

Deteção Remota e Processamento Imagem

Licenciatura em Engenharia GeoEspacial João Catalão / Fernando Soares 2019 / 2020

Aula laboratorial 1

Sumário: Caraterísticas das imagens multiespectrais de satélite. Imagens dos satélites Landsat e Sentinel-2. Operações básicas com imagens multiespectrais.

Imagens no CIRRUS:

Landsat: Landsat20171014

Sentinel-2: Montemor S2A MSIL1C 20170614.dim (.data)

1. Procurar e descarregar imagens de satélites.

1.2 Landsat

LAndSat-8: https://landsat.gsfc.nasa.gov/landsat-8/

Ver: > Landsat 8 Data Products

> Information is available for converting Landsat 8 Level-1 data to radiance, reflectance and at-satellite brightness temperature.

Landsat-8: Procura e download imagens (https://earthexplorer.usgs.gov/)

Definir área com 4 pontos (coordinates)

Definir período (data range)

Definir data Sets > Landsat > Landsat Collection 1 Level-1 > Landsat 8 OLI /TIRS

C1 Level 1 > Results

Ver a imagem e tomar nota dos atributos

Data aquisição, Path, Row, hora de aquisição, altura do Sol, azimute do Sol, numero de linhas e colunas, resolução espacial

Fazer donwload da imagem (simular) > Level-1 GeoTIFF Data Product

1.2 Sentinel-1 e Sentinel-2

Ver sitio: http://apps.sentinel-hub.com/sentinel-playground

Explorar NDVI antes e depois dos incêndios (jun e out 2017)

Ver sitio: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi

ou

http://www.esa.int/Our Activities/Observing the Earth/Copernicus/Sentinel -2/Introducing Sentinel-2

Explorar caraterísticas do satélite

Procura e donwload imagens: https://ipsentinel.pt/dhus/#/home

https://scihub.copernicus.eu/

Definir área desenhando um quadrado.

Definir período (Sensing period)

Definir Missão > Sentinel-2

Ver a imagem e tomar nota dos atributos

Data aquisição, hora de aquisição, processing level, relative orbit, product type.

Fazer donwload da imagem (simular) > Download product

1.3 Estrutura do armazