (p,’) is
minimizing, and hence equal to min (P%). Thus # = % is a solution of (?%).

3.3. A new formulation of the relaxed problem

The relaxed problem (22) can be rewritten in an equivalent form. Hence-
forth we shall denote by E,, for m € N, the following simplex of R™, and by
A its elements:

(3.12) E, = [Z e R™

Y i, =landi >0 Vi].

i=1
Lemma 3.3. For all x € Q and all ¢ e R™, we have:

m+ 1

(1) 7o) = min| % 4052

m+1 -~
2 Al =¢ ded,, 1]-
Proof. From Carathéodory’s Theorem,? we have:

m+ 2

(3.14) coepi f(x,.) = [ Y Allna)|ieE, ., (¢ a)eepi f(x, )]

i=1

M In a vector space of dimension n, any point on the convex envelope of a set B can be
written as a convex combination of at most 7 + 1 points of B; see for example Rockafellar [4].
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We shall now show that this is a closed set. Let (£, a) € R™*! be the limit
of a sequence (&%, a") € coepif(x,.), ne N. We put each (£, a”) into the
form (3.14):

(3.15) (& a") = mg AE a7)-

By extracting subsequences, we may assume that, as n — oo

(3.16) A" > AeE,,
(3.17) g ¢, foriel
(3.18) |€f] » o for ieJ

with TU J={1,..., m + 2}. Furthermore, by hypothesis:

m+ 2
(3.19) VAR
i=t1
m+ 2 m+2
(3.20) Y A< Y AHaoa
i=1 i=1

Let us now bring in the inequalities (3.4). If & = o, it follows from (3.18)
that J= @.If 1 < a < o, we deduce from (3.20) that A7|£}|* is bounded above
by a constant when # — o, and thus that:

(3.21) Vield, ArlEr| - o.
Hence, by substituting into (3.19), we have

(3.22) yYoarEr o &

iel
(3.23) Z;l;‘ -1

Or, taking (3.16) and (3.17) into account
(3.24) Y ié = ¢ and ZI 1 =1

iel
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To obtain non-negative terms, we subtract a,(x) from both sides of (3.20).
We then have:

m+ 2

(25 a-ayx) > liml ¥ A6 E) - az(x»}

(3.26) a — a,(x) =

lim {5 41(/(5, &) — @) }.

" iel

Taking (3.23) into account,

(3.27) a - a0 > limd ¥ 41, «::)}— ay(x).
n=r o | el
Hence again:
(3.28) a> Y4 lim f(x &)
iel A= o

Or finally, f(x, .) being Ls.c., and by virtue of (3.16),
(3.29) azy 2f(x&).
iel

Letus set b=a— 3., 4, f(x, ). We take i, € I such that 4, # 0, which is
possible by (3.23).

a; = f(x, &) if iel, i+#i,
a, = f(x, &) + b/,

We then have (¢, 3) eepif(x,.) foralliel, é=3,, 4, &, ae 3,4 4 4,
which means that (£, @) e co (epif(x, .)). We have thus proved that this is a

closed set.

The lemma can easily be deduced from this. Indeed, we know by equation
(1.21) that:

(3.30) epi f**(x;.) = co epi f(x,.)
= coepi f(x,.)

In particular, for all £ e R™,

(3:31) (& f**(x; &) ecoepi f(x, &)
(3.32) Ve > 0, (& f*¥(x, &) — e)¢coepi f(x, ).
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Whence immediately, making use of Carathéodory’s Theorem again, we
have:

m+ 2

(333)  S*H(x;¢) = min[z hf (%, €)

i=1

m+ 2 -
S kg = ¢ ;LeEm”].

i=1

In particular, we can find le E..,and &, ... &, such that:

m+2 m+ 2
(3.34) [**x38) = Y A f(x€E)  with Z Al =
i=1 =

If, in the equation (3.34), all the A; were non-null, and all the (&, f(x, &))
affinely independent in R™*!, then (&, f**(x; £)) would be an internal point
of co epi f(x, .),'?” thus contradicting (3.32). We may therefore assume that
(&, /**(x, £))is aconvex combination of at most (m + 1) points of co epi f(x, .).
Taking A € E,, ., in (3.33) we obtain equation (3.13). =

We shall now allow x and ¢ to vary in (3.13).

Proposition 3.1. For any measurable mapping p of Q in R™, there exists a
measurable mapping ¢ of Q into E,,., and (m + 1) measurable mappings q; of
Q in R™, such that for almost all x € Q-

(3.35) Fests ) =T A0S )
(3.36) 'S g () = plx).

i=1

Proof. The integrands fand f ** are normal and the mapping p is measur-
able. By modifying them on a set N < @ of null measure, we may therefore
assume fand f ** to be Borel on 2 x R™ and p to be Borel on Q.

Let us consider in  x E,,,, x (R™)"** the subset:

fm+1 m+1

Z ’:n'é; p(x), Z A (x &)

i=1 i=1

C = [(X, ;, é,‘q ey ém+ 1)

= f**(x, p(x))]
It is clearly Borel and its section C, is closed for all x € Q. The indicator
function of C is thus a normal integrand. By a homeomorphism of R"

M Indeed, this point (£, f**(x, £)) will then be interior to the (m + 2)-simplex generated
by the (£, f**(x, &)), 1 Si<m+2.
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on the interior of its unit ball B,, we can arrive at the case where
C< QxE,,,; x(B,)"*. We can then apply Corollary VIIL.1.1: there exists
a measurable mapping u from Q into E,,; x (R™)y™** such that u(x) € C, for
all x in Q, i.e., (x, #(x)) € C for all x € Q. The various components of i give
usZandtheg,l <i<m+1. m

We are thus led to reformulate the relaxed problem (#2")

Inf j Lo, u(x) + %, (01 x ()]

(:Q >R, i.Q—»R”‘measurable,l ig<m -1
(3.37) mil

i=1
m+1
p= ) fg;elLy and u = %p.

i=1

((x) =1land ¢ (x) 20 ae., L <i<m+1

Proposition 3.2. The problems (P&) and (PR’) have the same value and
min (PR) = min (PR’). Furthermore, the mapping:

_ m+1

(3:38) (7 s bws 12 Gs o Gmed) > B = X il
i=1

sends the set of solutions of the problem (PR’ onto the set of solutions of the
problem (PR).

Proof. If 7: Q — E,., and ¢;: Q—>R", 1<ig<m+1 are measurabie
mappings and if p = 27! /,9,, we deduce from Lemma 3.3 that, for all xe Q

(339 S5 a0 > S+ )

We thus have inf(?2') > min (2%). But, if p is a solution of (#2), from
Proposition 3.1, there exist measurable mappings 7: Q - E,,; and
g,: 2 > R™ 1 <i<m+ 1, such that, for almost all x € Q, we have;

(3.40) z Ax) (% Gx) = [**(x: ()

3:41) S 7))
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Setting 1 = ¥p, we thus have:

(3.42) min (2 R) = J [y(x, w(x)) + f**(x; p(x))] dx
- j [ot ) + 5. 700 ] .
> inf (2.

Comparing (3 39) and (3.42), we deduce that inf (?2’) = min (?%) and
that (£1, ..., Lons G1» -+, Gmer) is thus a solution of (2#’). Therefore
min (%) = min (P#’), and the mapping (3.38) is surjective. Conversely, if
(1, - Loy G5 - - -» Gmey) 18 @ sOlution of (PR), if =73 £,4; and 4 =9p, we
deduce from (3.39) that

min (P ) = j [g(x, a0 + % A f(x q.»(x))} dx

> f o0, ) + £**(x, B(x)] dx.

Since min (P#’) = min (#%), p is a solution of (##), and (3.38) thus
maps the solutions of (#4’) into solutions of (?#). n

Problem (##’) has an interesting probabilistic interpretation. For all
x e @, instead of choosing a deterministic control p(x) € R™, we simply
choose a set of m+ 1 possible controls g,(x), and a probability distribution
/(x) among them. We can think of it as a unique control switching very
quickly, and assuming the value ¢,(x) with frequency 7;(x) around x. The
system, by linearity, will react as to the control >"*!/,(x)q,(x), and will
assume the corresponding state. It only remains to take the mathematical
expectation of the criterion, i.e., to integrate it.

4. RELAXATION. THE GENERAL CASE

We shall now deal with problems in the calculus of variations where the
criterion cannot be decomposed into a part which is a convex function of
u(x) and a part which depends only on p(x), as in the previous section. The
proof will rely on equi-integrability properties and a direct application of
Proposition 1.2.
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4.1. Formulation of the problem

Henceforth, @: [0, +o[ -+ R, will be a non-negative, increasing, convex
and Ls.c. function such that

&(1)

and g will be a normal integrand of 2 x R™ which satisfies:
(4.2) (&) < glx, &).

B will be a given exponent with 1 < 8 < o, and f will be a normal integrand
of Q x (R! x R™) such that

If 1 < f < o, there exist a; and @, e L'(Q), b 2 0and c > |
(4.3), such that:

g(x, &) + ay(x) < f(x,5, &) < cg(x, &) + b|s|f + a,(x).

If B = «, there exists @, € L'(€2) and, for all k > 0, there exist
(4.3), ¢ = 1 and g, € L*(Q) such that

g(x, &) + ay(x) < flx, s, &) < eg(x, &) + ay(x) for |s| < k.

(4.4) For almost all x € Q, the restriction of
f(x,.,.)to R! x dom g(x, .) is continuous.

We note that if f/ does not depend on s and satisfies f(x, &) = ®(|€]),
hypotheses (4.2) and (4.3) are satisfied with g(x, &) =f{(x, &), b=a, =a,=0.
In the general case, f(x, s, ) is finite if and only if g(x, &) is finite. If we there-
fore set C={(x, &)|g(x, &) < +}, hypothesis (4.4) means that g is the sum
of a Carathéodory function and the indicator function of the subset
C x R'< @ x R! x R™. Note also that, in contradiction to Section 3, we make
no assumption concerning the convexity of f(x, ., £) in s.

Finally, we take a mapping % from L% into L%, which is a (®, f)-compactifier:

4.5) if (p,)nen converges weakly to fin L!, and if sup, . j¢ O | Py| < 0,
then (9p,),.n converges to %p in L8,

Hypothesis (4.5) is satisfied if % is a continuous linear mapping from L.,
into L (1 < B< ), or if % is a compact continuous linear mapping from
L, (1 < a < ) into L8 (1 < B < «) (Propositions VIII.2.3 and VIII.2.4).
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We consider the optimization problem:

(#) Inf J Qf (x, u(x), p(x)) dx

pel® u= %p.

4.2. The relaxation theorem

We have associated with the problem (2) the relaxed problem (22):

(@) Iu[,lpf Lf**(x, u(x); p(x)) dx

u=9%p, pelLl

From the results of Chapter VIII, f** is a normal integrand (Prop. 2.1)
and the problem (#2#) has a solution (Prop. 2.5). The following theorem is
the analogue of Theorem 3.1:

Theorem 4.1. Under the hypotheses (4.1) to (4.5), the problem (PR) has a
solution and

(4.6) Min (2%) = Inf (2).

If (@, p), u=%p, is a solution of (PR), there is a minimizing sequence
(ty, Pn)s Uy = BD,, Of (P) such that u, — ii in L% and that p, — p in the o(L* L*)
topology. If (u,, p.), u,= %p, is a minimizing sequence of (#), there exists a
solution (4, p), 4 = 4p of (PR) and a subsequence (u,, p,) such that w, - it in
L% and that p,. — p in the o(L*, L®) topology.

Theorem 4.1 can be extended to the case where 2 is no longer an open
subset of R" as will be pointed out in Remark 4.3. We shall prove Theorem 4.1
in Section 4.4, after giving in Section 4.3 some preliminary results.

Remark 4.1. When the integrand f(x, s, ) is of the form g(x, s) + f(x, &)
where g(x,.) is convex for all xe @, we find that, as in Section 3,
Inf (#) = Min (##). But Theorem 4.1 does not repeat all the results of
Section 3, since we had established there a considerably more definite result:

G + F** = (G + F).
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Remark 4.2. From Theorem 4.1, the two following statements are
equivalent to each other:

(i) the sequence (4, p,), U, = ¥p,, is minimizing for (),

(ii) the sequence .(¥,, p,), U, = 9p,, is minimizing for (#%), and, when
n-—>o:

j [F(x, uy(x), 2.(x)) — £**(x, u,(x); p,(x))] dx = 0.

We note that the integrand f— f ** is non-negative, and therefore, under
conditions (i) or (ii), there exists a subsequence (,., p,-) of the original sequence
such that, when n’ — w:

L6 ufx), p(x)) — f**(x, u,(x); px)) = O a.e.

Remark 4.3. We obtain analogous results if we consider the operators ¥
of L‘,’;,(ﬁ, du) into L‘,’(f)), where @ is a set provided with a finite positive
measure dy (@ = Q, du = dx, the Lesbesgue measure in the foregoing).

This allows us in particular to study problems with boundary controls, to be
encountered in Section 5. ®

4.3. Some preliminary lemmas

Lemma 4.1. Let (, p), i = 9p, a solution of (PR). There exists a measurable
mapping £: Q — E,., and (m+ 1) measurable mappings q,: Q — R™ such
that:

(47) PR ELERY R

69 Y A0 G = SR ae

This lemma can be proved in the same way as Proposition 3.4, by making
use of the inequalities (4.3). The same conclusion holds whenever (@, p) is a
point such that # = 45 and such that the right-hand side in (4.8) is finite almost
everywhere.

Lemma 4.2. There exists a function V: [0, +o[ — R, which is increasing
and convex such that lim,_(Y(t)/t) = +c and that:

m+1

(4.9) Zf X o g(x, g{x)) dx < + oo,
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Progf. From (4.3):

610) [ "F Aot 3l dx < | 75, At 7). 300 d

Or by substituting (4.8) into it:
(4.11)

f " Axo(x, () dx < j S0, ) ) dx — j a;(x) dx

i=1

(4.12) "'_f 2(x)g(x, §(x)) dx < + oo.
For ne€ N, we set:

(4.13) Ci={xe|n<glxqx) <n+1}

414) o =S [ fouts ate e

From (4.12), we have 3, . %, < +. We know‘" that in that case we can
find an increasing sequence k, of integers tending to +<« and such that
Suen kn oty < +0. We define ¢ : [0, +[ — R, by induction:

(4.15)  Y(t) =k (t —n) + Y(n) if n <t <n+ 1and Y(0) =

We check that:

(4.16) }imﬂi) = limk, = +
@17) | TS A oot 30 dx = zN py| ié(x)wog(x, i) dx

m+1

HGNI 1 Jet
"

=Y ko, < +c0. &
neN

1) See the appendix at the end of this chapter.
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Lemma 4.3. There exists a sequence (p,),.n of L,,, converging to p in the
o(L!, L™) topology, and such that:

(4.18) j £ (e, Tx), poli) dx f £+, a(x); 3(x)) dx

(4.19) J o glx, p,(x J mil ()W o g(x, g{x)) dx.

Proof. ForallkeNandallI<{l,..., m+ 1}, we introduce:
(420) Q. ;= {xeQ|Vog(x,q(x) < k Viel, f(x)=0 Vi¢l).

From (4.9), Q is the countable union of measurable sets @, ;. Let (2;);cn
be a denumeration of the Q, ;. If we write Q;= Q; — |, ; @, then the @],
jeN, form a partition of Q into measurable sets. Clearly it is sufficient to
prove Lemma 4.4 for the Q;; to obtain a p which is an ¢-approximation of
P on £, we construct a famlly p; of €2-1"1-approximations on Q;, j € N, and
we piece them together by defining p(x) = p,(x) on Q;.

We can thus arrive at the case where 2 is measurable and where the
functions x — ¥ o g(x, 4,(x)) belong to L=(2). From (4.2), the 4; belong to
L>(©) and from (4.3) the functions x — f{(x, @(x), §,(x)) belong to L}(R). But
we know that the tiered functions’ are dense in L*(Q). For all ¢> 0 and
every family A, € L*(Q), 1 £ k < N, there thus exists a measurable mapping
7 from Q into E,,,, which only takes a finite number of values, such that:

'"il (60) — ANa(h) dx| <e2. 1<k <N
(422 j 5 - Ao ) 2 x| < o2
(423 f”f(a(x)— HW o 9(x, 309) dx | < o72.

We have a partition of Q into measurable disjoint subsets on which £ is
constant. On each of them, we can apply Proposition 1.1, By piecing them

) J e. those measurable functions which only take a finite number of values.
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together we obtain a partition of Q into (m + 1) measurable subsets B; such
that:

(4.24)

629 | [ (5 0 =75, 1a) 1t 79 e x| < o2

(4.26) J‘ (mil f(x) — m\zl 1 .~>‘l’ o g(x, g{x))dx | < ¢/2.
We define p, € L2 by:

(4.27) p.(x) = g{x) on B,

By adding (4.21) to (4.24), (4.22) to (4.25) and (4.23) to (4.26), we obtain:

620 || (9 =L it x| < 1<k,
(4.29) f £(x,@(x), p() dx — f S A ). ) dx | <
(4.30) '[ ¥ o g(x, px))dx — mi: AW o g(x, Gx))dx | < e

Let us choose in L*(Q) a sequence (4,),.n Which is dense in the (L, L)
topology. To obtain the required sequence p,, it is sufficient to take ¢ = 1/n in
equations (4.28), (4.29) and (4.30), and the first » terms of the sequence
(M )ken in (4.28). We note a fact which will be useful to us later; namely that
in any point x € Q the sequence p,(x) only takes a finite number of values (the
g(x), 1 <i<m+l). m

4.4. Proof of the relaxation theorem

As before, let 7= %p be a solution of (%), and (p,),.n a sequence con-
verging to g for a(L?, L*) and such that:

(431) j S (%, #(x), po(x) dx f £ (x, i(x); B(x) dx
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(4.32) sup Yo g(x, p(x))dx < + ©
(4.33) Vxe Q, p,(x)takes at most (m + 1) distinct values.®

The existence of such a sequence has just been established, as (4.32) is a
consequence of (4.19). We set u, = 9p,. From estimate (4.32) and hypotheses
(4.2) and (4.5), u, converges to @ in L?. Extracting a subsequence if necessary,
we may assume that u, converges to # almost everywhere. Let us set:

(4.34) h(x) = f(x u,(x), p(x)) = S (x, u(x), p,(x)).

For almost all x € ©, u,(x) tends to #(x), and p,(x) only takes a finite number
of values in dom g(x,.). From hypothesis (4.4) we at once deduce that
h,(x) — 0. Hence the sequence A, converges to zero almost everywhere.

From the inequalities (4.3), we have, if f < o

(4.35) |h(x)| < lay(x) — ax(x)| + bla(x)® + |ux)F) + (€ — Dglx, pulx)
and if f = =, taking k = sup,|u,ll.:

(436) b (x)] < |hlx)] < |ay(x) — ax(x) |+ (¢ = Dg(x, p,(x))

From Theorem VIIL1.3, the inequality (4.32) means that the family of
mappings x —> g(x, p.(x)), for ne N, is equi-integrable. If 8 < o, |u,|? con-
verges to |i]|? in L', and the family of |u,|%, n e N, is equi-integrable. The
right-hand sides of (4.35) and (4.36) are thus equi-integrable, and hence the
family of A,, n €N is equi-integrable. Still using Theorem VIIL.1.3, we can
extract a subsequence (A,.)..n converging weakly to 4 in L'. But we already
know that the sequence (4,),.n converges to zero almost everywhere. Hence
of necessity 2 =0, and the sequence (#,),.n as a whole weakly converges to
zero in L. In particular:

(4.37) J h(x)dx — 0

639 | s b po) s [ 705 0) o) 85 - 0
(24 [
Bringing together (4.31) and (4.47), we have the desired result:

(4.39) j £ (5 a0, px) dx — j F4(e, ), Blx) dx.

Q

) More exactly, pu(x) € {g1(x), . . ., gme1 ()}
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Whence it immediately follows that inf (#) < min (#2). Since the inverse
inequality is trivial, we have the required equality, and hence the theorem. m

4.5. A new formulation of the relaxed problem

As in the preceding paragraph, we can clearly give the relaxed problem the
following equivalent form:

m+1

Inf Y )1 (s ulx) ax) dx

£,:Q >R, g :Q—> R" measurable, 1 <igm+1

m+1

Y £(x)=1landf(x) >0 ae, 1<i<m+1
i=1

m+1
p= ) f£g,eL? andu = ¥p.
i=1

Problems (##) and (?#’) have the same value: min (%) = min (2?%’).
Furthermore, the mapping

_ _ B _ _ m+1 —
(A1 b3 iy o Ame 1) = B = ), £,
i=1

sends the set of solutions of problem (##’') onto the set of solutions of
problem (2%).

5. EXAMPLES
Example 1
Consider the problem:
(P) Inf f (1 — |Au|)?dx
ueH (2)nH2(Q) 0

where Q is a bounded open subset of R, and A the Laplace operator. It is
associated with a Green operator ¢ which has been shown in Chapter VIII,
Section 3, to be a (2, 2)-compactifier, and the function f(x, s, &) = (1 ~ |&])?
clearly satisfies assumptions (4.1)~(4.4) with B = 2. Denoting by ({¢| — 1),
the non-negative part of (|£| — 1):

0 if (j¢l-1)<0

(J¢ _1)+=
¢l (¢l-=1n if (¢[-1)>0
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we can state the relaxed problem:

(PR) Min f (|Au] — 1) dx,
Q

ucH ()

and apply Theorem 4.1. Note first that 7= 0 is the only optimal solution of
(?#). Hence:

(5.1) Inf (#) = Min (?#) =0
(5.2) if u, is a minimizing sequence of (%), then
) u, — 0 strongly and Au, — 0 weakly in L%(Q).

We deduce, first, that (%) has no solution; indeed, # = 0 is the only candi-
date, and substituting it into (#), we get the value meas (£2), which is positive,
and hence greater than inf () by (5.1). Moreover, if , is a minimizing sequence
of (#), then:

J'(l — |Au,[)* dx > inf () = 0.

There exists a subsequence u,. such that:
(5.3) |Au,.} -1 a.e.when n' — .

Compare (5.2) and (5.3): Au,, — 0 weakly, and yet Au,. > 1 almost every-
where. This means that the functions Au,. switch very quickly between values
close to +1 and —1, taking care to be half the time close to +1 and half the time
close to —1. This is a characteristic feature of minimizing sequences of controls.

Remark 5.1. If we consider the problem:

(P) Inf j (@) + (1 ~ | Au|)?dx
o

ueH‘l)(Q)

with f a non-negative continuous function growing no faster than u2, we
obtain similar results. The relaxed problem is:

@) Min j (f) + (| Au] - 1)2) dx
Q

ueHé(ﬂ)

and by Remark 4.2, from every minimizing subsequence u, we can extract a
subsequence u,, such that:
(lAun'(x)[ -1)? - (lAun'(x)l -1, >0 ae,

i.e., almost certainly, the open interval (—1, +1) holds no cluster point of the
sequence Au,.(x).
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Example 2

Denote by 0Q the boundary of 2, and define u = %p as the unique solution
of the inhomogeneous Dirichlet problem:

—Au=p, in Q

-4 u=p; on 09Q,

where p= (pq, p,). From Lions and Magenes [1], the mapping % is well-defined,
linear, and continuous from L*(Q) x L2(8Q) into H*'*(Q), and thus compact
into L*(Q), if Q is regular enough.

Consider, for instance, the problem:

@ Inf L (/) + (po — 1)?)dx + fm (py~1)*do

—Au=p, in L, u=p, on 9.

The results of Section 4 are applicable (Remark 4.3). The relaxed problem is:

i +(po— 132)d - Did
(PR) Min jn(f(u) (Po )3)dx + J;) 2 )ido
—Au=p, in Q u=p, on 04Q,

with the usual results, provided f is a continuous non-negative function
growing no faster than u?.

Example 3

As in Section 1.2 of Chapter VIII, we denote by C a Borel subset of 2 x R™,
such that the section C, is closed and non-empty for almost every x € Q. Let
fdenote its indicator function:

flx,a)=0 if aeC,
fix,a)y=+o if a¢C.
We denote by & the set of measurable selections of C (which is non-empty

by Corollary VIII.1.1), and for 1 £ « < «, we consider the mapping F on
L. () defined by:

F(u)= J Slx, u(x))dx, Yuel,.
o
In other words:

Fuy=0 if uell,NY¥
Fuy=+o if ueLl,\%.



296 RELAXATION AND NON-CONVEX VARIATIONAL PROBLEMS

Note that F is the indicator function of & N L;, in L},; in particular, F is
weakly Ls.c. if and only if & N L, is weakly closed.

Let us now assume that & N L} is non-empty, i.e., that there is at least
one measurable selection of C which is essentially bounded. Let us then
apply Corollary 2.1: & N L7, is weakly closed in L}, if and only if the sections
C, are convex in R™, for almost every xe Q. If they are not, we apply
Proposition 2.3: the weak closure of # N L,, in L,, is the set ¥ N L,,, where
% is the set of measurable selections of the closed convex hull &6 C, of the
sections C,.:V

YNL,={uel,u(x)eco C, ae.}.

APPENDIX

We give here, for the reader’s convenience, a well-known result which we
used in the proof of Lemma 4.2.

Lemma. Let 57, o, be a convergent series with positive terms. There exists
an increasing sequence (k,), . 0f integers such that:

k,—> o when n-—>ow
the series 3, o k, &, converges.

Proof. We set S=>,_, oc,, and p, =0. We define p, € N as the smallest
integer > 0 such that >;_ < §/2. By induction, for all r > 1, we define
P, € N as the smallest mteger > pr—y such that 37, o, < §/2". We then have:

- 8
=Ly

For all n € N, there exists a unique number r such that p,_, <n < p,. We
then take, by definition, k, = r. Clearly, k, — «, and we have:

Ma
Ma

=1n

pr

Ms

., <285 < + .

“M8
Q

E]
It
=]

M) Note that To C, is not a section of ¢o C.



CHAPTER X

Relaxation of Non-convex Variational Problems (II)

Orientation

Here we continue the study of variational problems without solutions,
which we began in the previous chapter. This chapter will be concerned
with the fundamental problem of the calculus of variations for dimensions
greater than one:

Infj S(x, u(x), grad u(x)) dx

ue WhHy(Q), u — u,e WiQ).

(#)

This problem does not fit into the framework of the preceding chapter.
Indeed, the equation gradu = p does not have a solution for all functions p
in L'(Q), which means that we cannot associate with it a Green operator
%:p — u defined over the whole of L1(Q). We must therefore develop special
techniques, which are unfortunately more complicated than in the previous
chapter, although the general theme remains the same: we are trying to relax
the problem. Formally, the results obtained are practically identical: the
greater than one:

Inf'[ F**(x, u(x), grad u(x)) dx

ue Wha(Q), u —use WiHQ).

(22)

and we shall show in passing that the [-regularization of certain functionals
of this type on W }-%(Q) coincides with their l.s.c. regularization.

Finally, we have assembled at the end of this chapter all those results which
concern the Euler equations: we shall show that, even if a variational problem
has no solution, the associated variational equations have atleast approximate
solutions. A few examples will help the understanding.

297
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1. AN APPROXIMATION RESULT

1.1. Extension of Lipschitzian functions

The following is an essential tool:

MacShane’s lemma. Let X be a metric space, E a subspace of X, k a positive
real number. Then any k-Lipschitz mapping from E into R can be extended by a
k-Lipschitz mapping from X into R.

Proof. For all x € X, we define:
(1.1) ii(x) = sup {ule) — kd(x,e)}eR U { + a0 }.

If € € E, we have, from the Lipschitz condition over E, u(e) — kd(¢,e) < u(é)
for all e in E, and so ii(€) = u(¢€). Thus # is an extension of u.
Let x and y belong to X, with for example #(x) < #é(y). Then:

(1.2)

0 < u(y) — u(x) = SUE{ — kd(y,e)} — suB — kd(x, e)}
< sup { u(e — kd(y, e) — u(e) + kd(x, e)}
<k sup {d(x,e) — d(y, e) }.

Finally, from the triangle inequality:

(1.3) 0 < a(y) — ii(x) < kd(y, x).

In particular, if we take x in E, we have fi(y) < u(x) + kd(y,x) <+ for all
yin X and thus # is indeed a mapping from X into R. The inequality (1.3) then
means that i is Lipschitz with constant k. m

1.2. Convex combination of piecewise affine functions

Henceforth, Q will be a bounded open subset of R”, with boundary 99.
We shall call a function u: Q > R affine if it is the restriction to Q of an affine
function over R". In particular, if u is affine, gradu is constant, the converse
being true if Q is connected. We then have u(x) = {x,grad«) + constant.
We say that a function u: Q — R is piecewise affine if it is continuous and if
there exists a partition of Q into a negligible set and a finite number of open sets
on which u is affine.
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We shall also fix a family (&), <x<p Of real positive numbers with sum 1.
The approximation method developed in the previous chapter easily gives us,
for the one-dimensional case (n = 1):

Proposition 1.1, et Q be a bounded open interval in R. If u,, 1 <k<p,
are affine functions from Q into R, for all given & > 0 there exists a piecewise
affine function u: Q@ — R and m disjoint open sets Q,, 1 < k < p, such that:

(1.4 measQ, =«, measQ for 1<k<p,
(1.5) VxeQ, w(x) = up,
P
(1.6) VxeQ, u(x) — Y au(x)| <e
k=1
p
(1.7) ¥xedQ, ux) = Y au(x)
k=1

Proof. We have Q = Ja,b[. We take i € N and divide Q into 2* equal sub-inter-
vals and each of these into p sub-intervals with lengths proportional respectively
to ay, a;,..., a,. We denote by ,€2, the union of the 2 open sub-intervals with
length a,(b — a)/2', and by ;u the unique piecewise affine function such that:

(13) Ha) = 3 wua)

(1.9) M =u, on ,Q, for 1 <k<p.

Clearly, (1.4), (1.5) and (1.6) are satisfied by ;,u and the ,Q, for all ie N.
Moreover, the sequence (ju);y converges uniformly to >7_, a,u, and we
can thus choose 7 sufficiently large so that (1.7) is also satisfied. =

1t is obvious that this result cannot be extended to higher dimensions as it
stands. In fact, if we split up Q into p open subsets Q,, the function 3., 1q,
gradu, is by no means necessarily a gradient if » > 1. It is thus necessary to
appeal to MacShane’s lemma to obtain an approximation ¥ which will be no
longer piecewise affine but locally Lipschitz instead. We recall that saying that
u is locally Lipschitz with constant k is equivalent to saying that all the deriva-
tives') du/ox;, 1 <j < n, are in L™, with [grad u(x)| < k almost everywhere.

We shall use the notation of Chapter IX, Section 1.1: for ie N, 2, will
denote the set of hypercubes of Q of the form:

K = [T [m2"(m, + 1277

i=1

) In the sense of distributions.
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where the m, € N and A, will denote their union so that

meas Q = limmeas4,.
Theorem 1.2. Let u,, 1 <k < p be piecewise affine functions from Q into
R. For all g > 0, there exists a locally Lipschitz function u, on Q and p disjoint
open spaces ., 1 < k < p, such that:

(1.10) |meas Q, — o, meas Q| <o for 1<k<p
(1.11) grad u(x) = grad u,(x) a.e.on Q,, 1<k<p
(1.12) |srad u(x)] < max {|grad u(x)|} a.e. onQ
l<kgp
4
(1.13) Vxe Q, u(x) — Y aulx)| <e
P
(1.14) VxedQ, u(x) = Y o uy(x).
k=1

Proaf. We shall prove the theorem in the particular case where the u, are
affine on Q. We can deduce the general case by making a partition™ of Q into
open spaces on which the u, are affine, by constructing u over each of these open
spaces and by collecting the pieces together by virtue of (1.14). Moreover we
shall assume that the constants grad u, are not all identical; for if they were, the
property would be trivial on taking u = >7_; ouy.

We then reason by induction simultaneously in » and p. The result is true
in the one-dimensional case: it suffices to apply Proposition 1.1 to each of the
comnected components of Q. Let us assume that the result has been proved
up to and including dimension # — 1. In the nth dimension the result is trivially
true for p = 1. Let us assume it has been established for p — 1. If we now prove
it for p, it will be true for all p (induction on p) and hence for all # (induction on
n).

We set

P
Uy = U — Z o Uy
k=1

By changing coordinates in R”, we arrive at the case where 7, only depends
on the first coordinate:

(1.15) 4y(x) = g,x; + ¢

M Up to a negligible set.
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We set
I 4
(1.16) p = max {|gradul} — lz «, grad u,
Igkgp k=1
(1.17) p>0.

Indeed, all boundary points of an Euclidean ball of R” are extremal. We cannot
therefore have p =0 unless all the gradu, are equal, contrary to hypothesis.
Let us choose i € N sufficiently large so that:

(1.18) meas (2 ~— A;) < ¢/2
and let us denote by N the number of hypercubes of ;. We take K€ X',

K=17_, [a;b,]; for all n€1027“*Y[ we denote by K, the hypercube
1 _;Ja; + 0,6, — n{. Let us choose # sufficiently small so that:

(1.19) meas (K — [a,,b,] x K,) < ¢/4N

(1.20) n max {|gradu,} < ¢/2.
1gksp

We then subdivide {a,,b,] into intervals of length (b, —a,)27™, meN,
and each of these into two sub-intervals which are open and have lengths
ay(by —a;)2™™ and (1 — «,) (b, — a;)2~™ respectively. We denote by I, the
union of the former and by J,, the union of the latter so that

(1.21) [a, b =1,0J,

(1.22) lengthof I, = a\(b, — a,)

(1.23) lengthof J, = (1 — o,)(b, — a,).

We then define a piecewise affine mapping v,, from [a,,b,] into R as follows:
(1.24) vala;)) =0

(1.25) v{x,) =g, onl,

(1.26) vi(x,) = 1___0‘0"1 g, onlJ,

We thus have v,(b,) = 0, and the v,, converge uniformly to zero on [a,,5,]. We
can therefore choose m € N sufficiently large so that:

(1.27) Vx, e [a;,b,] |om(x,)] < min {¢/2, py/2}.
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Having fixed m in this way, we define

(1.28) Q =1, xK,

(1.29) Vx e Q,, u(x) = v,(x,) + kil ot (X)
From (1.19), (1.22) and (1.28) we deduce that:

(1.30) (meas Q; — a; meas K) <

“1IN 4N
From (1.27) and (1.29) we deduce that:
p
(1.31)  VYxe Q,, Z ai(x)| < min { /2, pn/2}.

By differentiating (1.29) and substituting (1.15) into it:
(1.32) VxeQ,, grad u(x) = grad u,.

By definition, we have >;_, «, i, =0. Over each connected component
of J, x K,, we have from (1.26):

14
(1.33) grado, = Y. I fkoc grad &,
k=2 1
14 14
(1.34) grad (v, + Y ou | = Y grad u,.
k=1 k=21 — oy

We then apply the induction hypothesis for each of the connected compo-
nents of J,, x K, to the(p — 1) scalars a,/(1 — «;) which are positive with sum 1,
to the (p — 1) functions u;, 2 < k < p and to min, ¢, <,{%: &/4N,pn/2}. There
thus exists a mapping u:J,, x K, — R which is locally Lipschitz and (p — 1)
open disjoint spaces 2,, 2 < k < p such that:

(1.35)
a ~
meas, — g meas (J, x K,)| < “szﬁ’ 2<k<yp
(1.36)  gradu(x) = gradu,(x) ae.on Q,, 2<k<p

(1.37)  |gradu(x)] < max {|gradu,} ae.on J, x K,
2gkgp
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(1.38) VxelJ, x IZ", u(x) — v,(x) — i ot Uy(X)

k=1

< min { &/2, pn/2 }

(1.39) VxedJ, x K,), u(x) = v,(x) + i o x).

We transform (1.35) by (1.19) and (1.23):

(1.40) |meas 2, — «, meas K| < 2<k<p

£
(Xk TV ,
We have thus defined u over I, x K, and over J, x K,. By comparing
(1.29) and (1.39), we ascertain that these two definitions can be pieced together
to define a single continuous function u on {a,,b,] x I?,,. Since v,, has been
constructed in such a way as to be null at a, and at b,, we thus obtain:

(1.41) u(x) = i au(x) if xef{a,b,} x I%,,.

(1.42) ulx) = Y aufx) if xedk.

The function thus defined over 3K U [a,,b,] x K, is continuous, by virtue
of (1.41). Tt is even Lipschitz with constant max, <, <,{|grad u,|}. This is easily
checked over 9K (by virtue of (1.42)) and over K, (by virtue of (1.32) and (1.37))
separately. Let us now take a point x of 0K, with x; # a, and x, ¢ b;, and a
point y of [a;,5,] x K,. Let us denote by z the point where the segment joining
x and y cuts [a,,b,] X 61?,,. We have:

(1.43) n<|z - xl
Making use of (1.42) and of the triangle inequality, we can write:

(1.44) lu(x) — u(y)| < | ‘; au(x) — ‘Z a1, (z)

1 k=1

k

+

¥ wan(z) - )

1

) + |u(z) — u(y))-
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The second term is bounded above by p#n (by virtue of (1.31) if z, € I,,,
by virtue of (1.27) and (1.38) if z, € J,,). The third term can be bounded above
using the Lipschitz condition on [a,,8,] x K,. This gives us:

4
(1.45) lu(x) — u(y)| < ‘ Y ogradu ||z — x| + pn +
k=1

max {lgradu|}|y — 2|

Making use of (1.43):

(46 ) ~ o) < (| £ o ersa,

+ p) 2 = x| +
d - z|.
jmax {lgradu|} |y — 7
Hence, from the definition of p (1.16):
(147)  Ju(x) - u(y)] < max {|grad )} Iz = x| + |y - 2]
<kgp
As z belongs to the line segment joining x and y:
(1.48) |u(x) — u(y)] < max {|gradu} (|x — y|)
1<k<gp
From MacShane’s lemma, we can extend u as a Lipschitz function with

constant max, ¢, < ,{|gradu,|} over the whole of K.
Let us recall the properties of this extension, still denoted by i:

&
(1.49) |meas @, — a, meas K| < USN 1<k<p
(1.50) grad u(x) = gradu, a.e.onQ,, l<k<yp
(1.51) |grad u(x)] < max {|gradu,]} ae. on K
1gksgp

P

(1.52) Vx e K, u(x) — Y au(x)] <e
k=1

P

(1.53) Vx e 0K, u(x) = Y au(x).

Property (1.49) arises from (1.30) and (1.40), (1.50) from (1.32) and (1.36),
(1.53) from (1.42), and (1.51) is none other than the Lipschitz condition over
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K. Property (1.52) arises from (1.31) if x € Q,, from (1.27) and (1.38) if x € J,,, %
K,. There remains the case when x € K — [a,,b,] x I?,,. It is then sufficient to
choose a point y € 0K such that |y — x| < #, and, taking into account (1.42), to
write

(1.54)

< Ju(x) — u(y)| + o U (x)

p
Z @iy x

TI.M'::
-

Using the Lipschitz condition:

- i o uy(x)

k=1

(1.55) < 2 max {|grad ul}|x —

<2 max {|gradu]}n

1<kgp
< ¢ (from (1.20)).

We have thus defined u and the Q, over all the hypercubes K of ;. We
piece u and the Q, together, and extend u by >, a,u, out of A,. The function
thus obtained is continuous by virtue of (1.53), and satisfies (1.14). It satisfies
(1.11) due to (1.50), (1.12) due to (1.51), and (1.12) due to (1.52). It only remains
to show that it satisfies (1.10); by virtue of (1.18) and (1.49) it is sufficient to
write:

(1.56)

|meas @, — a, meas Q| < |meas 2, — o, meas 4| + «,|meas 4; — meas Q|

£ &
SGy—Fa,-<0e i
= Vi k o = Vg
2 2

1.3. Convex combination of integrals

We shall now apply the foregoing result to the study of convex combinations
of integrals:

P

y ockj f(x, grad u,(x)) dx.

k=1

In other words, with reference to Chapter IX, Theorem 1.2 is analogous
to Proposition 1.1, and we seek the analogy of Corollary 1.2. As before,
we settle on a family (), <<, Of real positive numbers with sum 1.
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Proposition 1.3. Ler u,, 1 < k < p, be piecewise affine functions from Q into
R. We take a finite family & of normal integrands of Q x R" and a positive
function ¢ € L\(Q) which satisfy:

(1.57)

ox) > sup {[£( 1S € Zile] < max (leradual, )} ae.

For all ¢ >0, there exists a locally Lipschitz function u: Q@—R such that:

(1.58)

VieF j f(x gradu(x) dx — ¥ =, j flx, grad wx) dx | < ¢
2 k=1 Jg

(1.59) jerad u(x)] < max {lgrad (]} ac.on @

(1.60) VxeQ, u(x) — k; wu(x)| < e

(1.61) Vx € 00, u(x) = " ()

Proof. Here also it is sufficient to derive the proof for the case where the
functions u, are affine over Q. The general case may be deduced therefrom by
dividing Q into open spaces over which the », are affine, by constructing u over
each of these open spaces, and by collecting together the pieces by virtue of
(1.61). Let us therefore take ¢ > 0.

We know that the tiered functions are dense in L!(2). There thus exists a
partition of Q into a finite number of open subsets ¢, | <i< N and a negli-
gible set and there exist functions f;, constant over each of the @, such that:

(1.62)

Vfe#, J]f(x,graduk)—fk(x)ldxs.e for 1 <k<p.
Q

Let us now choose d > 0 which satisfies the following two properties:

1.63 6 < - F
(1.63) < N1 + max {|fill.}))

1<k<p
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,
(1.64) B < Q measurable and measB < 6 :J c < ¢/N.
B

We apply Theorem 1.2 to each of the open subsets @, : there exists a locally
Lipschitz function # from @; into R and there exist p open disjoints spaces Q%,
1 € k < p, such that:

(1.65) |meas Q; — ¢, meas 0, < o, & “or 1<k<p
(1.66) grad u(x) = grad u, a.e.on Q, 1<k<gyp
(1.67) lgrad u(x)] < max {|gradu)} ae.on @,
I<kgp
4
(1.68) Vxe0, u(x) — Y qux)| <6
k=1

(1.69) Vx € 80, u(x) =
k

G U(X).
1

e

We have thus constructed u over all the 0, and we set u = >4, a;u, over the
negligible set Q — Y., @,. The function thus defined is continuous from (1.69)
and satisfies (1.59) (and is thus locally Lipschitz), (1.60) and (1.61). It remains
to verify (1.58). From (1.66) for all fe #:

k=1

(1.70) J‘ f(x, grad u(x)) dx — \’Z J f(x, grad u,) dx
¢ 0
= f . Slx, grad u(x)) dx.
- 0o

Let us examine the right-hand side. From (1.67) and (1.57), | f(x, grad u(x))|
< ¢(x). From (1.65), meas(®; — \U%., ) < 4. From (1.64), the norm of the
right-hand side is less than &/N, whence:

(1.71) < ¢/N.

J.fxgradu()dx—z f(x, grad u,) dx

k=1 Jo

Now, by virtue of (1.63) and (1.65), by taking account of the fact that f,
is constant over @;, we have:

(1.72) i j fk dx—ockf fk x)dx
= ok

< ¢/N.
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We write Q, = U, Qf. We have the fundamental inequality:

(1.73)

J f(x, grad u(x)) dx — i akJ f(x, grad u,) dx

k=1

J‘fxgradux) )dx — Z f(x, grad u,) dx

k= Qi

(x, grad u,) — f;(

+

Ll

P
x)|dx + )
k=

) J }:(x) dx ~ ockj‘f;(x) dx

+ Zp: “kJ‘ | fulx) = f(x, grad u,)| dx.
=1 ),

On the right-hand side, the first and third terms are less than £ on summing
the inequalities (1.71) and (1.72) from i = 1 to N. The second and fourth terms
are similarly less than ¢ from (1.62). Whence we have the desired inequality:

(1.74) <4 =

j f(x, grad u(x)) dx — i akJ f(x, grad ;) dx

k=1

2. IDENTITY OF THE I'-REGULARIZATION AND OF THE L.S.C.
REGULARIZATION

In Chapter IX, Section 2, we studied functionals over L*(Q) of the form
F(u) = J f(x, u(x)) dx,
2

and we showed that their I'-regularization coincided with their L.s.c. regulariza-
tion. The aim of this section is to do the same for functionals of the type

F(u) = J f(x, grad u(x))dx  over WH¥(Q).

We shall achieve this by approximating the functions of W*-%(Q) by piece-
wise affine functions and by applying Proposition 1.3. We must therefore
establish at the outset properties of density and continuity in W!-%(Q); for this
it will be necessary to distinguish between the cases 1 < a € « and o = «,
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2.1. Approximation of an indefinitely differentiable function by a piecewise
affine function

The following theorem is a standard result in numerical analysis (finite
elements method).

Proposition 2.1. Let u be a function which is indefinitely differentiable on a
bounded open space Q of R" and continuous on Q. There exists a sequence
(u,);cn Of piecewise affine functions on Q2 such that, when i — ,

2.1 grad u; —grad u uniformly over every compact subset of Q
(22) Ilgrad ui"oo < ”grad u”oo
(2.3) u; — u uniformly.

If in addition the support of u is compact in Q, we can impose on the u;, i€ N
the condition that they are zero outside a fixed compact K c Q. In particular

(2.4) Vx e 09, u(x) = 0.

The proof consists of covering Q with a net of r-simplexes with diameter
<27, of taking for u; the piecewise affine function which coincides with u at the
vertices of the net and of applying Taylor’s formula. From this we deduce
in particular, that the piecewise affine functions which are null on the boundary
are dense in W§*(Q), 1 < a < .

2.2. Lipschitzian open subsets of R"

We denote by B the unit ball of R". Henceforth we shall assume that the
following regularity hypothesis holds on Q:

Definition 2.2 We shall term a bounded open space @ of R" Lipschitz if,
for any point x of 0Q, there exists a neighbourhood 0 of x such that Q N O is of the
form

(2.5) QN0 =[yeR"|y"< 6", .. y" )] N0,

where 8 is a Lipschitz function of R"~ in R, and the y} are a system of Cartesian
coordinates in R".

We immediately deduce from this that 9Q locally allows a representation
of the form y"=6(y!,...,y" '), where 6 is a Lipschitz function. The class of
Lipschitz bounded open subsets is large. Thus, if Q is a compact polyhedron, Q
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is Lipschitz. If Q is a regular open space in the usual sense, i.e. if Qis a C*
submanifold of R” with boundary 3@, then Q is Lipschitz.

We shall subsequently make use of the fact that every Lipschitz bounded
open subset Q is locally star-shaped, i.e. Q is a finite union of spaces @,, each
one of which is star-shaped with respect to one of its points w, (i.e. #(@,) <
0, for every homothety 4 with centre w, and ratio <1).

We prove this briefly. From the compactness of G, it is sufficient to show
that each point x of @ possesses a neighbourhood @ such that Q N @ is star-
shaped with respect to one of its points. Clearly, thisisso if x € Q- itis sufficient
to take for @ a ball with centre x which is contained in Q. If x € 8Q, this is
locally reduced to the case where

Q={yeR'[)y <0(3)},

where y = (y%,...y"1) and where #:R** — R is Lipschitz. Furthermore, we
can assume that X =0 and that x" = 6(%) > 0. But it is then easily shown that ¥
possesses a neighbourhood ¥~ in R™! such that the cylinder (¥ x R)N Q is
star-shaped with respect to the origin. It suffices to see that 8(A%) > 16(¥) for
all y sufficiently close to zero and all 1 € [0,1]. Let us therefore choose |y| <
6(0)/2k, where k is the Lipschitz constant for 8. We then have for 0 < A< 1:

(2.6) 0 < 6(0) — 2ki||
< 0(A3) — ki|7|
< 0(A3) — A0(p).

We call every Lipschitz mapping of an interval of R into & a path in 8. For
x and y in © we denote by d(x, y) the infimum of 1 and of the lengths of the
paths in Q joining x to y. It is a distance over Q. But we also have another
distance over Q: the Euclidean distance d(x,y). We show that they are equiva-
lent, ie. that for all « >0 there exists §> 0 such that &(x,y) < f implies
d(x,y) < a and that d(x,y) < f implies that 8(x,y) < «. This will subsequently
be useful when we wish to avoid going back to local mappings in certain
proofs.

Proposition 2.3. If Q is a bounded open Lipschitz space, the distances § and
d are equivalent over §3.

Proof. Let us denote by Q; (or Q) the set @ endowed with the metric J (or d).
We must show that the identity mapping from @, into Q,is uniformly continu-
ous and conversely.

Clearly, d < 4, and thus the identity mapping from &, into Q, is uniformly
continuous. It remains for us to show that the inverse mapping is continuous
from Q, into §;: since §Q, is compact, it will then be uniformly continuous.
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Let there be in Q a sequence (x,),.y and a point x such that d(x,x;) = 0.
If x € ©, there is an ¢ > 0 such that the Euclidean ball with centre x and radius
gis contained within Q; we then have d(x, y) = d(x, y) for all the points y in this
ball, and so, after a certain stage, d(x, x,) = d(x,x;) = 0.

If x € 99, in accordance with Definition 2.2, we arrive locally at the situation
where

(2.7) Q={yeR|y <8, ..y "}

where 0:R"! — R is a Lipschitz function with constant k, and where
x!=.. =x"=0.

For each point y in Q, we denote by z the point in Q with co-ordinates

(238) 2= (T = KO+ e+ 7T,

We have z" < y", and the segment [y, z] is this contained in €, as well as the
segment [x,z]. Hence we have:

(» y) < dlx, z) + dz, y)
(2.9) x, y) < (1 4+ k3)2d(x, y) + 2kd(x, y)
,)<[1+k2”2+2k]dxy

After a certain stage, x; enters a neighbourhood of x which is subject to the
representation (2.7) and hence, by (2.9), d(x, x;) — 0. The result is established
for all cases.

Here is an example of its application:

Corollary 2.4. If Q is a bounded open Lipschitz space, the following are equi-
valent to each other:

@ lgrad ||, < &
(b) u is 8-Lipschitz with constant k on Q.

In particular, W'*(Q) < 4(D).

Proof. We have 6(x,y) = d(x,y) whenever x and y belong to a ball contained
within Q. If then u is 4-Lipschitz with constant k over €, it is d-Lipschitz with
constant k over all the balls contained within ©, and hence |igradu| < k.

Conversely, (a) means that u is locally d-Lipschitz with constant k. Then if
cisapathin Qjoining x to y, we obtain:

(2.10) |u(x) — u(y)| < k(x, y). Length (c).
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By definition of d(x, y) as the infimum of the lengths of the paths joining
X to y, we obtain (b):

(2.11) ju(x) — u(y)] < kd(x, y).

In particular, u can be extended as a §-Lipschitz function on @ with the same
constant k; from Proposition 2.3, this extension will be d-continuous on .

2.3. Approximation of a function of W2, 1<a< « by a piecewise affine
function

Henceforth, Q will be a Lipschitz bounded open subset of R", and ¢ will be
a non-negative convex mapping of R” into R,.. We now introduce the following
concept:

Definition 2.5. We denote by W}°(Q) the set of functions u € Wi(Q) such
that:

(2.12) Jqo ogradu < + .
Q

Iffor example we take ¢(&) = |£]% 1 < « < ©, we obtain W}9(Q) = W}4(Q),
minus the topology; we thus recover the usual Sobolev spaces. But we can
construct very different spaces: anisotropic (take for ¢ a positive quadratic
form) or contained in W§=(Q) (take ¢(&) =+ if || > 1, (&) = |¢]/(1 — |&])if
I€] < 1). The following proposition generalizes the fact that 2(Q) is dense in
W§(Q) (in a weak form).

Proposition 2.6. If uc W} 9(Q), there exists a sequence (u;);n Of functions
of D(S) such that, wheni —

(2.13) w,—»u in LYQ)

(2.14) gradu, > gradu in LYQ)

(2.15) J(p o grad ui~j¢ o grad u.
Q Q

Proof. First we shall show that u can be assumed to have compact support
in Q, and then we shall prove the proposition for this case. To simplify the
reasoning, we shall assume that ¢(0) = 0. Since Q is locally star-shaped we can
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write Q = U}, 0, where the 0, are open subsets which are star-shaped with
respect to w;, 1 <j < N. Then let u € W}-9(Q); the functions:

ut(x
U (x
also belong to W§?(9). Extending u, u* and u~ by zero outside Q, we obtain

functions of W§*(R") which will again be denoted by u, u* and u~. Naturally,
we have:

= sup { u(x),0},

)
) =sup{ — u(x),0},

Let p,, k € N, be an increasing sequence of positive numbers tending to 1,
0<p,<1. Weset:

“:.j(x)=pk“+<wf+i(X—wj))’ xeR,1<j<N;

1
U fx) = pu” (w,- + ;—(x - 00,-)), xeR,1<j<N.
k
Clearly, u¢; — u* in W§-*(R") when k — «, and furthermore:

j ¢ o gradu; (x)dx = j @ o grad u*(wj +pi(x - wj))dx
R” R" k

= pﬁf @ o gradu™(y)dy
R'l

by the rule for changing the variable in a multiple integral. Finally, when
k —~o:

‘[ @ o grad uy (x)dx —>J‘ o o grad u*(x)dx.
R” n
We have analogous results for i, ;. Lastly, we define:

inf {u*(x),u (x)}, xeR"

( 1<jgN

(2.16) )=
U (x) = mf {u (), u AX) }, xeR"
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The functions u; and uj converge to u* and u~ respectively in W §-}(R") for
k — «. Furthermore, from (2.16):

J qoogradu,f(x)dx—aj‘ @ o grad u™(x)dx
(2.17) " g

R"

JA o o grad u, (x)dx — J o o gradu™(x)dx.
R'I

We set:
B, ={x|uf(x) #0} < {x|u*(x) #0}
Co={x|uf(x) #0} = {x|u"(x) #0}.

We have B, N C,= @. The function u, =ui —u; converges to u in
Wi '(R™) when k — o, and satisfies:

j @ o grad u(x)dx = J @ o grad u,(x)dx + J @ o grad u,(x) dx
R B

Cr

= J @ o grad u; (x)dx + J ¢ o grad u, (x)dx
R'I R’l

—-»j @ ogradu*(x)dx + J @ o grad u™(x) dx
Rﬂ

= f @ o grad u(x) dx.
R'I
Finally, the support of u,;, by construction, is contained in

L:J wj+pk(0 —(1)))

which is a compact set contained within Q. We have thus been able to restrict
ourselves to the case where v € W§(Q) has compact support in Q, which we
shall henceforth assume.

ForieN, let p, € Z(R") be non-negative with support contained within the
ball {¢||€] <271}, and such that fg,p = 1. Let us set #,=u % p,." Since u has
compact support, u; € P(Q) for i sufficiently large. We know that v % p;>u in

O Convolution product.
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L' and that grad(u + p;) =(gradu) %p,—>gradu in L, whence (2.13) and
(2.14). It remains for us to verify (2.15).
Since gradu = (gradu) % p,, we have:

@ o grad ux) = qo(j

pdx — y) grad u(y) dY).

But p,(x — y)dy is a positive Radon measure on R" of unit mass, and ¢ is
convex and continuous. By virtue of a lemma whose proof we leave to the
end (Lemma 2.7):

w(J; pdx — y) grad u(y) dy) < f P{x — y)p o grad u(y) dy

To sum up:
(2.18) 0 < gograduy; < p; % (¢ o grad u).

We know that, when i — oo, the sequence (p; % (¢ o gradu)),.n converges to
o o gradu in L*(Q). In particular, it is equi-integrable in LY(Q) (Theorem
VIIL1.3, (8) = (c)); for all ¢ > O there exists 4 > 0 such that:

(2.19) A measurable, meas 4 < &

:jpi*((pogradu)ga VieN.
A
But from (2.29) and the estimate (2.18) we deduce that:
(2.20) A4 measurable, meas 4 < & = j gogradu, < ¢ VieN.
A

The sequence (¢ o gradu;); is thus equi-integrable. Moreover, each ex-
tracted subsequence possesses a subsequence which converges almost every-
where to ¢ o gradu, since gradu, —gradu in L* and ¢ is continuous. Therefore
we can apply Corollary VIIL.1.3, which gives us:

(2:21) pogradu; » gogradu in LYQ)

whence in particular (2.15).
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The proof has used the following lemma:

Lemma 2.7. Let @ be a function in I'(R"), u a positive Radon measure on R"
of unit mass and p a p-integrable mapping from R* into R". We then have:

(2.22) o(fpdp) < Joopdn

Proof. We can write ¢ as the pointwise supremum of a denumerable family
of continuous affine functions:

(2.23) vEeR", o(§) =sup {<& &) + o).

For this, it is sufficient that the family (&,—a,),y is dense in epi@*. For all
i e N, we have:

(2.24) S p(x)dp(x), &> + a; = [(<p(x), & > + a)) du(x).
Taking the supremum of each side for i € N and applying (2.23), we obtain:

(2.25) o(§ pdr) = sup [ (<p(x), &> + a) du(x).

But the integrable functions {p,&;> + a, are less than ¢ o p by virtue of
(2.23). If | ¢ 0 p =+, the inequality (2.22) is trivial. Otherwise, p o p is
integrable, and we can apply Fatou’s lemma:

(2.26)
sup [ (< p(x), &> + a) du(x) < Jsup {<pl(x). & + a; } du(x).

Using (2.23) once again, we get:
(2.27) sup [ (Cp(x), &) + a) dulx) < [ o o p(x) du(x).

We obtain (2.22) on combining (2.25) and (2.27). =

We can thus approximate the functions of W§-() by indefinitely differ-
entiable functions with compact support (Prop. 2.6). But these in their turn
can be approximated by piecewise affine functions (Prop. 2.1). This amounts to:

Proposition 2.8. If u e WL*(Q), there exists a sequence (u));.n of piecewise
affine functions over Q, null on 39, such that:

(2.28) wou in LYQ)

1

(2.29) gradu, » gradu in LY(Q)
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(2.30) f @ogradu, —» J ¢ ogradu.
Q Q

Proof. Taking ¢ > 0, from Proposition 2.6, there exists v € 2(Q) such that:

(2.31) lu = o, <e2
(2.32) lgrad u — grad o, < ¢/2
(2.33) |J ¢ ogradu — ¢ o grad v] < ¢/2.

From Proposition 2,1, there exists a sequence (v;);n ©f piecewise affine
functions, null outside a compact K < €, converging uniformly to v, such that:

(2.34) gradv; —» grad v uniformly.

Since ¢ is continuous, ¢ o grady; converges uniformly to ¢ o grade.
Taking w = v, for i sufficiently large, we conclude that:

(239 o= wl, <2
(2.36) lgrad v — grad w||, < ¢/2
(2.37) |foogradv — | ¢ ograd w| = ¢/2.

It only remains to gather together (2.31) and (2.35), (2.32) and (2.36), and
(2.33) and (2.37). We then take u; =w for e=2"'. =m

2.4. Approximation of a function of W1~ by a piecewise affine function

We recall that W'-=(Q) is the set of locally Lipschitz functions over €, i.e.
of 4-Lipschitz functions over Q, and that they can be extended by continuity
to & (Prop. 2.4). Let u e W'*(Q), not necessarily null on the boundary.
We shall show that we can approximate u everywhere, except on a small neigh-
bourhood of the boundary, by piecewise affine functions which satisfy the same
boundary condition.

Proposition 2.9. Letr Q be a Lipschitz bounded open subset of R", and
u e Wt=(Q). There exists a sequence (u;, 2,);en, Where u; € WH(Q) and Q; is
an open subspace of Q, such that as i — «,

(2.38) Q cQ,, and meas(Q — Q) -0

+1

(2.39) u, is piecewise affine over Q,
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(2.40) Vx €00, u(x) = u(x)

(2.41) u, —~ u  uniformly

(2.42) grad u; — grad u a.e. inQ

(2.43) lgrad u,) , < lgrad ul . + c(i), where c(i) — 0

Proof. We set 2, = {x e Q|(x,3Q) > 1/i}. We regularize u by convolution
with a non-negative function p € 2(R") such that fg. p = 1. If the support of p
is sufficiently small, we obtain, on writing k = ||gradu]:

(2.44) Vx e Q,;, lp * u(x) — u(x)| < 1/i
(2.45) lgrad p « u — graduf), < /i
(2.46) lgrad p % u, < k

We then apply Proposition 2.1 to p * u over the open subspace €,;. There
exists a piecewise affine function w; over Q,;, such that:

(2.47) Vx e Q, lgrad w(x) — grad p w u(x)| < /i
(2.48) VxeQ, |grad w{x)| < k
(2.49) Vx € 2, lwi(x) — p % u(x)| < 1/i%

Equation (2.47) results from (2.1) and from the fact that Q, is compact in
Q,,, equation (2.48) from (2.2) and (2.46), and equation (2.49) from (2.3).
We define the function u; over 2Q U Q, by:

(2.50) ux) = u(x) if xeoQ
(2.51) ufx) = wix) if xe®Q.

By hypothesis, # is 4-Lipschitz with constant k; the same applies to w,
from (2.48). Thus from (2.50) and (2.51), we have:

(2.52) lufx) — u(y)| < ké(x,y) if xandyedQ
(2.53) lu(x) — u,(y)] < kd(x,y) if xandyeQ,.

If now xedQ and y e Q,, we have, from (2.50), (2.51) and the triangle
inequality:

(2.54) ufx) — u(y)] < |u(x) ~ u(y)| + |u(y) — wy).
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On the right-hand side, the first term is bounded above by kd(x, y) since it is
$-Lipschitz with constant k. The second term is bounded above by 2/i?,
by virtue of (2.44) and (2.49). Taking account of the fact that y € Q;, and hence
that d(x, y) > 1/i, we obtain:

(2.55) |uix) — wy)| < (k + 2/)é(x, y).

Gathering together (2.52), (2.53) and (2.55), we deduce that u, is é-Lipschitz
with constant k + 2/i. It can therefore be extended, from MacShane’s lemma,
as a function u; over §, which is -Lipschitz with constant (k + 2/i).

By construction, the functions (u,),n satisfy (2.39), (2.40) and (2.43).
Equation (2.42) results from (2.45), possibly by extracting a subsequence,
and (2.47). Finally, the u; are 8-Lipschitz with constant (k + 2/i), and are
thus equi-continuous; they converge simply over Q ((2.44) and (2.49)), and
therefore uniformly by Ascoli’s theorem. Whence we arrive at (2.41). =

2.5. Functionals over W3 *(2), 1 <a < ©

We recall the notation of Section 2.3: @ is a Lipschitz bounded open
subset of R"and ¢ is a convex mapping from R" into R, and hence is continuous
and non-negative. We shall study functionals of the type | f(x,grad u(x))dx.
We begin with a continuity theorem:

Propesition 2.10. Ler f be a Carathéodory function from Q x R" into R,
which satisfies the estimate:
(2.56) |f(x, &) < a(x) + co(&), where a € L'(Q) andc e R,.

For all sequences(p, )y 0f measurable functions from Q into R" which satisfies,
asi—> o;

(2.57) pix) = B(x)  ae.in@

(2.58) L(p op; = Lw op

we have:

(2.59 Lf(x, p(x) dx - Lf(x, B(x) dx.

Proof. We consider the Carathéodory function
(2.60) g(x, &) = f(x, &) + co(S) + alx)
which is non-negative by (2.56).
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When i/ — «, g(x, p,(x)) converges almost everywhere to g(x, 5(x)). Applying
Fatou’s lemma, we have:

(2.61) lim { ] g(x, pi(x)) dx } > | g(x, p(x)) dx

(2:62) Lim {f f(x, pfx)dx + c[ @op, +[a} > [ fx, 5(x)) dx
+cfoop+(a

On subtracting the constant | a from both sides and on making use of
(2.58), we obtain:

(2.63) lim | £(x, p(x) dx > § £(x. B(x) dx.

But —fis also a Carathéodory function, and satisfies (2.56). Applying (2.63)
to it, we obtain:

(2.64) lim J f(x, pix) dx < f(x, p(¥)) dx
And we arrive at (2.59) by comparing (2.63) and (2.64). =m

We deduce from this result a generalization of Theorem 1.2.

Proposition 2.11. Let u,, 1 < k < p, be functions in W§*(Q) and 2,, 1 <k < p,
be positive scalars with sum unity. Let F be a finite family of Carathéodory
functions which satisfy

(2.65)  |f(x, &) < a(x) + co(é), where aeL Q) and c¢>0.
For all ¢ > 0, there exists a function u € W=(Q) such that:

(2.66) Vx e dQ, u(x) = 0

<e
1

P
(2.67) u— Y au

k=1

Vfe %,

ij f(x, grad u(x)) dx — i akj fix, grad u(x)) dx | < e.

0 k=1

Proof. From Propositions 2.8 and 2.10, there exists for each u,, 1 <k <p,
a piecewise affine function », such that:

(2.68) Vx €dQ, v(x) =0
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(2.69) lue = vy < &/2

(2.70) Vfe#,

f f(x, grad u,(x)) dx — j f(x, grad v,(x)) dx | < ¢/2.

Q

We now apply Proposition 1.3 to the family »,, 1 < k < p. First, we must
verify hypothesis (1.57) which follows immediately from (2.65) and the con-
tinuity of ¢

(271 max{| f(x,&)|| fe F |[& < p} < a(x) + max ¢(&).

e

There thus exists a function u € W!-*(Q) such that:

P
(2.72) VxedQ, u(x) = Y o, (x)
k=1
2.73 ) <5t
(2.73) “ k; Ul S Tmeasn

(2.74) Vfe#,

k=

J‘ f(x, grad u(x)) dx — i ozkj f(x, grad v(x)) dx | < ¢/2.

Whence we obtain the result: (2.66) results from (2.68) and (2.72), (2.67) from
(2.69) and (2.73) and (2.68) from (2.70) and (2.74). m

We have thus obtained a generalization of Proposition 1.3. We may ask
ourselves which Carathéodory functions satisfy(2.56) or (2.65). If, for example,
(&) > |¢|% all functions of the type f(x,£) = (h(x),E>, with h e Ly (Q), /o +

/o' = 1, satisfy them by virtue of the inequality:
| 1 |
h(x), &€ >| € = |Mx)|* + =& if «>1
279 '1< (] < Mol + 51

o
[Ch(x), €] < ||h)|olE]  if «=1

Whence we immediately have the following corollary which at first seems
more precise than Proposition 2.11.

Corollary 2.12. We assume that o(£) > |&|*, where a2 1. Let u,, 1 Sk <p
be functions of W§*(Q), and oy, 1 < k < p, be positive real numbers with sum
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unity. Let & be a finite family of Carathéodory functions satisfying (2.65).
For all £ <0 and every neighbourhood V of zero for o(L2,L%), there exists a
Sunction u € W*2(Q) satisfying (2.66), (2.67), (2.68) and:

i
(2.76) gradu — grad ( Y oc,,uk) eV.
k=1

Proof. Let us define by means of a finite family (), of LY a weak neigh-
bourhood contained in V:
<¢giel }

From the foregoing remarks, for all i e[ the integrand A,(x)¢ satisfies
(2.65) for a suitable choice of a and c. We denote by # the family of 4;(x)¢,
for i € 1, and it only remains for us to apply Proposition 2.11tc F U #. m

P
fhag — Y o fh gradu,

k=1

277) Vo {q eLe

2.6. Functionals on W'-=(£2)

Our aim is to obtain similar results for W=, with a constraint of the type
lgrad ull < c. We shall make a simplifying hypothesis, which is a kind of
compatibility condition between the Lipschitz bounded open subset 2, the
boundary value and the constraint.

Proposition 2.13 We take a function uy € W' =(Q) and a number ¢ such that
(2.78) lgrad uel ., < c.

Let u;, 1 < k< p be functions of W1=(Q) satisfying the boundary condition
U, = Uy over 9Q, and the constraint |lgradu,)| <ca.e. in Q, and let o, 1 <k<p
be positive numbers with sum unity. Let & be a finite family of Carathéodory
Sfunctions satisfying

(2.79) max |f(x, &) < a(x), where ae L}(Q).

For all &£ > 0 there exists a function u W'>(Q) such that:

(2.80) Vx €dQ, u(x) = uy(x)

P It
(2.81) u— Y oc,~u,-“ <e
k=1 ©
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(2.82) lgradu|, <c

(2.83) Vfe#,

f f(x, grad u(x)) dx ~ i a | f(x, grad u(x))dx| < e.
0 k=1

Q
Proof. For A tending to 0in 10, 1[, we have:
(2.84) lgrad (Auy + (1 — Al < ¢
(2.86) |grad (Aug + (1 — A)u,) — grad u, ||, — 0.

For all n <0, we can thus choose functions v, 1 < k < p, such that:

(2.87) lue = vl < &/3
(283) Jsrad ], < c

_ n
(2.89) |grad v, — grad u,|| , < TmeasO
(2.90) Vx e dQ, v(x) = uy(x).

We therefore choose 5 > 0 sufficiently small so that, for all fe & and
I<k<p:

(2.91) A measurable, meas 4 < 1 = J' a(x)dx < ¢/4

(2.92)
ill‘pllm gsac:i . - f | (%, p(x)) = f(x, grad u,(x))] dx < &/4.
p — graduy ;s 1 Q

We now apply Proposition 2.9 to the family v,, 1 < k < p. There exists an
open space A < Q and functions w, € W!-°(Q), 1 < k < p, such that:

(2.93) meas(2 - A) < 1,

(2.94) the w, are piecewise affine over A,

(2.95) Vx €08, wix) = v(x) for 1 <k <p,
(2.96) we — vl <e/3 for 1 <k<p

(2.97) lgrad w, — grad v, |, < /2
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(2.98) grad w,|, < e

Inequality (2.97) arises from (2.42), (2.43) and from the application of
Lebesgue’s theorem, (2.98) results from (2.43) and (2.88) (this is why we had
to make hypothesis (2.78)

Let us now apply Proposition 1.3 to the family of w,, 1 < k < p, over the
open subspace A. Hypothesis (1.57) is indeed satisfied, by virtue of (2.79).
There therefore exists a function w which is locally Lipschitz on A such that:

(2.99) Vfe #,

‘[f(x, grad w(x))dx — i ockJA f(x, grad wy(x)) dx | < ¢/4

k=1

(2.100) lgrad w(x)] < ¢ a.e.onA

(2.101) i w(x)| < ¢/3 VxeA

(2.102) Vx e 0A, w(x) = k\; o, w(x)
We define a function u on Q by:

(2.103) u(x) = w{x) if xeA

(2.104) i awix)  if x €A

This is a continuous function by virtue of (2.102) and it is -Lipschitz with
constant ¢, by virtue of (2.98) and (2.100), whence (2.82) Equation (2.80)
results from (2.90), and estimate (2.81) results from (2.87), (2.96) and (2.101).
It remains for us to establish (2.83). For all f € #, by virtue of (2.79) and (2.91),
we have:

(2.105) < ¢/4

j f(x, grad u(x)) dx

< ¢/4,

P
(2.106) Y o
k=1

j f(x, grad u,(x)) dx
2-A
We now apply (2.92), by virtue of (2.89) and (2.97):

2107 S o f £ grad u(x)) — f(x, grad wy(x)] dx < /4.
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We obtain (2.83) by adding (2.105), (2.99) (taking into account the fact that
w=uon A), (2.107) and (2.106). Whence the result. =

_ Here we must point out that all the functions f which are continuous on
Q x R" satisfy (2.79): it is sufficient to denote by m the maximum of |f(x, &)]
over the compact set Q x {£||| < ¢}, and to write:

(2.108) max | f(x, &) < m.

létge

If A e LY(Q), the function f{x, &) = {(A(x), &> satisfies (2.79) trivially, whence
we immediately have the following corollary, which at first seemes more pre-
cise than Proposition 2.13.

Corollary 2.14. We use the hypotheses and notations of Proposition 2.13.
For all &> 0 and every neighbourhood V of zero for a(L®,L"), there exists a
function u € Wh=(Q) satisfying (2.80), (2.81), (2.82), (2.83) and:

, .
(2.109) grad u ~ grad< Y ockuk) el.
k=1

2.7. I-regularization

We still assume that 2 is a Lipschitz bounded open subspace of R". By
virtue of the above results, we shall now give certain situations where the
I-regularization of the functional u - [, f(x,gradu(x)) coincides with its
Ls.c. regularization, thus generalizing Proposition 1X.1.2. Essentially we
shall give two cases: firstly W§ % 1 € < © and secondly W', under a
common statement.

Let ¢ be a convex function of R” into R, of one of the following types:

(H,) VR, [ <o) <o
(H,) (&) = d(¢| kB), where k > 0andB = { £||¢] < 1}.

In the case of (H,), ¢ certainly is non-negative and continuous. In the case
of (H,), ¢ is the indicator function of a ball in R". We take a Carathéodory
function of Q x R" into R, satisfying

(2.110)  |f(x, &) < a(x) + co(&), where ae L'(Q)andc > 0.
Finally we take a boundary condition in W!-*(Q)
(H,) ue Wo'l(Q)

(H,) u = uy on 9Q, where u, € W =(Q) satisfies ||grad uy|,, < k.
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Let us define a mapping F of W!-}(Q) into R by:

Flu) = + o iquoogradu=+oo
Q

(2.111) | F(u) = + oo if u does not satisfy the boundary conditions,

F(u) = J Sf(x, grad u(x)) dx otherwise.

Finally, we put W*! into duality with L* x L® by the usual bilinear form:

(2.112) {u(hp)> —jhu+ 2 f”'ax

Proposition 2.15. Hypotheses (H,) or (H_). For the topology o( W', L® x L%)
the I'-regularization of F coincides with its l.s.c. regularization

(2.113) F** = F.

Proof. 1t is necessary to show that epi F** = epi F, or again that:

(2.114) coepi F =epi F.

We therefore take a point of co epi F, i.e. (Ch.y 0ty 2oy 2a;), Where
the a, are positive real numbers with sum unity and where:

(2.115) Flu)<a, < + o0 for 1 <k<p.

We take ¢ > 0 and a weak neighbourhood V of the origin for the given
duality. From Corollary 2.12 (for hypothesis (H,)) or Corollary 2.14 (in the
case of (H™)), there exists u € W'1(2) such that:

P
(2.116) u-— Y queV
k=1

4
(2.117) F(u) — ) o F(w)| <.
k=1
Substituting (2.115) into (2.117), we obtain:

) 4
(2.118) Y wa, + & = F(u).
k=1
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But (2.116) and (2.118) indicate that:

(2.119) coepi F < epi F
Whence (2.114) and the result. =

Corollaries 2.12 and 2.14 even enable us to state this result more precisely
in the special cases (&) = |¢|%, 1 < « < 0, and (H®).

Corollary 2.16. Let f be a Carathéodory function of Q x R" into R, which
satisfies

(2.120) | &) < alx) + c|e
where a € L\(Q), ¢ > 0 and | < a < «. We then define a mapping F of Wy*(Q)
into R by:

(2.121) Flu) = f f(x, grad u(x)) dx.

For the duality (W2, W), we have:
(2.122) F** = F.

Corollary 2.17. Let f be a Carathéodory function of Q x kB into R, which
satisfies

(2.123) max | f (x, )| < a(x)

&l <k
where a € LN(Q). We take u, € W'(Q), such that
(2.124) [grad u,l| , < k.
We then define a mapping F of W' =(Q) into R{+x} by
Fu)=+« if u#uyondQ orif |graduf, >k

(2.125) Flu) = J f(x, grad u(x)) dx otherwise.

For the duality (W=, L* x L}), we have:

(2.126) F** = F.
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3. APPLICATIONS TO THE CALCULUS OF VARIATIONS

We shall now apply the above results to the study of the integral [q f**(x;
gradu(x))dx, which will enable us to calculate the I'-regularization of the
functional F and will provide us with a relaxation theorem for variational
problems of the following type:

() ot Lf(x’ u(x), grad u(x}) dx

u=u, onoaQ.

3.1. A crucial lemma

Let Q be a Lipschitz bounded open subspace of R*. We shall state our
lemma under one of the following sets of hypotheses:

Hypotheses (H,). We take a continuous convex mapping ¢ from R" into R,
satisfying (&) > |£|, and a Carathéodory function f from Q x R" into R,
satisfying

(3.1 0 < f(x, &) < a(x) + cop(é), where ae L'(Q)andc > 0.

We denote by W = W}-9(Q) the set of functions u of W5 *(Q) (“null on the
boundary”) such that [ ¢ o gradu < +«. This is a convex set of W-}(Q).
We define a positive function Fon W' by:

Fu)= + o if u¢#

(3.2) F(u) = J f(x,grad u(x))dx if uew.

Hypotheses (H_). We take a number k& > 0 and a Carathéodory function f
from Q x kB into R, satisfying:

(3.3) 0 < f(x, &) < a(x) vée kB, whereae LY(Q).
In addition we take %, € W'*(8) such that:
(3.4) |grad u,),, < k.

We denote by #” the set of functions » of W''(Q) such that ¥ = 4, on 0Q
and such that | grad«|, < k a.e. in Q. This is a closed convex subset of W}(Q).
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We define a non-negative function F on W!:! by

Fluy= + if ugw
(3:5) F(u) = J Sf(x, grad u(x)) dx if uew.

Lemma 3.1. Hypotheses (H,) or (H_). For p > 0, we denote by f, the truncated
Sunction:

folx, &) = + 0 if &l >p
Jx8) = fx, &) if ¢ <p.
Let us make p tend to 4. For all x € Q fixed, {}*(x;.) is continuous on its

effective domain and converges to f**(x;.) uniformly over all compact subsets.
For all £ e R, f**(.; &) converges to f**(. ;&) in LY(Q).

(3.6)

Proof. In the case of (H,,), £;** = f** =f**if p > k. We can thus assume that
p <k. We fix x € 2. We know (from Lemma 1X.3.3.) that for all £ € pB:

n+1 n+1
ov)ft%nf%=mm[§:aﬂnéaueEﬁpﬁﬁpB,z;wi=<}

i=1

If in particular |£| = p, £ is extremal in pB, and cannot be the centre of gravity
of separate points. Thus, for all & e 8(pB), f(x;&) =f**(x;&). We already
know that f**(x,.) is finite and lLs.c. on pB, and thus continuous
in the interior. To check the continuity on the boundary, we take ¢ € 8(pB)
and a sequence {, € pB converging to £.

Since f#* is 1.s.c.:

lim f3*(x; L) = f3*(x;8) = f(x &)
and since f¥* is less than the continuous function f on pB:
fim f¥*(x:0,) < lim f(x.0,) = f(x. &)

The continuity of £}*(x;.) is thus established.

If 6 > p, it is obvious that f** > f** > f** The pointwise infimum inff}** is
therefore a convex function, which is continuous over the domain of f**
everywhere less than fand greater than /**, This can only be /**, which is thus
the decreasing pointwise limit of the fF* as p — «. Hence we deduce the first
part of the lemma by virtue of Dini’s theorem and the second part from Lebes-
gue’s theorem (by the inequality (3.1)). =
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Proposition 3.2. Under hypotheses (H,) or (H,), for each piecewise affine
Sunction ue W, for all ¢ >0 and every neighbourhood V of 0 for o(Li,L%),
there exists a function v € W such that:

(3.8) gradv — gradueV,

(3.9) lo —ul, <

(3.10) <&

j f(x, grad v(x)) dx — j S **(x; grad u(x) dx

Proof. We take u € #°, piecewise affine, ¢ > 0, and a neighbourhood ¥ of
zero for o(LL,Ly) of the form:

(3.11)

V= {peL,}

J Cho(x), () > dx

gr],meM}

where 7 is a positive number and the h,,, m € M, are a finite family of functions
of LY.

By hypothesis, there exists a partition of Q into a negligible set N and open
subspaces A, | < i< p, over which gradu is constant. By virtue of Lemma 3.1,
we can choose a number p > |grad«|, such that:

(3.12) f |f**(x; grad u) — f**(x; grad u)| dx < ¢/6.
2

When (H_) applies, we put p = k. Under these conditions, f¥* is a Cara-
théodory function which is non-negative over Q x pB, and for each i there
exists a compact subset K; < A, such that

(3.13) f [a(x) + ¢ max @(¢)] dx < ¢/6p.

3.149) The restrictions of fand f}** to K; x pB are continuous.

By applying (3.14) and the compactness of pB, for all x € K, we can find an
open ball @, with centre x contained in Q such that:

(3.15)

Vyew, n K, |£3*(y, grad u) — f3*(x, grad )| < 6 measQ
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[

(3.16) Vyew, A K, VEpB, 100 — f(x,8)] S o

From Lemma IX.3.3, for all x € A, fixed we can find positive numbers
o, } <k <n+2 with sum unity, and points €, €pB, 1 <k<n+1, such
that

n+1
(3.17) Y o, =gradu
k=1
n+1
(3.18) Y o f(x &) = f¥*(x; grad u).
k=1
And (3.15) and (3.16) then become:
(3.19)
v K . d n+1 28
yew,n K, Xy, era u)—kg1 wf(% 8| S g

But we can cover the compact K| by a finite number of those open balls
w,, denoted by w,, 1 <j <1 The open subspace wj=w,;— | JIZ{ @; have a
boundary dw), of null measure, and Uj_, @, = .., w;. We take a family
uy, 1 <k <n+1, such that gradu, =&, and u= >ii} a,u,, and we apply
Proposition 1.3 to each of the open spaces w;].

This is possible by virtue of (3.17), and this gives us a function v; € W' *(w)})
such that:

n+1
(3.20) j f(x, grad v(x)) dx — ¥ akj flx, &) dx | < —
w5 k=1 w5 6pf
(3.21) Vx € w), lgrad v{x)] < p
(3.22) Vx € o, lodx) — u(x)] < ¢
(3.23) Vx € do), v (x) = u(x)
(3.24) Yme M,

j Chofx), grad v(x) > dx — f (ol grad u(x) > dx | < nipé

Finally we set:

(3.25) v

N
=

]
on A, — | o,
M

J
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The function v, is thus, by virtue of (3.23) a continuous function over A;,
coinciding with u over dA;. We can then define a continuous mappingron Q by:

v(x) = v(x) if xeA;

(3.26) v(x) = u(x) if xeN.

We then have v = u over 99, and |grad vll,, < p by (3.21) and (3.25). Hence
ve# . From (3.22) and (3.25) we deduce (3.9) and from (3.24) and (3.25)
we deduce (3.8). It remains for us to establish (3.10).

From the inequalities (3.1) or (3.3)and from condition (3.13) we deduce that,
forl <i<p:

(3.27) J‘ |f**(x, grad u)|dx < ¢/6p
A - K,

(3.28) J |f(x, grad v(x))| dx < ¢/6p

Substituting (3.19) into (3.20), we obtain

(3.29)

f Sf{x, grad v(x)) dx — J‘ S ¥*(x, grad u(x)) dx

7 iAW)
£ emeas wj

< 6p T Smeas0”

We sum this inequality from j = 1 to £, taking into account the fact that the
w; cover K; up to a negligible set:

(3.30)

grad dx — *%(x, grad gi smeasKi.
JK‘f(x grad v(x)) dx Lifp (x, grad u(x)) dx 6p+ Tmem 0

On adding all the inequalities (3.27), (3.28), (3.30) from i = 1 to p and the
inequality (3.12) we obtain the desired equation (3.10), and hence the result.
The central lemma of this section follows:

Theorem 3.3, Under the hypotheses (H,) or (H,), for all functions ue %,
Jor all & > 0 and all neighbourhoods V of zero in 6(L},L3), there exists a function
v EW such that:

(3.31) gradv — gradueV
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(3.32) ’(Hl) ”‘l’ogfadu—fcoogradﬂsg
(Hw) ”u - U”oo e

(3.33) <e.

J‘ f(x, grad v(x)) dx — f S **(x; grad u(x) dx

Q

Proof. The case (H,) can be treated by approximating u by a function w
which is piecewise affine and null on the boundary such that (Proposition 2.8):

(3.34) gradw — gradve 3V
(3.35) f ¢ o gradw — f ¢ogradu| £ &2
Q Q
(3.36) J S**(x; grad w(x)) dx — J S*¥(x; grad u(x)) dx | < ¢/2.
Q [2]

We obtain (3.36) by applying Proposition 2.10 to f **, which is a Carathéodory
function and which satisfies inequality (3.1). It only remains to apply Pro-
position 3.2 to w in such a way as to obtain a function v € # such that:

(3.37) gradv — gradwe 3V

Iq)o gradv—f(pogradw
Q Q

J f**(x; grad w(x))dx — j f(x, grad o(x)) dx

(3.38) < ¢2

(3.39) < ¢/2.

The function v satisfies (3.31), (3.32) and (3.33) whence the result. The case
(H,,) is rather more difficult. We first note that if a sequence (p,),n tends to p
almost everywhere, with || p,|, < & for all n € N, then:

(3.40) f |£*%x: B, () — £*%(x; p(x)) dx — 0.

Indeed the function f** is of Carathéodory type (Lemma 3.1), hence the inte-
grands converge almost everywhere and we can apply Lebesgue’s theorem
by virtue of the inequality (3.3).

We can always assume that | gradu,, < k. In fact, if this is not so, it is suffi-
cient to approximate u by the functions v + A(u — ), A — 0,, which are of the
required type by virtue of (3.4).
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But if ||gradu||, < k, from Proposition 2.9 there exists a function w e %~
and a Lipschitz open subset ¢ < Q such that:

f la(x)] dx < &/4

-0

w is piecewise affine over ¢

flu—wi, <e2

J |f**(x; grad w(x)) — £**(x; grad u(x))| dx < ¢/4

gradw — gradve 3 V.

It only remains to apply Proposition 3.2 to the piecewise affine function w
over @: we obtain a function v € W*(0) such that:

(3.41) Vx e 00 v(x) = w(x)

(3.42) Vx € 00, |grad o(x)| < k

(3.43) Vx € 00, lo(x) — w(x)| < ¢/2

(3.44) 'jf(x, grad o(x)) dx — jf**(x;grad w(x))dx | < &/4
o )

(3.45) gradv — gradwe V.

We can extend v by w outside 0: the function thus obtained belongs to #°
by virtue of (3.41) and (3.42) and satisfies (3.31), (3.32) and (3.33). W

3.2, Calculation of F** and of F*

First of all, we have the following direct consequence:

Proposition 3.4. Under hypotheses (H,) or (H,,), the I'-regularization of F in
the duality (W', L® x LY) satisfies:

(3.46) Yue W F**u) = f S**(x; grad u(x)) dx.

Proof. The mapping » — [ f**(x;gradu(x))dx is convex and ls.c. over
Wt is everywhere less than F and hence than F** .
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(3.47) Vue Wb ‘[ S**(x; grad u(x)) dx < F**(y),
[¢]

As usual, we denote by F the l.s.c. regularization. From Theorem 3.3 we
have:

(3.48) Yue #, J f**(x, grad u(x)) dx > F(u).

But F > F**; (3.47) and (3.48) then give us the required equality. m

As usual, we can apply this theorem to the case where ¢(&) = [€[*,1 < a < <,
Corollary 3.5. Let f be a Carathéodory function over Q x R" which satisfies:

(3.49) 0 < f(x,8) <alx) + ¢l

wherea € LY(Q), ¢ > 0,and o > 1. We define afunction F from W*(Q) into R by:

(3.50) F(u) = JA f(x, grad u(x)) dx.
2
In the duality (W§*, W), where 1/a + 1/a’ = 1, we have:

(3.51) F**(u) = f F**(x; grad u(x)) dx

Q

(3.52) F*(u*) = min[ f

Q

fH(x; p*(x))dx | p* e LY, — divp* = u*]-

Indeed, we obtain (3.52) by writing that F**(u) = F o A where Fis the map-
ping p > [of**(x;p(x))dx from LZ into R and A is the mapping v -~ gradu
from Wi into L. Now, Fis a continuous convex function, whose polar we
calculated in Chapter IX, Section 2, and it only remains to apply Proposition
L5.7.

3.3. Relaxation

We are now in a position to state a relaxation theorem as a result of Theorem
3.3,

Proposition 3.6. Under hypotheses (H,) or (H),, the problems

(2) Inf j f(x, grad u(x)) dx for uew
Q
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(PR) Inf Jf**(x;grad u(x)) dx for ueWw

have the same value
Inf(#?) = Inf(2 ).

We note that, in the case (H,), we can no longer assert that the problem
(P %) possesses solutions. For this to be so, we need further hypotheses; we
shall now state a more precise theorem with hypotheses which depend on
parameters a(a = 1 or +) and B(1 < B € »).

As always, Q will be a Lipschitz bounded open subspace of R". We take
a function ¢ over R” satisfying one of the following conditions:

(a=1), ¢ is a convex mapping from R" into R, hence non-
(3.53) negative and continuous, such that ¢(£)/|¢é| — « when |¢] - ©
(@ = )¢ is the indicator function y,z of kB.

Let f be a mapping from © x (R x R") into R, such that:

(1 £ f < ), there exists @, and a, e L'(Q), b>0and c > ]
such that 2,(x) + @(¢) < f(x,5,&) < ay(x) + bls|f + co(¥)

(3.54) B = x), there exists a, € LY(Q) and, for all p >0, there
exists @; € L'(Q2) and ¢ > 1 such that:

ax(x) + (&) < f(x,5,8) < ay(x) + cp(§) for [s| <p

(3.55) fis a Carathéodory function over its effective domain.

We note that, from the estimates (3.54), this effective domain is 2 x (R x R")
ifo=1and @ x (Rx kB)if &= .
We take o € Wi{(Q)

=1) Uy, =0

(3.56) (@ = o0) |erad u,||,, < k.

Theorem 3.7. Hypotheses (3.53) to (3.56). If «=1 we assume that if a
sequence (U,),en 1n W5 converges weakly to 6 in Wit and if | ¢ o gradn,
converges to | ¢ grad u, then u, converges to i in L. Under these conditions, the
problems:

(2) Inf Lf (x, v(x), grad u(x) dx

ueu, + Wyt
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(P R) Inf Lf**(x, u(x); grad u(x)) dx
ueu, + Wyt

have the same value:
Inf(#) = Min(2?%).

The problem (PR) possesses optimal solutions. If @ is a solution of (PR),
there exists a minimizing sequence (U,),en 0f (P) such that u, — i in L? and that
gradu, — gradu in the o(L,L*) topology. If (#n)nen is @ minimizing sequence of
(P), there exists an optimal solution @ of (PR) and an extracted subsequence
(n)xen Which converges to @ in L, while (gradu, )iex converges to gradd in the
a(L',L™) topology.

Proof. By virtue of the coerciveness (3.53), and Proposition VIIL.2.5 the
problem (#%#) possesses solutions. We can thus proceed as in Section 4,
Chapter IX.

Let @ be a solution of (##). From the estimates (3.54), we have [, ¢ 0
gradi < +o.

There exists, by Lemma 1X.4.2, an increasing convex function y: [0, e[ —
{1,4[ such that:

lim-lli(i)— +
t»w I
(3.57) J Vogogradi < + oo.
2

From the estimates (3.54) we deduce that:

(B < ), 0 < flx, i(x), &) — ay(x) < ay(x) — a,(x)
+ bla(x)f + cy o 9(¢)
(B = ), 0 < f(x,u(x), &) — ay(x) < ay(x) — ay(x) + c¥ o o(c)
for [¢] < k.
We can thus apply Theorem 3.3 to the integrand f(x,i(x), &) — a»(x) and to

the function u € W %o ®. There thus exists a sequence (u;);x in W1(Q)
such that as j — o

(3.58) grad u; - grad u for o(L', L®)
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=1) fYopograduy, » [y o pogradi

@ = o) Ju, = ulo -0

(3.59)

—_— —
S
|

(3.60)

J Sf(x, u(x), grad u(x)) dx — J f*¥(x, u(x); grad @(x)) dx | - 0.

Q

Ifa=1,by(3.59),as ¢y > 1,
foogradu; - ¢ o grad u,

and from the stated hypothesis, 1, converges to u in L?. If a = o, this result
comes directly from (3.59). Finally, by possible extraction of a subsequence,
we have:

(3.61) u, —u in Lf and almost everywhere.
Taking p > 0 we set:
(3.62) hyx) = |f(x, u(x), grad u(x)) — f(x, @(x), grad uyx))|
(3.63) A, ={xeQ||po gradu(x) < p}
(3.64) B, = {xeQ||pogradu(x)| > p}.

From the estimates given by (3.54), we have:

(B < ) [hi(x)| < |as(x) — ax(x)| + Bl|a(x)’
+ [u(x)[*) + (¢ — 1o o grad u(x)
(B = o) |h{x)] < |ay(x) — a,(x)] + (¢ — 1)e o grad u(x).

From Theorem VIIL.1.3, the conditions (3.59) imply that the family of
mappings x — @ o gradx,(x), for i € N, is equi-integrable. If < «, the family
|u,(x)|® is equi-integrable by virtue of (3.61). The family of 4,, i e N, is thus
equi-integrable. Theorem VIII.1.3 further serves to show that measBf — 0
uniformly for ie N as p — © and we can therefore choose p > 0 sufficiently
large so that:

(3.65) J‘ h; € ¢&/3 VieN.
B,

We now examine the sequence of functions /1] i for i e N. For almost
all x € @, u,(x) — @#(x), and hence f(x, u,(x), &) — f(x, u(x) &) uniformly for ¢
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belonging to the compact set {¢|p(&) < p}. The functions 4;1 ,, thus converge
to zero almost everywhere. Since they form an equi-integrable family, they
converge to zeroin L'. We can therefore choose i, € N sufficiently large so that:

(3.66) f hi < /3 Vi > i,
45

By adding (3.65) and (3.66) we obtain:
(3.67) [hi < 2¢/3 Vi > .

Substituting (3.62) into this expression, we obtain for i > i,

(3.68) J | f(x, ufx), grad u(x)) — f(x, 4(x), grad u(x))| dx < 2¢/3

and by virtue of (3.60), for i > i;:
(3.69)

(R

J f(x, u(x), grad u(x)) dx — f f**(x, u(x), grad u(x)) dx

Q

< ¢/3.

By adding together (3.68) and (3.69), we obtain for i > max(iy,i,)

(3.70)

J‘ J(x, ufx), grad u(x)) dx — min (2 %)

Thus inf(#) = min(#%) and the theorem results. m

In particular, we can use this method to deal with non-homogeneous
problems (with non-zero boundary conditions). We give an important example
in the case where @(&) = [£]%, 1 < a < .

Corollary 3.8. Let f be a Carathéodory function from Q x (R x R") into R
which satisfies

(3.71) ay(x) + ¢, €] < flx, 5,8 < ay(x) + bls]* + ¢, [
where a, and ay LN), 1 <a< w, b2 0 and ¢, 2 ¢, >0. Let ug € W'*(Q).
The problems:

(@) o Lf (x. u(x), grad u(x)dx

u—ue Wi
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(@A) Inf Lf**(x; u(x), grad u(x)) dx
u—u,e Wy
have the same value:
Inf(#) = Min(PR).

The problem (PR) possesses solutions: these are the weak cluster points in
WL of the minimizing sequences of problem ().

Proof. Let us introduce the integrand:

(3.72) g(x,5,8) = f(x,5 + up(x), & + grad uy(x))
and apply Theorem 3.7 to the problem:

Inf x, v(x), grad »(x)) dx
@ J o050, grad o)

ve Wyl

Indeed, g is a Carathéodory function over 2 x (R x R"), and we have from
convexity that:

(3.73) g(x, s, &) = ay(x) + ¢, |¢ + grad uy(x)]*

> (a,(x) — ¢, Jgrad u (x))®) + -20—§—1 ¢

(3.74) glx, s, &) < ay(x) + bls + up(X)|* + ¢, |€ + grad uy(x)*
< a,(x) + 227 b Juo(x)|* + ¢, |grad uy(x))
+ 2a—1bls|u + Zu—lcl 'éla.
The integrand g has all the required properties. We now recall that the
injection of W'-* into L is compact. If therefore v, is a sequence in W},
the sequence of the grad v, being bounded in L* and converging to grad for
o(L>,L*) (which coincides with ¢(L% L) on bounded subsets), then v, con-

verges to § in L2 All the conditions of Theorem 3.7 are satisfied and thus
Inf(2) = min(24%), where: '

(2%) Inf Jng**(x, o(x); grad o(x)) dx

1,1
ve Wyl
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But clearly, g**(x,s;&) =f**(x,s + uo(x); £ + gradug(x)). Hence:
(3.75) inf (#?) = inf(2) = min (22) = min (2%). =

Again, we can put the relaxed problem into a second, equivalent, form:

minimize [ "5 1(3) (x4, p () 05
0i=
n+1
(@R) i; I{x) = land /[(x) = 0 1<ig<n, ae.
grad u(x) = "il (x)p(x), a.e.
u=u, on lééz

3.4. A maximum principle for the relaxed problem

Starting from Corollary 3.8, it is natural to investigate the properties of
solutions of problem (#%). In the case where o > n, it is clear from the Sobolev
embedding theorems that such relaxed solutions—because they belong to
W1-%(Q)—are bounded on Q and Hélder continuous on every compact subset:

(76 VKcompact< @,  Sup I
x,yeK Hx _y”1—n/a

Scheurer [1] has shown how those results generalize to 1 < « < n. He proves
a maximum principle, and then introduces an additional hypothesis (the
“bounded slope condition” of Stampacchia) under which the relaxed solutions
are Lipschitz continuous.

We shall resistrict ourselves to proving the maximum principle in the simpler
case where « # n and f does not depends on s:

Theorem 3.9. Let Q be a regular bounded open subset of R", and f: Q x R" —
R a normal integrand such that:

3.77) clEl*<f(x, &) with ¢>0 and l<a<n
(3.78) 1,0 eLX(Q) with y> % :
Let ug € WH%(Q) N L*(Q) and denote by ¥ the set of solutions of the problem:
(PR) [Inff J**(x; grad u(x))dx
u ——Quo e Wh(Q).
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There exists a constant e > 0, not depending on u, such that:
(3.79) lul, <lullo+e  Vues.

Before proving this theorem, let us first show in what sense it yields a
maximum principle. Recall that, for any constant a € R,, and any function
u € Wi+(Q), the truncated function:

a if wx)>a
(3.80) Tou()={u(x) if fux)l<a
—a if u(x)<-a

belongs to Wi-%(2). We can define the supnorm of #, € Wi%(Q) N L%(Q) on
the boundary 9@ as:

(3.81) |0uo|. = inf{a € R, |ug — T, up € W5 *(Q)}.
Formula (3.79) then becomes:
(3.82) lu|, < O], + € Vue.

In the special case where e = 0, we recover the familiar form of the maximum
principle. In the general case, the supnorm of # over the domain Q can be
estimated by its supnorm over the boundary Q.

Proof. Take u € &. For any k > |uo],, we consider the set:
(3.83) A(K) = {x € Qu(x) > k}
and the truncated function:

k if wx)>k
u(x) if ux)<k.

We know that T;tu e Wh%and T.fu — up € W§e
As u is a solution of problem (2%):

(3.85) f f**(x; grad u(x)) dx sf S**(x; grad T u(x)) dx.
Q2 Q2
Using the fact that u(x) = T} u(x) over @ — A(k), this yields:

(3.86) L ® [ **(x; grad u(x)) dx sf f**(x; 0)dx.

Ak)

(3.84) T4 u(x) ={

Using the estimates (3.77) and (3.78):

(3.87) f |grad u(x)|*dx < L f F**(x;0)dx
ACK) C Jaw
the integrand on the right-hand side being in L (Q). By the Holder inequality:
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(3.88) Lm |grad u(x)|*dx < % [£**(. ;0)]|, (meas A(k))'~*".

Note that the left-hand side can be written as |igrad v|)%, where v = max(u — £,0)

belongs to W= We can apply to v the Sobolev embedding theorems: there
exists a constant S depending only on Q and « such that:

lolax < Slgrad ],

where &1; = é—rlz . Taking (3.88) into account, this becomes:

1a®
(3.89) (f (u—k)* dx) < c(meas A(k))!/= Y
A(R)
where ¢ = | f**(.;0)|3(S/c)"/*. By Holder’s inequality:
1/a*
(390 f Ak (u=k)dx g(f (= dx) (meas A(k))' 1"

Ak
and substituting (3.89) into (3.90):

(3.91) f (u — k) dx < c(meas A(k))}~1/e*+1/a-tiay
A(k) :

= c¢(meas A(k))*** with &= 1_1so
n o ay

The inequality (3.91) holds for every k =|ull,. Applying Lemma 3.10,
which follows, to the function w = u — |ju|,,, we obtain:

u(x) < [[uo], + d.
In a similar way, we can prove that:
u(x) > —lugll — d’
where d' is a non-negative constant. Whence the result, by setting e=
max (d,d). =
Lemma 3.10. There exists a constant e > O such that:

f (= k)dx < c[meas A Vk>0 > u(x)<e ae.
{u(x)>k}

Proof. Using the notation (3.83), we consider the function: H:R, — R,
defined by

HEK) =| (u-k)dx.

A(k)

Its derivative is easily computed: H'(k) = meas A(k). This enables us to

write the assumption regarding u in the following way:
—H'(k)

HEQ) < - 01 or i >

—1/(1+¢€)
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Set m = esssupw. Integrating the preceding inequality between £ =0 and
k = m, and taking into account the fact that H(m) =0, we obtain:

HQO)+0 5 _&_ vave,,
1+e

Hence:

m < 28 e roprase ¢ LEEcuaen o140 fmeag 40y

esssupu=m< 1—-%—ac[meas Ne=e. N

Note that this lemma is a refinement of Theorem VIIL1.3.
We refer to the work of Scheurer [1] for a treatment of the general case, as
well as further results concerning the Hélder or Lipschitz continuity of solu-

tions of the relaxed problem.

4. EULER EQUATIONS

4.1. Exact and approximate solutions

Let ¥ be a Banach space and F a l.s.c. function from ¥ into R U {+w}
which is assumed to be Gateaux-differentiable at all points of its effective
domain. We consider the optimization problem without constraints:

@) InfF(v) for vew.
If there exists a solution 3, it necessarily satisfies the equation (&)
(4) F() =0

called the Euler equation of the problem. Conversely, if in addition F is convex,
all solutions of the Euler equation achieve the minimum of F over V.

But these hypotheses by themselves are far from sufficient to ensure the
existence of a solution of problem (#) or of equation (£). However, we have
approximate solutions in the following sense (as usual |||, denotes the norm
of ¥* and B, its unit ball).

Proposition 4.1. If F is l.s.c. and infF > —w, there exists in V a sequence
v, € N, such that:

(4.1) F(v,) - inf F
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(4.2) IF)l, = 0.

Proof. We take in V a sequence u,, ne€ N, such that F(u,) — infF < 1/n.
From Corollary 1.6.1, for all n € N there exists a v, € V such that:

F(v,) < F(u,)
[Pl < 1/n.
This sequence v,, n € N, satisfies the Proposition. =
Corollary 4.1. If Fis l.s.c. and if there exists k > O and ¢ € R such that
(4.3) VoeV, F(v) = k|o| + ¢
then F'(V) is dense in kB,

Proof. Possibly replacing F by F— ¢, we can always assume that ¢ =0.
It is sufficient to show that F'(¥) is dense in kﬁ*. We therefore take v* € V'*
such that ||o*|, < k and show that we can approximate it by elements of F'(V).

Let us set G(v) = F(v) — <v,v*>. This is also a l.s.c. function from V into
R U {+x}, Giteaux-differentiable over its effective domain, and G'(v) =
F'(t) — v*. From (4.3), we have:

YoeV, G(v) = (k — [v*|,) [v]

and thus inf G = 0. From Proposition 4.1, there exists a sequence v, n € N, in
V such that:

16w, — 0
IF@) - o], ~ 0. m

Corollary 4.2. If F is L.s.c. and non-negative and if"

(4.4) -l%'ﬁ) - o0  when v >

then F'.V — V'* possesses a dense image.

Proof. Taking k > 0, from (4.4) there exists @ > 0 such that

>klo] for Jo] > a
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and hence, since F is non-negative:
YoeV, F(v) = k (o] - a).

From Corollary 4.2, F'(V) is dense in kB*. Since k > 0 is arbitrary, F'(V)
isdensein V*. =m

Henceforth we shall assume that the I'-regularization F** of F coincides
with its weak Ls.c. regularization F, a hypothesis which we have proved in
Chapters IX and X for certain functionals of the calculus of variations. We
can then render Proposition 4.1 more precise:

Proposition 4.2. With the assumptions that F is Ls.c., that F** = F and that
¥ minimizes F** over V, then there exists in V a sequence v,, n € N, such that

(4.5) v, = U weakly,
(4.6) F(o,) ~ inf F = F**(3),
(4.7) F'(v,) = 0 0F**(p).

Proof. By definition:
inf F = F(3) = inf{ F(v)| v — © weakly}.

There thus exists a sequence u,, » € N such that:

(4.8) u, —» v weakly
(4.9) F(u,) - F(p) = inf F.
From Corollary 1.6.1, there exists for all n € N a v, € ¥ such that:
(4.10) F(v,) < F(u,)
(4.11) lo, = u,] < V1/n
(4.12) IFel. < Vi/n.

We obtain (4.5) from (4.8) and (4.11), (4.6) from (4.9) and (4.10), (4.7)
from (4.12). =m

4.2. Calculation of the differential: the convex case

Lemma 4.1. Let f:Q x R? — R, be a non-negative Carathéodory function,
such that, for almost all x € Q, & — f(x, &) is convex and differentiable through-
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out its effective domain. We assume that there exist vy € L) and vy € L¥(Q)
with 1 < < o and 1/a + 1{o’ = 1, such that:

(4.13) J.fxvo )dx<wmdff x; v3(x)) dx < 0.

We define a function F over L*(Q) by:

(4.14) F(v) = I f(x, v(x)) dx.

F is subdifferentiable at ve V if and only if the function:x > f;(x,0(x))
belongs to L* (), and it is then the unique subgradient of F at v.

Proof. From Proposition 1X.2.1, we have

Yo*eV, F*(v*) = J f*(x; v*(x)) dx.
Q
Let us fix ve V. To say that v* € 0F(v) means that v € domF and that
(Proposition 1.5.1)
F(v) + F*@o*) — (v,v*) = 0.

On substituting the value for each term, we then have:
j Lf(x, v(x)) + f*(x; v*(x)) — v(x)p*(x)] dx = 0.

Now, by definition of the polar f*(x;.), the term in the square brackets is
> 0. If the integral is null and the integrand non-negative, then the integrand is
zero almost everywhere:

SO, v(x)) + *x; v¥(x)) — v(x)o*(x) = 0 a.e.
By applying Proposition IX.5.1 again

v¥(x) € 3 fi(x, v) a.e.
v¥(x) = fix,v) ae =

This Lemma allows us to find easily the Euler equations for convex problems
of the calculus of variations. We give two examples:

Example 1. Exact solution of a fourth-order equation.
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Let g: 2 x R — R, be a non-negative Carathéodory function which satis-
fies the estimate:

(4.15) 0 < g{x,5) < a,(x) + b, |s]*, where a, e L'(?) and b, > 0

and such that, for almost all x € Q, g(x,.) is convex and differentiable.
Let f:Q x R — R be a Carathéodory function, which satisfies the estimate:

(4.16)  ay(x) + by | < f(x, &), where a®e I}(®) and b, > 0

and such that, for almost all x € Q, f(x,.) is convex and differentiable through-
out its effective domain. We assume that there exists p, € L2(Q) such that:

(4.17) Jf(x, po(x)) dx < + 0.

We assume the open space @ to be sufficiently regular for the Laplace
operator A to be a bijection of H} N H? over L?, and we examine the following
problem in the calculus of variations:

Inf j [g(x, v(x)) + f(x,Av(x))] dx

ve H n H.

(4.18)

To put this problem into the usual form, we introduce the functions G and F
on L*(Q) defined by:

(4.19) Gv) = J g(x, v(x)) dx

(420) Fp) = J £ o) dx.

The canonical injection i from H} into L? is compact. The Green operator
% =i o A" is therefore compact from L? into L2, and we can easily check that
it is self-adjoint. We can thus put the problem under consideration into the
following form:

{Inf G o 9(p) + F(p)

4.21
(4.21) pel?
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These are the hypotheses of Theorem VIIL.2.2 and the problem therefore has
a solution 3 = %5. The point j satisfies the Euler equation

(4.22) 0€d(G o % + F)(p).

But Fis Ls.c. and G o 4 is continuous on L? (Proposition VIII.1.4). From
Proposition 1.5.6, we have:

(4.23) 3G o % + F)p) = 8(G o 9)p) + F(p).

From Lemma 4.1, and taking into account formula (2.30) of Chapter IX,
we have:

(4.24) OF(B) = { x = fix, p(x))}
(4.25) 0G(¥p) = { x — gilx, ¥p(x)) }.

Since G is continuous, we obtain (G o ¥)(p) by applying the chain rule for
subdifferentials (Proposition 1.5.7).

&G o 9)p) = ¥ 8G(¥9p).

By identifying L? with its dual, we replace the transpose ¥’ by the adjoint
G*=9.

(4.26) G o 9)(p) = % 0G(%p).
Finally, the Euler equation can be written as
%g.(x, ¥p(x) + f{(x,p(x)) =0 in L¥Q).
Or again, by definition of 4:
(4.27) gidx, o(x)) + Af/(x,A%(x)) =0 in LXQ).
Or finally, on writing out the Laplacian explicitly:

(4.28)  gix, v(x)) + é:l -;;—22 [fg’(x, ~=i1 % (x))] =0 ae.

Conclusion. Equation (4.28) has a solution © in H§ N H?. This solution is
unique if f(x,.) or g(x,.) is strictly convex for almost all x.
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Example 2. Approximate solution of the equation of minimal hypersurfaces.

We take v, € W(Q), and we consider Plateau’s problem:

Inf | [1 + |grado|*]"? dx
429 [+ laraa o
v —vye Wg'(D).

Setting grad vy = p,, We can write the problem in the following form:

Inf J [1 + |grad u(x) + po(x)]*]"/* dx
1]

ue WiQ).

(4.30)

Let us define the function F on L1(©) by
(#31) P = [ [ +1009) + poP12 d.
[0}

It is convex and continuous and therefore subdifferentiable throughout
L} From Lemma 4.1, 9F(p)is reduced to the function(p + po)/[1 + |p + po|*1"/2
Since Fis continuous, we can apply the chain rule for subgradients to F o grad
(Proposition 1.5.7): F o grad possesses at every point u e W51(Q) a unique
subgradient :

gradu + p,
[1 + |grad u + po|*]'/*

(4.32) — div

In particular, F o grad is Gateaux-differentiable over W}-1(2) (Proposition
1.5.3), its differential being given by (4.32). The Euler equation can thus be
written as:

gradu + p,

4.33) - div =0, ue Wi(Q
(439 [1 + |grad u + pyl?]*? (@)
or, by writing # + v, = v, as:

(434) - div grad v =0, v — vy € WiHQ).

[1 + |grad o]?]'72

However, we know that in general neither Plateau’s problem (4.29) nor the
equation of minimal hypersurfaces (4.34) have exact solutions. We must there-
fore seek approximate solutions.
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Clearly, for ue Wjt:

(4.35)
j[l + [grad u(x) + po(?1? dx > j lgrad u(x)] dx — j polx)] dx.

From Poincaré’s inequality, there exists & > 0 such that:
(4.36) Yue Wi, f lgrad u(x)| dx 2 k |uf ...
2

And thus (4.35) can be written as
(4.37) F(u) > k |u]| — constant.

We can therefore apply Corollary 4.1: there exists in the ball kB* of W~1.«
a dense subset & such that for all T e & the equation

. gradu + p, _ 1.1

has a solution @. But equation (4.38) can also be written as:
(4.39) oF o grad)(u) — 0T (u) = {0}.

Since F o grad is continuous over W }-1(Q), the latter equation can also be
written as Proposition 1.5.6:

(4.40) O(F o grad — T)u) = {0}
which means that the problem:

(4.41) Inf F T,lgrad W —<T,u>
ue Wy'(Q)

has a solution. This is necessarily unique, by strict convexity, and the solution
of (4.38) is thus unique. Writing v = u + v,, we obtain the

Conclusion. There exists in W3=(Q) an open subset around the origin
which contains a dense subset & such that, for all T € &, the equation:
grad v

— di = 1.1
w [1 + |grad o|?]"/2 L vevo + Wol(Q)




352 RELAXATION AND NON-CONVEX VARIATIONAL PROBLEMS
and the problem:
Inf f [1 + |grad v|*]V2dx = (T, v )
Q
vev, + Wi (Q)

have a unique solution.

4.3. Calculation of the differential: the general case

In the non-convex case, the actual calculation of ¥'(v) can be made by differ-
entiation under the summation sign. We give an important example.

Let /1 Q2 x R" — R, be a non-negative Carathéodory function, such that
for almost all x, & - f(x,£) is continuously differentiable (not necessarily
convex) and satisfies the inequality:

(442) |fx. & <a+blE™', whereaandb>0anda>1.
We then define a function Fon Wi4(Q) by:

(4.43) Voe W, F(v) = J‘ f(x, grad v(x))dx

and finally we make the hypothesis that domF # &
(4.44) Jv,e W5 : Flvy) < + 0.

F is non-negative and ls.c. on W}-¢ (Proposition VIII.1.4), but it is not
necessarily convex and has no other reason for achieving its minimum.
We shall show that it is finite everywhere and Giteaux-differentiable and we
shall apply Proposition 4.1 to it.

Thus, take v e W} such that F(v) < +o0. We take w € W32, and consider
the function ¢+ F(v + tw) over [0,1]:

(4.45) F(v + tw) = J f(x, grad v(x) + t grad w(x)) dx.

For 0 < ¢ < 1, the inequality (4.42) gives us

i f(x, grad v(x) + ¢ grad w(x))

(4.46) =

= { grad w(x), fx(x, grad v(x) + t grad w(x)) )
< |grad w(x)|(a + b|grad v(x) + t grad w(x)]* " }).
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We must thus consider the two cases: 1 < « <2 and a > 2.

First, let us assume that 1 < « < 2. Then (p + 6)* ! £ p*! + ¢! for p and
o real and positive, and (4.46) gives us:

(4.47) a%f(x, grad v(x) + t grad w(x))( <
< |grad w(x)| (a + b|grad o(x)|*~* + b|grad w(x)|* ).
If now « > 2, we have
(p+0) 1 <2° p* ! + 6%}
for p and ¢ real positive and (4.46) gives us:
(4.48) l‘% f(x, grad v(x) + t grad w(x)l <
<|grad w(x}|(a + 2%~ 2b|grad o(x)]*~* + 2 2b|grad w(x)|*"}).

Bringing together (4.47) and (4.48) we obtain in every case for 0< < 1:

(4.49) lgt— f(x, grad v(x) + t grad w(x))| < g(x), where g e L'(Q).

The inequality (4.49) is the standard condition for differentiability under the
summation sign, applied to (4.45). We thus obtainfor 0< s < 1

(4.50) Flv +1tw) < + o

(4.51) %F(v + tw)],=o = f ( grad w(x), f(x, grad v(x)) > dx.

For all v € W}§*, on taking v = v, and w = v — v, in (4.50), we obtain F(v) <
4+, The functional Fis thus finite everywhere: dom F = W~ Forallv € Wi,
by virtue of (4.42), we have:

(4.52)  {x = fi(x,grad v(x)) } € L*(Q), where 1/a + /o' = 1.

Thus —divf'(x, gradv(x)) € W% and (4.51) can be put into the form:

(4.53) %F(v + tW)|,eo = — J w(x) div f{x, grad v(x)) dx
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by writing, as usual, the canonical mapping from W~!-2 onto W} (or from
2’ onto 2) in the integral form. The function Fis thus Gateaux-differentiable
everywhere over W% Q), its differential at v being

(4.54) - z 7%, [6{ x, grad o( ))]e W,

It only remains to apply Proposition 1.1. We obtain the

Conclusion. Under hypothesis (4.42) there exists in Wi*(Q2) a sequence
v, 1 € N such that:

(4.55) - Z ey [% x, grad v,(x ))]—+0 in w~(Q).

If moreover « > 1 and if we can find @’ € L(Q) and ¢ > 0 such that:
(4.56) f(x, & = d'(x) + c &

then we can easily check that F(v)/|v| — « as v tends to infinity in W}%, so
that we can apply Corollary 4.2:

Conclusion. Under hypotheses (4.42) and (4.56), the mapping

(4.57) v — ‘Z 6‘1 [Mf (x, grad v(x )):|

i=1
from W1%(Q) into W% (Q) possesses a dense image.

An especially well-known case is the following
= Y |& with o > 1.
i=1

The inequalities (4.42) and (4.56) are satisfied. But this time the integrand is
strictly convex and the space Wj® reflexive. For all Te W% the function
F — T attains its minimum at a point which is the unique solution of the Euler
equation

d a-2
v
i=1 dx; dx;

(4.57) -y 5()2{(

a") —0  in (@)

Another special case where we can apply Proposition 4.2 is the following.
We take:

[0 =1 =&
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It is easily seen that f satisfies the foregoing hypotheses, in particular the
inequality (4.42) is satisfied with o = 4. But f also satisfies the hypotheses of
Corollary 3.8, still with « =4 and we have:

fHx;a =0 if g <
fH*x8) = (1 = 1g4?  if g = L
We take as boundary condition v =0 over 2@, where u e Wj*(Q). The

optimal solution of the relaxed problem is then v = 0 over Q. We deduce that,
from Corollary 3.8, every minimizing sequence u, of the problem

"
ii Inf , (1 — lgrad u{x):*)* dx

s
usdo Jo

converges to 0 weakly in W§4(Q). Since furthermore
inf(2) = min (%) =0

we have:

J‘(l — igrad u,{x);*)* dx - 0
Q
It - jerad u,[* . > 0
and in particular, possibly by extracting a subsequence,
lgrad u,(x)| - 1 ae.

From Proposition 4.2, there exists a particular minimizing sequence v, such
that
| n al
1 y é‘(x [grad v,(x)(1 — |grad v,(x)|] = 0 in W143(Q).
i=1 i
v, —» 0 weakly in W~ 1-*(Q) faible,
It — |grad o,*{.: = 0.
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APPENDIX I

An a priori Estimate in Non-convex Programming

Part II of this book has been devoted to the study of convex normal
problems; recall that an optimization problem (%) is called normal if:

inf 2 = sup P* # +oo.

It should be clear from Chapter III, particularly Lemma 2.3, that this
relationship cannot be expected to hold for non-convex problems. It is
replaced by the general inequality:

inf (2) 2 sup (#*).

The non-negative number inf () — sup (2#*) is called the duality gap. We
shall give an a priori estimate of this duality gap in an important case. We
begin by proving a theorem of Shapley and Folkman, which we shall use
later on.

1. THE SHAPLEY-FOLKMAN THEOREM

Theorem 1. Let K,, ie l, be a finite family of subsets of R*. For every
X € > coK;, there exists a subfamily J(X) < I containing at most k elements,
and such that .

Xe Z K+ Zcol(,.

I-J(x) J(2)

Note that k is the dimension of the ambient space. By definition, % can be
expressed, probably in many different ways, as a sum £= >, %, with
X; € co K; for every i. The Shapley-Folkman theorem states that it can also be
expressed as a sum £ = > | x;, with all but k of the x, belonging to the X;.

Define a mapping @ from R* to R* by:

P((X)ier) = z Xge
1

357
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By definition

I

z Ki=9¢ (n K{)'
I
By linearity of the mapping &:

co P (HK,):dicoI:[K;:(b(I’IcoKi)

co ZK,=ZCOK,.
I I

We now proceed to the proof of the Shapley~Folkman theorem. Note first
that 2 € co > K, if and only if £ belongs to the convex hull of a finite number
n of points of > K;. It can be shown that n < k + 1 (Carathéodory’s theorem,
see Rockafellar, [4]), but we shall not use this refinement. We may therefore
express X as:

n n
= Z oy, with y€ ZK,,cx,->0 and Z a;=1.
i=1 1 i=1

Further, every y; can be expressed as:

yi= Zy”’ with y“EK‘.

iel

Denote by F; the n-set {y;;}, <,<n- Clearly, y; € > | F, for every j, so that:
feco Z F,.
1

We have thus replaced each set K; by a finite subset F; < K,. It will be
convenient for the rest of the proof to note that the co F; are polyhedra in R¥,
and their product co []; F; is a polyhedron in R¥,

Denote by H the inverse image of £ under the mapping ®. We are interested
in the subset P of R¥:

P=HnNco [[Fi={(x)ialx;€co F, and 2){,:5‘-‘ .
! 1

The assumption £€>,co F; means P is non-empty. Moreover, as
co J1; F; is a polyhedron and H an affine subspace, P is a polyhedron. Let
(x):er be one of its vertices. We still have £ =3, x;, with x; € co F,, as the
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point (x,);.; belongs to P. Moreover, we shall prove that all but k at most of
the x, are vertices of the corresponding co F,. As any vertex of the polyhedron
co F, must belong to F,, this will prove the theorem.

Otherwise suppose that there exist (k + 1) components of (x,),,, which are
not vertices in the corresponding co F;. Let us denote them by x;, . . ., X,
For every x;, | i<k + 1, there exist a vector z; € R* and a number ¢ >0
such that:

¢} Vte[-¢g, 8], x +tz;€coF.

Denote ¢ = min; ¢; <x11 &i-

Now, if we have (k + 1) vectors in a space of dimension k, there is a linear
relationship between them. Hence, there exist numbers «,, . . ., o, , not all
zero such that:

k+1

z a[ Z‘=0.
1=1

We may assume that |o,| <1 for 1 <i<k+ 1. Define now two points
(xt)ier and (x7); s of RH by:

x;=x,+aa;zi for 1<i<k+l
xi=x—-¢c0z for 1<ig<k+]1

x;=x,=x; otherwise.

It follows from (1) that xj and x; belong to co F,. Moreover:

k+1

Sxi=>xtey az=%
I 1 t=1

k+1

z x{= le—-t-: Z oz, =X.
I 4 i=1
Hence, the points (x);; and (x});r belong to P, But clearly:

xier = 30Dher + MxDher

and (x;);.r cannot be a vertex of P, albeit it was assumed. m
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2, ESTIMATING THE DUALITY GAP: SIMPLE CASE

Consider the following optimization problem:

Inf i fix) + 1o (" 2 xl)

=1

x;eR for 1<ign

As usual, we allow +o as values for the functions f;. For instance, we
might choose a subset K of R¥, and define f, = yx, the indicator of X. Such
problems occur for instance in economics; we have seen some of them in
Section VIL.5. A striking feature is that » is usually very great with respect to k.

We make no convexity assumption at all on the functions f;. We do not
need any topological assumption either; nevertheless, we shall make one for
simplicity’s sake. By hypothesis, all the f;, 0<i<n are lower semi-
continuous, and satisfy:

Vi, filx)lllxl = 4o as  |x;ll = .

The usual approach to duality of Chapter III applies quite easily. We shall
use the simplified theory of Section II1.4. We take as perturbation function:

¢mpwmm=ZﬁMHﬁPPZm)

with p € R%, Denote as usual:

(2,) Inf &(x;;..., %, P)

x;eR¥
Ap)=Inf2,.

The topological assumptions we have just made simplify matters in the
following way:

Lemma 1. / is a lower semi-continuous function on R,

Proof. Let p,, r € N be a sequence converging to p in R%. Using the topo-
logical assumptions on the functions f;, we see that there exists for every
re N afamily (x,,), 1 <i<n, such that:

Mm=2mnnﬁ@—zw)
1=1 i=1
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Denote lim,..,, #,, by £. If £/ =+, the function 4 is lower semi-
continuous at p. If not, the subset of R*":

K:.= {(xl, . A

Z fix) +fo (15" z xi) <f+e

is compact. Note that there exists a subsequence (x;,.) such that:
n n
Z fi(xir‘)+f0 (pr’— xi,')<f+s.
i=1 i=1

Using the lower semi-continuity of f, again:

n n
:S ]G(xh')4ifb (ﬁ'—'zz xiﬂ) £ +e.
i=1 i=1
Hence, the sequence (x;,) has a cluster point (%;) in K,. Now, the set of
cluster points of the sequence (x,,) is closed and intersects X, for every & > 0.
By compactness, it must intersect N,. o, K= K. Hence, the sequence (x;,) has
a cluster point (¥;) such that:

z Silx) +fo (" Z -’Ei) </
i=1 i=1
The result follows from the definition of Z, and the fact that the left-hand

side is greater than A(p). ®

To express the dual problem of 2 with respect to this set of perturbations,
we shall have to compute:

xyip
1€ign

¢*(Oa---a0;p*): Sup {<P*:P>—z ﬁ(xi) _fO (p— Z xi)-
=1 [
Denote xo =p — >7_; x;:

&*0,...,0; p*)= Sup {<p*, Xo + z xi> - Z Six:) -—fo(xo)J

Xpy Xo i=1
1Si<n

= > Sup (x>~ fixdh= D, [

=
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Hence the dual problem:

) Sup — z J¥p®).
p*eRy =0
It follows from the definitions that:
Inf 2 = h(0) > h**(0) = Sup P*.

The non-negative number Inf 2 — Sup #* is called the duality gap. We
are seeking to assign it an upper bound, which should be computed as easily
as possible from the f;. Moreover, this upper bound should be zero in the
convex normal case.

Our starting point will be the following lemma:

Lemma 2. Graph h** < co >_, graph f;.
Proof. Recall the definition of A:

h(p) = Min { > filx)
i=1

= Min {“l(l’y a) = Z (xh al) Wlth (xh al) € graphﬁ ’

i=1

It follows that:
D epificepihc ) epif,
{=0 i=0

Recall that epi 2** =Coepi 2 (Proposition 1.3.2). It follows from the
definition of the graph as the lowest points on the epigraph that:

graph s** < &6 graph h < &0 z graph f;.
i=0

Using the arguments of Lemma IX 3.3, it easily seen that each of the
co graph f; is closed, as well as their sum. Hence the result. =

Assume Sup #* # +. It follows from Lemma 1 that:

"
(0, Sup #*) e co z graph f).
i=1
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We are now in a position to apply the Shapley-Folkman theorem. There
exists a (k + 1)-set J< {0, ..., n} such that:

(0, Sup #*)e > graphf, + > co graph f;.
tgJ ieJ

That means that there exist:
. for every i ¢ J, a point x; of R*
. for every ieJ, a finite subset x;; of R*, and positive numbers «;; with

25 %=1
such that

0= zxi+ z Z“uxu‘

i¢J ieJ J
Sup P* = > filx)+ D D i filx)-
itJ ied j
Denote by x, the barycentre >, a;; x,, for i € J, so that:
Z oy filxi) = fFR(x).
J
Putting this into the two preceding equations, we get:

0= ixi
i=0

Sup2*> S fix) + S fEHx)

ied iel
= > filx) = 3 (filx) —f**(x).
i=0 iel
The first equation yields >, fi(x,) = h(0), hence:
(2) Sup (P*) > h(0) = > (fi(x) —f #*(x).
ieJ
It is in order to introduce a definition, before stating our final result:

Definition 1. o f) = Sup, (f(x) —f**(x)).

Note that «( f) is a non-negative real number, which may take the value
4+, and which does so as soon as the effective domain of f is not convex.
Whenever o /') <+ it provides a measure of the extent to which f fails to
be convex; in particular, «( /) = 0 means that f'is convex.
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Theorem 2. Assume the functions f, are lower semi-continuous and
S ixdl — o as ||x,|| = oo. If Sup P* # +w, we have:

0<Min 2 —Sup 2* < (k+1) Sup a(f).

0gi<gn
Proof. Start from equation (2). Recall first that J has cardinality (k + 1):
Sup (#*) > h(0) — (k+ 1) Sup o(f)-
o<giga

As A(0) = Inf 2, this is the desired result. =

Theorem 2 yields an estimate of the duality gap. But only very mild non-
convexities can be taken into account: the functions f; have to have a convex
domain. If, for instance, we take as f, the indicator of a subset X of R¥, a( /o)
will be +-c0—and our estimation will be valueless—unless K is convex.

We shall therefore change slightly the formulation of problem (2), to get
an estimate which could be used in more general situations.

3, ESTIMATING THE DUALITY GAP: GENERAL CASE

Consider the following optimization problem:

Infz Silxi
(2 L !
Z gx)<c for 1<jgk.
t=1

The functions f; and g¢ send some euclidian space E, into R. For simplicity’s
sake again, we shall assume them to be lower semi-continuous and to satisfy:

k
Vi, {f,(x,)+ > gi’(xf)} / ol = e as ffxiff — oo
i=1

Denote by g, the mapping from E, into R* with components g{. We shall
use the perturbation function:

B(xp, s Xa3 D)= D, filx) + Xn:(p +e— Z g:(xo)
i=1 i=1
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with p € R*. Hence A(p) = Inf 2, with:

Inf i f:(x)

(Z,) .
Z glix)<ei+pi for 1<j<k.

i=1

As in Lemma 1, it follows from the topological assumptions that h is a
lower semi-continuous function on R¥, and that problem £, has an optimal
solution whenever A(p) # +w. Instead of computing the dual 2*, let us
write down the Lagrangian:

L(Xy, ..., Xa3p) = i filxi) + {—p*, i gi(x) — c> if —p*eRX
i=1 J=1
=+o if —p*i <0 forsomej.
Here again, our starting point will be:
Inf 2 = h(0) = ~**(0) = Sup Z*.
Using the Shapley-Folkman theorem and Definition 1, we obtain:

Theorem 3. Assume that Sup P # +, that the functions f; and gl are lower
semi-continuous, and that

k
Vi, [f:(xe) + z g{(xi):|/”xi” — 4o as |xl| - .
i=1
Set p¥ = (k + 1) max, «(g}), for 1 <j < k. Then

Min 2, ~Sup 2* < (k + 1) max al f).

Proof. Any point of graph h can be written as (p, Min 2,). By definition,
there exist # points x; € E; such that:

Pz ng(xa)—cj for 1<j<k

i=1

Min 2, = 2": Jilxo)-



366 APPENDIX I

That means that graph 4 can be decomposed into:
graph k< Y C;+ (- + R}, 0)
i=1

C={(gx), i(x D |x, € E}}.
Recall now that:

(0, Sup #*) € graph A** <O graph A.
The hypothesis for the functions f; and g{ implies that:

o graph A = co graph A.
Hence:

(0, Sup #*) € (—c + R%, 0) +-co . C,.

t=1

Using the Shapley-Folkman theorem, we can find a (k + 1)-set J< {1, ..., n}
such that:

©,SupP*)e(—c+RE 0+ D C+ > coC,

1eJ ted
That means that there exists:

. for every i ¢ J, some point x, of E;;

. for every i€ J, a finite subset x;, of E,, and positive numbers «, with
2 =1

such that
O=e—c+RE+ D glx)+ D D augilxiy)
1¢J teJ ¢t
Sup #* = Z Six) + z z ttye S(Xie).
1¢J ieJ ¢

The first equation can be written in another way:

02 —ci+ > &)+ D > wglln) for 1<j<k.

1¢J teJ t

Denote by x; the barycentre of the x;,, for i € J. By Definition 1:
Z oty [i(x1e) = fi(x) — a( f)

t

Z o 1 (x1) > g1 (x) — alg)).
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Hence:

i fix) = 2, «(f)) < Sup 2*

ieJ

Z gix)<cei+ Z g for 1<j<k.
i=1

ieJ

Taking into account the fact that J has cardinality (k + 1), we obtain:

i fx) — (k + max a(f;) < Sup 2*

i=1
n

2 &i(x) < i+ (k+1)maxa(gl) for 1<j<k.

i=1
Setting pJ=(k + 1) max, o{g{), we see that the family (x,)e[] ., E;
satisfies the constraints of problem #;. Hence,

Z J{x) = Min 2, and the result. m
i=1

Note that if Min 2, # +® on a neighbourhood of ¢ in R*, then the dual
problem #* has an optimal solution, so that we can replace Sup #* by Max #*
in the preceding formulas.

4, THE LIAPUNOV EFFECT

Consider the following optimization problem:

Inf f S, x())dr
€9 0

1
f gi(t, x(t))dr <0 for 1<j<k.
1]

Here f and the g are continuous functions from [0, 1] x K (where K is a
compact metrizable space) into R, and x(.) is a measurable mapping from
[0, 1] into K. We assume no convexity at all.

For every p € R¥, consider the perturbed problem:

1
Inf J fa, x(2))ds
@,) -
fg’(t,X(t))dtspf for 1<j<k.

o
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As usual, we shall denote by h(p) the performance function, and by
L(z, x, p*) the (pointwise) Lagrangian:

h(p) =Inf (#,) for peR*
k
L(t, x, p*) =f(t, ) + > p* g(t, x).
ji=1

We shall make the following assumptions:

(a) A(p) is finite on a neighbourhood % of the origin in R*. It follows
already from our continuity assumptions that A(p) # 4o everywhere. Here
we assume, moreover, that 4 does not take the value — near the origin, i.e.
that problem 2, has a non-empty domain for small perturbations p.

(b) for every p*e R, the set of re[0,1] such that the function
x > L(z, x, p*) attains its minimum over K at several points, is negligible. In
other words, for every p* € R% and almost every € [0, 1], there is a single
point x € K where L(t, x, p*) is minimum. Note that if the functions f and g’
do not depend on ¢, this is tantamount to saying that they are convex. This
is not so in the general case.

These assumptions are made mainly for simplicity’s sake: Theorem 4 is
true under much more general conditions.

Theorem 4. Under the above assumptions, h is convex and continuous on %.
The dual problem P* has an optimal solution p* such thar the measurable
mapping x(.) defined by:

X(t) minimizes L(t, x, p*) for almost every t
is an optimal solution of (). Hence:
Min # = Max 2#*.

We shall now prove this theorem in several steps. We begin by writing
down explicitly the dual problem 2* with respect to the given set of pertur-
bations. Write first the Lagrangian:

f 'L, x(t), pr)dt

then minimize it with respect to x(.). Using the measurable sefection Theorem
VIIL.1.4, we see that it amounts to minimizing pointwise:

1 1
Min f L(t, x(t), p*) = f e, p*)de
1]

x(.) 0

¥, p*) = Min L(z, x, p*).
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Note that the function y is finite and continuous with respect to both
variables ¢ and p*, and concave with respect to the variable p*. The dual
problem can now be written:

Sup fl y(t, p*)dt
@) °

P30 for 1<j<k.

We shall now approximate problem 2, by discretization. We divide [0, 1]
in 2" equal subintervals T; = [({ — 1)27, i2™"], and we consider the problem
22 defined by:

2"
Inf z f(t, xi) dt

i=1 VT,
-2)
f gi(t,x)dt <0 for 1<j<k
T;
x;eK for 1<ig2"
Clearly:

Min ,2 > Min ,,,2 = Inf 2.
Let us now write down the dual problem ,2*:

Sup I',(p*)
*J > £j <
(,2*) p¥ =20 for 1<j<k
zll

Tp*)= > rgfn f L(t, x;, p*)dr.
i=1 T;

Clearly, the functions I', form a decreasing sequence, converging towards
{3 (1, .)dt uniformly on every compact subset of R¥ (use Dini’s lemma, or a
direct argument).

Denote by #, the performance function of problem ,#:

h(p) = Inf ,2,.

Lemma 3. As n - oo, h¥*(0) converges to h**(0), and any sequence of
subgradients p¥ € oh}*(0) has a cluster point p* € o0h**(0).

Proof. Let ¥ be a convex compact neighbourhood of the origin contained
in %. The assumptions of Theorem 4 imply that there exists an integer m such
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that 4,, does not assume the value +« on 7. Moreover, Inf 2, > N, where
N denotes the minimum of f on the compact set [0, 1] x K. Hence, for every
nzm:

Vpe¥',  N<h(p)<h(p) < halp) <+
By I'-regularization, for every n > m:
Vpe¥, N<k*p)<h*(p) < ha*(p) < +e.

The functions A¥* are finite-valued on a neighbourhood of the origin,
hence continuous and subdifferentiable. Moreover, if p* € 9h%*(0), we must
have:

Vpe?, <p,p}> <hi*(p)—hr*0).

We have chosen ¥~ compact, so that Max,_, A*(p) = M < +o. Hence,
forn>m:

This proves that the subdifferentials 943*(0) are uniformly bounded in R*.
But we know (Lemma II1.2.4) that 943%*(0) is the set of optimal solutions of
«P*. The problems #* and ,2*, for n > m, thus have optimal solutions, all
of which are contained in a fixed compact subset K* of R*. We restrict our
attention to K*, on which the functions I', converge uniformly to {; y(z, .)dz.
Clearly:

h3*(0) = Max I(p*)

p*EK'

omy*0) = {p} € K*|I'(p¥) 2 I(p*),  Vp*eK*}

1
hox0) = Max [0 p) s
€ (]

1 1
on**(0) = {P*GK*IJ v(t,ﬁ*)dtzf yWt, p¥)de,  Vp*reK*}-
0

0

The result follows easily from the uniform convergence of the I', and the
compactness of K*. =m

Lemma 4. Let p, be an optimal solution of ,P*. There exists a family X%,
1 < i< n, and a constant ¢ such that:

@ f L(t, %, p)dt = min f L(t, %, p2)dr.
T xekK Ti
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2
(b) » f g, %)de <2,
=1 J7¢
Proof. Define a mapping ¢: [0, 1]xK — R*¥*1 by:

o(t, x) = (f(1, x), g'(¢, x)).
Denote by:

C = {J. olt, x)dt|xeK} <Rk,

Problem ,# can be stated in the following way:

Inf 2°
z'<0,...,72*<0

2.
z€ z C.

Introduce the indicator function x;c, of the set S, C.. Recall that its
polar is the support function y}c, of Z, 1 Ci, and its bipolar x}% is the
indicator function of the closed convex hull co >2°, C,. We have computed
.P* with respect to the following perturbations (see I11.1):

-?)

Hz,p) =2° + Jzc, (2) + Xmﬁ(Pl —z!, ..., p =2
We find easily:
BH*, p*) = fic(2* — L 2 + p* L 2 4 PR+ el
D**(z, p) = 2° + Xz (2) + xmal(P' — 2% .., PF = 2.
We can now state problem ,2**:

Inf 2°
21 <£0,...,2"<0

G2**) -
zeco » G,
(=1

Note that the convex hull of ¢([0, 1] x K) is compact, and is the set of bary-
centres of probability measures bounded by ¢([0, 1] x K). Hence:

(J. f(t, x)2"ds, f gi(t, x)2" dt) e co ¢([0,1]x K).
Hi T
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Denote by B the unit ball of R**!, There exists a constant d large enough
for ([0, 1]xK) to be contained in dB. It follows that:
C,c2"dB for 1<ig2"

Now let Z be an optimal solution of ,2 ** and p} be an optimal solution of
its dual ,#*. Then Z must minimize the linear functional z°+ 3>¥_, p*/ 2/
over co 2%, C;, and must of course satisfy the constraints 7/ < 0. Using the
Shapley-Folkman theorem:

z= z L+ Z Z
J 1-J

where I denotes the set {1, 2, ...,2"} and J a (k + 1)-subset. We have z, € C,
forie I—Jand z, € co C, for i €J, and every z; (or {;) minimizes the linear
functional z° + 3%_ | p*/ z7 over C, (or co C)).

For i eJ, choose some point z, € C; where z° + 5;_, p*/z/ is minimum,

and write:
Z= Z zi + z z;.
-J

J
Clearly, z, = [r, ¢(t, %), where X, satisfies (a) for every i. Moreover:
1Z—-2) < 2(k+1)-27"d.
Writing this inequality componentwise, we get (b). =

The proof of Theorem 4 follows easily. Let g* € 0 be the limit of a sequence
p¥ € o0h%*(0). Denote by x,(.) a piecewise constant mapping from [0, 1} into K
defined by:

f L(t, x,(t), pH)dt = milr(l f L(t,x,p¥)dt for teT,
T‘ XE

T

As n — o for fixed ¢, the sequence x,(t) has cluster points in the compact X,
every one of which must minimize the limit function x — L(, x, j*). By
uniqueness assumption (b), we conclude that for almost every 7, the sequence
x,(t) converges to the unique solution %(¢) in K of equation:

L(t, x(2), p*) = min L(t, x, p*).
From this definition of %(.), it follows that:

@ f Lit, %(t), p*)de = f "y, pyde
0 [o]

= Max 2* = h**(0).
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Moreover, by the Lebesgue convergence theorem:
vJ, fl gi(t, X(t))dt = lim J: git, x (1)) dt.
o N
Lemma 4 states that the right-hand side goes to zero. Hence:
() vj, fo 1 g/(t, (1)) de <0.

The result follows from (a) and (5). =

5. COMMENTS

These results are due to the first author, partly in collaboration with
1. P. Aubin (Ekeland [5], Ekeland and Aubin {1], Aubin {1]) and have been
initiated by numerical experiments of Lemaréchal (I.R.1.A., 1973).

The continuous optimization problem of Section 4 plays an important role
in mathematical economics, where it has been introduced by Aumann and
Perles [1]. The existence of solutions and of Lagrange multipliers is related to
the Lyapunov convexity theorem. We refer the reader to Berliocchi and
Lasry [1] for an extensive treatment and bibliography. The approach
developed here seems to be new, and has been discovered independently by
Arstein ({11, [2]).
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Non-convex Optimization Problems Depending on a
Parameter

Introduction

Few general results are known concerning the existence and uniqueness of
solutions of non-convex optimization problems. In the infinite dimensional
case and without compactness‘!?, very few tools are available. It seems in fact
that one cannot expect general existence and uniqueness results. Natural
and simple examples show that many pathological situations may arise: it
may happen that a continuous function bounded from below does not attain
its minimum; the minimizing sequences of a problem may or may not converge;
when they converge they may converge to a limit different from the solution
even when such a solution exists.

The purpose of Chapters IX and X was to clarify the situation, in some
cases, by introducing the relaxed form of a non-convex problem. Our purpose
in this appendix is different. We will consider some families of non-convex
problems depending on a parameter and prove that most often these problems
are actually very regular: for almost all values of the parameter (in a sense to
be made more precise later on), the considered non-convex problem possesses
a unique solution which depends continuously of the parameter on the
complement of the exceptional set.

The first results of this type seems to be that of Edelstein {1] [2] concerning
farthest points (or closest points) of a non-convex set: let ¥ be a Hilbert space
and S a closed bounded set in ¥ (not necessarily convex); then the points of
S which are the farthest from some point v are solutions of the maximization
problem (||.|| = norm in V)

1 Sup llu — vl

ues

Similarly the projection of v on S is a solution of the minimization problem

(2 Inf lju — vll.

ueS

) The existence results in Chapter V11 were based on compactness arguments.

375
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Edelstein proved in [1] (or [2]) that a solution of (1) (or (2)) exists for all
the v’s of a dense subset of V. This result has then been extended in several
directions which will be described below.

Our goal here is to establish a similar result for a family of optimization
problems of the type

(3) Sup {F(u) + o(jju ~ v})}.

The hypotheses for ¥, F(afunction from ¥into R U {+«})and @ (a function
from R, into R,) are specified in the text. The main resuit is given in Theorem
1.1.

1. THE MAIN RESULTS

1.1, Definitions and notations
We recall here a few definitions and notations.

(i) A Banach space Vis called a strongly differentiable space (S.D.S. space)
if the following property holds:
any convex continuous function F from ¥V into RU {+x} is Frechet
differentiable in a dense G,V subset of its domain
dom F={ue V|F(u) < +»}.

In such a case (see Asplund [4] [S]), the mapping u— F'(¥) is norm to norm
continuous from the G, into V.
According to Trojanski [1] any reflexive Banach space is an S.D.S.

(ii) A strictly convex or rotund normed spaced is characterized by the
property that
llw 4+ vl =2 and jul| = ||t} = 1 imply u = v.

A locally uniformly normed space (L.U.R. space) is a space satisfying the
following condition (see Lovaglia [1]):

if flu,+ufl-—>2 as n-— o, and
foat = Yull =1, then fju, —ull — 0.

(iii) Let I'y denote the set of even functions ¢ belonging to I'o(R) and with
values in R, = [0, +{ and such that ¢(0) = 0. We consider also the following
subsets of I'y,

Iy ={perlgle)>0 for >0}
Iy ={pe g Iirgl o(t)/t =0}
1=

(1 1.e. a denumerable intersection of open sets.
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The functions of I'; are decreasing on }—«, 0], increasing on {0, +«[ and
attain their minimum at 0. We note the following property

(1.1) oel'y<=e*erl,.

It is clear that ¢ is even (¢ € I'p) if and only if ¢* is even. Now for an
arbitrary ¢ > 0 consider

Y1) = elt]
whose conjugate is
Yt)=0 if [t|<e <o otherwise.

We note that

0¢ly<+3>0, @<y}

e*¢ 'y <> 3e>0, V. < o*.
Since the two relations to the right are equivalent, it is clear that
p¢ly<=o*¢rl,.

(iv) A characterization of Frechet differentiability of convex functions is
given in Asplund {4] [5]:

a convex function F: ¥V — R is Frechet differentiable at the point u with
differential u* € V* if and only if there exists a function ¢ € I'y such that

(1.2) F(v) < F(u) + <u*, v — u) + @(ljv — ul).

This amounts to saying that the graph of Fis below a parabolic type function
centred at the point {u, F(u)} of ¥ x R.

1.2. Statement of the results

Let ¥ be a reflexive Banach space which may nor not satisfy the following
property
(1.3) If a sequence u, converges weakly to u and [lu,|| converges to
lull, then fju, — uj} - 0.

It is well known that any uniformly convex space is reflexive and satisfies (1.3).
We consider a L.s.c. Ffrom V into R U {—x}, which is not identically equal

to —o, and a scalar even function @ which is convex continuous and strictly

increasing on [0, +[. We are interested in the family of maximization

problems

(1.4) Sup {F(u) + a(llu ~ vlh}.

ueV
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The supremum in (1.4) is denoted F,(v) and we assume that

(1.5) F,(v) <+x foreach wveV,
and
(1.6) Every maximizing sequence of problem (1.4) is bounded.

As usual, property (1.6) holds if, for each fixed v,
F(u) + o(llu —v)) +—w, as |juj -+, wedomF.

As a particular case of (1.4), we may consider a function F
F@)= | Ju), ues

—m  otherwise

where S'< V is closed convex and J is a 1.s.c. function from S in R. Problem
(1.4) then becomes

(7 Sup {J(w) + w(liu vl}.

The problem (1.4) is generally not convex. Although property (1.6)
guarantees the existence of weakly convergent maximizing sequences, we do
not have any information on the limit: by lack of a weak semi-continuity
property of the functional, the limit of a weakly convergent maximizing
sequence is not necessarily a solution of (1.4). For this reason a reasoning
similar to that used for the proof of Proposition II.1.2 is not sufficient to get
the existence of a solution of (1.4). Using completely different methods we
will prove the following results due to J. Baranger and R. Temam [1] [2]:

Theorem 1.1. Let V be a reflexive Banach space; under the preceding
assumption and in particular (1.5) (1.6), there exists a dense G5 subset of V such
that for each v in this set, problem (1.4) possesses a solution 1,

(1.8) F(@) + w(lla - vl) = Fu(v),

and any weakly convergent maximizing sequence of (1.4) converges weakly to
such a solution (or strongly if property (1.3) holds).

Theorem 1.2. The assumptions are those of Theorem 1.1, including (1.3).
We assume, moreover, that V is strictly convex, that o is everywhere differenti-
able with derivative @',

1.9 o >0
and that
(1.10) dom w*=R.""

M) This holds in particular if @(s)/s = +w as § = 4o,
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Then the preceding G, set, denoted £, can be chosen so that for each v e o,
the solution i of (1.4) exists and is unique, the mapping

vesd —ilvyeV,
being norm continuous.

Remark 1.1. Theorem 1.1 extends some results of Edelstein [1] ((1.7) with
J =0 w(s)=s? and V is uniformly convex), Asplund [4] (where w(s) = s*> and
Visa L.U.R. reflexive Banach space), Baranger [2] [3} ((1.7) with V uniformly
convex and w(s)= |s|), Bidaut [1] (¥ uniformly convex and w(s)= |s|*,
1 Sa< o) and Zizler {1] ({1.7) with J=0, w(s)= |s|). Uniqueness and
continuity results appear also in Asplund [4] and Bidaut {1].

Remark 1.2. Similar results are proved by different methods for minimiza-
tion problems (this amounts to replacing @ by —w). This type of results
should be compared with a result of Aronszajn [1] on the differentiability,
“almost everywhere” of Lipschitz functions. m

1.3. Proof of Theorem 1.1

With (1.5), and since F is not identical to —, the function F,: v — F,(v)
1s defined from V into R; this function is convex l.s.c. as an upper bound of
such functions. According to Corollary 1.2.5 the function F, is continuous
on X and then Proposition I.5.2 shows that F,, is everywhere subdifferentiable.
From point (i) of Section 1.1, ¥ is an §.D.S. space and therefore there exists
a G; dense subset of V, denoted &/, on which F,, is Frechet differentiable. We
will prove that the conclusions of Theorems 1.1 and 1.2 hold for this set /.

Let £ denote a point of & and # be the differential F (). From point (iv)
of Section 1.1 we get the existence of ¢ € I'y, (which depends on & and F,)
such that

(1.11) O0LKF(0)—F &) —{nv-E<o(lv—¢&) forall veV.

Since the function 8,: v+ w(|lv — ul}) is convex and continuous, it is sub-
differential everywhere and in particular at the point &. Let ¢ be some element
of this subdifferential

(1.12) 0 < ax(fiu — vlf) — (il = &) — <&, v — &)
It follows from (1.11) and (1.12) that, foreach ue V'
aflu — &N + <t =1, v— & + Flu) — F()
< Fo(0) — F(8) — <n, v — & < offo ~ &)
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and hence

ollu— &) + <t — 1, v = & — (v~ &I) — Fu(§) < —F(w).
Taking the supremum with respect to v of the left-hand side, we obtain
(1.13)  o(llu— &) — Fu(&) + o*(lt ~ nll,) < F(u), forall uel,

where ¢* € I'y (see (1.1)).
Now let u, be a maximizing sequence of problem (1.4) where v = ¢:

a(liun ~ &) + Fun) — Fo(C), as n—> .
For each n, let ¢, € 96, (£). Relation (1.13) gives
0 < @*(lt, — 7ll,) < Fol&) — F(un) — a(llu, — &i).
Hence ¢*(jit, — nllx) — 0, as n — o, and since ¢* € Iy, this implies
(1.149) ltn—nll,—>0, as n-—>co.

From (1.6) the sequence u, is bounded. Extracting a subsequence, we may
assume that u, is weakly convergent in V to some limit 7. We write (1.12) with
u replaced by u,and vby u, —d+ &:

a)(Hﬂ - C”) 2 a)(llu,, - 5”) + <tm U, — u->
Asn — o, {1, u, — 1> — 0 and we get by weak L.s.c.:

w(li = &1 > fim e(lu, - &)
> w(im [lu, — &)
2 (as w is increasing)
> o(lim |u, — &)
Z (g — &l).

Since w is strictly increasing, all these inequalities are in fact equalities,
I — &Il = tim Jlu, — &l = Tim flu, — &I},

the sequence ||, — &|| converges to {la — £&|. If condition (1.3) is satisfied this
means that u, converges strongly in ¥ to a.
Finally we will see that, in all cases, # is a solution of (1.4). Indeed

F (&)= m {o(lu, — &) + F(u,)}
= o(lla— &) + .l.ii‘l, F(u,)

< (by us.c.)
< w(lla — &) + F@) = Fu(5).



APPENDIX II 381

The maximizing sequence u, i1s completely arbitrary, and Theorem 1.1 is
thus established. m

1.4. Proof of Theorem 1.2

We continue the proof of Theorem 1.1 with the same notations and in
particular the same set »/. As mentioned before, we infer from (1.3) that u,
converges to i strongly in V.

We write (1.12) with 4 and ¢ replaced by 4, and ¢,:

alluy — vll) Z oy — S + <{tp, v~ .
At the limit

(i —oll) 2 o(ld = & + <n, v — O
Setting w = v — &, we get
(1.15) ofiwl) = o(lla — &I + <, w— (& — ap, Vwe V,
which amounts to saying
(1.16) nedwoll. N —a),

where ¢ = w o |[.]| denotes the function

w > a(fjwl).
Relation (1.16) is equivalent to

{—uedo*(n)
or
1.17) i€ — da¥(n).

We recall that n = F_(£) and that (point (i), Section 1.1), the mapping
& — n=F,(&) is norm continuous on /. Theorem !.2 is thus proved if we
demonstrate these two points

(1.18) do* is reduced to one point, i.e., ¢* is everywhere Gateaux-
differentiable.

(1.19) 7 — (6*) () is norm continuous.

We may assume without loss of generality that w(0) = 0. Then w(t) > 0 for
t>0,1e,welyand w*e .

Lemma 1.1. w* is continuously differentiable on R and (w*)'(0) = 0.
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0
Proof. w* is convex and continuous on dom ©* and thus on R due to (1.10).

The function w* is everywhere subdifferentiable; dw*(¢) is reduced to one
point for each ¢ € R, for if x,, x, € dw*(¢) then
w(x) = o(x;) + t(x — x)), VxeR, i=1,2.

In particular

oxz) = o(x;) + 1{x; — x;)

(x;) 2 o(x;y) + t(x; — x3)
hence

w(x;) — w(xy) = t(x; — xy)

but  is strictly convex and this equality is impossible unless x, = x,. The
function w* is differentiable on R.

The function (w*)’ is increasing as w* is convex; thus (w*)’ is continuous
except perhaps at a countable set of discontinuity points; since o* is every-
where differentiable, (w*)" has no discontinuity.

Lemma 1.2. do*(v) = | (0*)(vl).d(v) if veV* v#0,
0 if v=0EV",
¢ the duality mapping from V* into V with gauge 1.
The mapping v — (o*)'(v) is norm continuous.

Proof. If v=0,

w*(Aw*|] X
—_— =0 as A= 0, (w*el))

and then (¢*)'(0)=0.

If v # 0, the result follows from the chain rule of differentiation. For the
continuity we observe that (w*)’ is continuous and also the gauge function ¢
except at the origin where ¢(v) remains bounded while (w*)'(julf) —~0. =

The points (1.18) (1.19) are proved and Theorem 1.2 is demonstrated. =

2. APPLICATIONS AND EXAMPLES

2.1. Farthest points and projection on a non-convex set

Let ¥ be as in Theorem 1.2 and S a closed bounded subset of ¥. We set
(s) = s2. The point of S the farthest from v is solution of

N _ 2-
@0 Sup lju — ol
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For all the v of a dense G4 subset of V, there exists a unique farthest point i
and the mapping v — u(v) is norm continuous.

A similar result can be deduced from Theorem 1.2 for closest points if X
is a Hilbert space. The projection of v on S is a solution of

2.2) In{ Il — ol
Since

ffu — ol* = 2ul® + 2|pl[* ~ |lu + oI,
the problem (2.2) can be written as

23) 2ljplf* Sup {{u + ol* — 2ul?}.

ues

Setting F(u) = —2(lu||? if u € S and —co otherwise, w(s) = s?, we deduce from
Theorem 1.2 that, for all the v’s of a dense G, subset of V, the projection of v
on S exists, is unique and depends continuously on v.

A similar result can be proved for more general spaces using a different
method.

2.2. Examples in calculus of variation
A variational problem

We consider here a problem of the type considered in Chapter X.
Let f denote a scalar continuous function such that

O/ —>c#0 as [¢] — .

Let Q be an open bounded set of R". For each u € H}(), the function
x > f(grad u(x))

is summable and the functional
ue HYQ) > F(u) = f f(grad u(x))dx € R
2,

is continuous on H(Q) (Proposition IV.1.1).
Let g belong to L2(Q); a natural variational problem is the following

2.4 Inf [ f f(grad u(x))dx — f g(x)u(x)dx ] .

ue Hy (S)
0
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Theorem 1.2 applies and shows that for all the g’s of a dense G; subset, the
problem (2.4) possesses a unique solution which depends continuously on g.

In order to show this we introduce v € H}(Q), satisfying ~Av = g/2 in Q.
Then

- f gudx = -2((v, u))
2

((., .)) = scalar product of H§(Q) and (2.4) is nothing else than

(2.5) ol ~ Sup

ue Hi(S2)
0

[l + vl* — f [A(Vu(x)) + |Vu(x)|*]dx ) -
Q2
It becomes now very easy to check the assumptions of Theorem 1.2.

An application to optimal control

Let @ denote again an open bounded set in R™. For each given function
u e L¥Q), with
(2.6) O<agu(x)<p ae.

there exists a unique function y = y(u) in H§(Q) such that

LN oy . 5 )
2.7 21 P (u 3_x,) = g(e LX), given).

We then consider the following control problem: for a given y, € HY(S) find
a measurable function u satisfying (2.6) which maximizes

ly(e) = yall

(l.1l= norm in H}Q)).

This problem has no solution in general, see for instance Lions [4] and
Murat [1].

Let w be as in Theorem 1.2, For each ¢ > 0 and v € L*(Q), we consider the
following perturbation problem

(2.8) Sup {lly() — yl + eo(Ju — v];2.0)}.

agugp

Theorem 1.2 asserts that for all ¢ > 0, for all the v’s of a dense G; subset of
L*(©), the maximum in (2.8) is attained by a unique function@. ®



Comments

CHAPTER I

After a very brief summary of the properties of topological vector spaces Chapter I
develops the broad outline of the theory of convex functions as set out in the work of
FENCHEL, MOREAU and ROCKAFELLAR.

The main works of reference on this subject are FENCHEL [2]}, MoREAU [1] and
ROCKAFELLAR [4], where a comprehensive bibliography will naturally be found.

The concept of convex conjugate functions is due to FENCHEL [1] [2] and this
concept was further developed by BR@ENSTED and MOREAU to cover the case of
infinite dimension. Initially, FENCHEL only examined finite functions defined on
subsets. MOREAU introduced functions which take the value + < and which are defined
over the whole space. Here we have followed MOREAU’s presentation.

Much of ROCKAFELLAR’s work concerns the subdifferentiality of convex functions,
which is only developed here in a very restricted sense. Nor have we proceeded with
the study of subgradient mappings (which are in general multi-valued). Among
those works which treat the subdifferentials of convex functions, we single out that
of ROCKAFELLAR [13) which completely characterizes these operators by introducing
the concept of m-cyclic monotone operators.

Theorem 6.2 concerning ¢ subdifferentials plays an important role in the study of
subdifferentiability of convex functions: it is due to BRoNDSTED and ROCKAFELLAR
[11. In what follows it is important for the study of minimizing sequences, especially
in Chapters V and VII.

Theorem 6.1, which is new, is a partial extension of Theorem 6.2 to non-convex
cases and is of interest in the study of Euler equations (Chap. X, §4). For further
generalizations and applications, we refer to EKELAND [2].

CHAPTER 11

The criteria for the existence and uniqueness of the minimum of a convex function,
givenin Proposition 1.2, are completely standard and are sufficient for the applications
we have in mind. Other general theorems are given in J. Cea {1], for example.

The characterization of the solutions of a convex optimization problem by in-
equalities such as (2.2) or (2.3) is also standard.

Section 3 gives an existence criterion for the solution of variational inequalities
of “elliptic” type. The notion of variational inequality is due to G. STaMPaccHIA [5];
the proof given here of Theorem 3.1, which uses the proximity mappings of J. JI.
Moreau (2], is due to H. Brezis [1]. For a deeper study of variational inequalities,
see H. Brezis [1] [2], F. BRowbpekr 3] [4], J. L. Lions [3], G. StampaccHIa [4], E.
ZARANTONELLA [2] and the bibliography contained therein.

385
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CHAPTER 111

We are indebted to R. T. Rockafellar for the concept of duality in convex optim-
ization as developed here. It gives a unified presentation of two different approaches
to duality:

First, a presentation using conjugate convex functions which was introduced by
W. FencHEL {2] and then extended by R. T. ROCKAFELLAR (see especially {51 [6] [7]).

In [2], W. FenchEL studied problems of the type

Inf { F(u) + G(w) },

where Fand G € I'y(V) and in {7], R. T. ROCKAFELLAR considered in a more general
fashion problems of the type

Inyf{ F(u) + G(Au)},

where Fe Io(V), Ge I'(Y), Ae LV, Y).

A slight extension of ROCKAFELLAR [7] is given in R. TEMaM [2]. This class of prob-
lems is dealt with as the special cases of Section 4.

Secondly, duality is presented using Lagrangian functions which is, classically,
the standpoint adopted in Mathematical Economics and which is the subject of an
abundant literature; see, among others, ArRrRow, Hurwicz and Uzawa (1], and the
theorem of KunN and Tucker [1]. The corresponding problems are dealt with as
special cases in Section 5.

R. T. ROCKAFELLAR’s unified presentation (¢f. Sections 1 and 2) which uses the very
elegant concept of perturbed problems and conjugate convex functionals, was intro-
duced in {8] and developed for the finite dimensional case in [4].

The stability criterion given in Proposition 2.3 plays an essential part in the appli-
cation of the calculus of variations to variational problems.? This criterion is suffi-
cient in the majority of cases; see however the examples of Sections 3 and 4 of Chapter
VII. The concept of extremality relations is also essential for application to the cal-
culus of variations.

After the special cases of Sections 4 and §, the concept of a generalized solution
given in Section 6.1, is useful for certain problems which have no solution in the
classical sense. Section 6.2 describes one of the ways of introducing duality into varia-
tional inequalities.

CHAPTER 1V

Dhuality in the calculus of variations has been appearing in the literature in various
forms for a long time. In particular, a heuristic presentation was given by R. COURANT
and D. HiLBerT [1] using the LEGENDRE transformation: the dual problems can be
written down for several variational problems but it is not always possible to establish
the relationship between primal and dual by this method. Duality as given in Chapter
111 enables us to obtain more information: the equality inf = sup and the extremality
relations.

After the simple examples in Section 2, the examples in Section 3 all arise out of
diverse applications; MossoLov’s problem (no. 3.1) is linked with the problem of the

M In fact we could give a speedier proof in a more direct context.
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flow of Bingham fluids studied by G. DuvauTtand J. L. Lions [1] from the standpoint
of no. I11.6.2 and 1V.3.1. The problems in no. 3.2 and 3.3 arise in filtering theory,
while the problem of 3.4 is the classical problem of elasto-plastic torsion of a rod;
the problem of the existence of a solution to the dual problem in L}(£2)*"’ remains
open: this solution when linked to the constraints has an important solution in
mechanics; the problem has been solved by H. Brezis [3] when fis constant.

Section 4 takes up and completes a result of H. Brezis [2]. Section § points out
a general method for applying duality to the calculus of variations. It would be inter-
esting to state the exact meaning of the solution of the dual problem, when the primal
problem does not possess one.

CHAPTER V

This chapter takes up and develops the work of one of the authors. The application
of duality to the problem of minimal hypersurfaces was presented in R. TEMaM [2]
and developed in R. TeMaMm [3]. Section 3 which develops the application of duality
to a class of variational problems of minimal hypersurface type takes up, with the
same presentation, a part of R. TEMaM [3]. Sections | and 2 give the same result in a
more simple manner but only for the single special case of minimal hypersurfaces:
this simpler presentation was suggested to one of the authors by S. AGMoN during a
seminar.

It was not considered useful to prove explicitly the theorem of singular perturba-
tion used in Chapter IL.I This proof, which is given in R. TeEMaM [3], requires tech-
niques for partial differential equations which are very different from those used in
this book.

Sections 1, 2 and 3 are the source of many unsolved problems:

Find necessary or necessary and sufficient conditions for given ¢ and @ such that
the generalized solution of the problem is a real solution. Some partial results have
been given in Section 2 for minimal hypersurfaces and in Section 3 for more general
problems.

Describe in particular the set of the ¢ such that the problem admits of a real solu-
tion.

Study the correspondence between the trace of ¢ over 92 and the trace over 9Q
of the generalized solution.

The extension of these techniques to other problems connected with minimal
hypersurfaces seems easy: hypersurfaces with obstacles, hypersurfaces with given
mean curvature, or the capillary problem. These problems were not studied here to
avoid too long an exposition ; we have similarly not discussed the numerical approxi-
mation of minimal hypersurfaces, for which we refer the reader to VANENDE [1]
and for a more systematic treatment to C. Jouron [1}.

The existence result for problems of NEUMANN type studied in no. 4.1 was stated
in R, TemaM [4]; like the problems in Section 3, these problems are only coercive
in a non-reflexive space, the space W!-1(2), and itis noteworthy that a single change in
boundary conditions leads to a far more simple situation from the point of view of the
existence of solutions of the primal problem.

To be sure, in this chapter we have not tackled the many other aspects of the prob-
lem of minimal hypersurfaces and for these we refer the reader to F. J. ALMGREN [1}

() A solution function and not merely a solution of Radon measure as in no. 3.5.



388 COMMENTS

[2], E. BomBikry, E. DE GiorG1 and M. MiraNpa [1], P. Concus and R. FinN [1] [2],
E. pe Giorai [1] (2], M. EMuMER [1], H. FeDERER [1], R. FINN [1][2), W. H. FLEMMING
[1], D. GiBARG [1], H. JENKINS and J. Serrin [1], D. H. KINDERLEHRER [1] to [4],
O. A. LaDpYZENskAY and N. N. UrRaLcevaA [1], J. LErAY [1], M. MIrRaNDA [1] to [8],
C. B. MaRrey [1}, P. P, Mossorov [1], J. C. C. NirscHE [1] to [5], R. OSSERMAN [1],
E. Rapo [1], E. SanTr [1], J. SErrIN [1] [2], C. StamMpaccHIA [3] [6], L. C. YounG
[11[2] [3], among many other references.

CHAPTER VI

It seemed useful to us to develop concisely the minimax approach to duality which
is simpler on occasion and which corresponds to current practice in economics.

The results given in Section 1 are completely standard and can be found for ex-
ample in S. KARLIN [1], except for properties 1.6 and 1.7 which are due to J. L. Lions.
The same is also true of the majority of the results in Section 2, Proposition 2.1 being
essentially the theorem of Ky-FaN (1] and Sion [1]. Propositions 2.2 and 2.4 are
natural extensions to the infinite dimensional case. The proof of Proposition 2.1
presented here is due to H. Brezis; moreover H. Brezis, L. NireMBERG and G.
STAMPACCHIA give in [1] an extension of the Ky-FAN-SION theorem.

The study of saddle points is also developed in LEMAIRE [1] {2) where many appli-
cations to saddle point problems in partial differential equations are considered.

Section 3 shows how the existence results for saddle-points are useful in duality;

the connection between duality and saddle points is examined completely in
MacLINDEN [1].

CHAPTER VII

The numerical algorithms described in Sections 1 and 2 are those of Uzawa
and of ARrRow and HURWICZ respectively; see ARrROow and Hurwicz [1], ARROW,
Hurwicz and Uzawa [1]. The convergence proof given here is that of GLOWINSKI,
Lions and TREMOLIERES [1] where great use is made of duality and of this type of
algorithm for the numerical solution of variational inequalities arising in mechanics
and physics.

We are indebted to D. EperY {1] and R. TeMaum [5] for the example of Section 3,
and to J. Mossmio [1]for that in Section 4. For other numerical applications of duality,
see among others A. AUSLENDER [1] [2], J. Céa, R. GLowiNsKY and J. C. NEDELEC
[1], HauGAazeav [1], M. ForTIN (1], M. ForTIN, R. PEYRET and R. TeMam [1},
M. FremonD [1] [3], B. MarTINET [1] where the author studies the systematic
generation of algorithms using duality, R. TEMaM [5], R. TREMOLIERES [1]. The most
systematic applications of duality to optimal control theory are developed in W.
Hens and K. S. MitTerR [1], J. L. LioNs [4], J. MossiNo [1}, R. T. ROCKAFELLAR [1]
[2] [3] [4] [10] [11], UHLENBECK {1]. The application of duality to mechanics given
in Section 5 are taken from M. FReMOND [2].

Some applications of duality to the approximation of functions are given in J, L.
JoLy and P. J. LAUReNT [1], P. J. LAURENT [1].
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CHAPTER VIII

Convex normal integrands were introduced by R. T. ROCKAFELLAR in two articles
(117 [2D) where he studied in depth their polar properties. The general concept of a
non-convex normal integrand (Def. 1.1} is due to H. BErRLIOCCHI and J. M. Lasry [1]
(see also [3] and [4]) who characterized it completely; we have borrowed from them
Theorem 1.2 and Proposition 1.4. They also showed that if a normal integrand
f(x,a) is convex in a then it is a convex integrand in the sense of ROCKAFELLAR and
that if the indicator function of G < Q x R? is a normal integrand, then G is the
graph of a measurable multi-function. We recover in this way the now standard
theory of measurable multi-functions to which belong the section theorems of type
1.6 (K. KuraTowskl and C. RYLL-NARDZEwsK1 [1), C. CastainG [1] [2]; for the
convex case see also R. T. ROCKAFELLAR [3)).

The proof of Theorem 1.11 {criteria of weak compactness in ') may be found in the
book by P. A. MeveR [1], Chapter 11, Section 2.

The second section examines the existence of the solution of a problem in the cal-
culus of variations for a convex and coercive integrand. The result obtained (Th.
2.7)is standard (L. Cesari1 [1}[2]} [3]), originating with ToONELLL. C. CASTAING appears
to have been the first person to have used MAazUR’s lemma for this type of problem;
the proof of Theorem 2.3 which we give here was discovered independently by L.
CESARL.

CHAPTERS IX AND X

In 1900, D. HirBeRT stated his twentieth problem in the following way: “ob nicht
jedes reguldre Variationsproblem eine Losung besitzt, sobald hinsichtlich der
gegebenen Grenzbedingungen gewisse Annahmen erfiillt sind und notigenfalls der
Begriff der Losung eine sinngemadsse Erweiterung erfihrt,”

Intheir work, L. YounG [1]1[2][3]1[4]and E. MacSHANE [1][2] solved this problem,
completely for the one-dimensional case, and partially for dimension » > 1. With
the advent of control theory, the problem was carried over to this new field with an-
alogous results (R. GAMKRELIDZE [1] [2], J. WARGA [2), A. GHOUILAHOURI [1)).
A special mention is owed to L. Cesari who, in a series of papers, examined the ex-
istence and relaxation of solutions of problems of optimal control for systems governed
by partial differential equations (see [1][2] [3] and the bibliography in these papers).
His method is to reduce the state equations locally to first order systems by a trans-
formation due to DIEUDONNE and RasHEvsky. The relaxed problems are obtained
by suitably completing the set of controls: thus they are all of the second form (#%),

Simultaneously, however, A. Iorre and V. Tinomirov [1}, following an idea of
N. BogoLryusov [1}, introduced the problem (Z#) without establishing all its pro-
perties. The standpoint is entirely different: the set of controls is unchanged, only the
criterion is made convex with respect to the control. The synthesis of these two
points of view was made by I. EKELAND [1}who introduced the use of convex analysis.
His results have been generalized by H. BERLIOCCHI and J. M. Lasry [3] (see also
[1} and [2]) who instead appealed to measure theory.

Finally, what is relaxation?

Starting with a problem for which there is no solution, we seek to formulate ex-
plicitly a second problem which has the same values as the first and whose optimal
solutions are precisely the cluster points of the minimizing sequences of the first.
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We set out essentially two construction procedures which lead to two equivalent
problems (##) and (Z%’) (see Chsp. IX; see also I. EXELAND [1}, Sections 9 and 10).

After this brief historical survey, we return to look at Chapter IX in detail. The
results of Section 1 were established by I. EKELAND [1], by appealing to Lyapunov’s
theorem: the framework is more general but the method remains the same. For the
case of convex normal integrands we refer to R. T. ROCKAFELLAR [1] [2]. Finally,
the results of Section 4 are due to H. BErLioccHr and J. M. Lasry [3]. In I. EKELAND’s
paper [1}, a special case is considered and it is shown how to extend the results to
problems of optimal control of the type:

minimize J. S(x, u(x), p(x)) dx

e
Au(x) = y(x, p(x)), where 4 = ¢!

Passing on to Chapter X, we are indebted to L. C. Young [2] [3] for Theorem 1.2.
In these papers he considers completely the case Wi for a continuous integrand

(Prop. 2.13 and Th. 3.6 with « = f = ). The general case seems to be new as do the
polarity results (Cor. 3.5).

APPENDICES I & II

The appendices develop recent results related to some other aspects of non-
convex optimization.

Appendix I gives an estimation of the duality gap in some finite-dimensional cases,
i.e., an estimation of the difference inf 2 —sup 2*, which is positive.

Appendix II deals with families of non-convex problems depending on a parameter.
It is shown that for almost all values of the parameter the non-convex problem has a
unique solution.
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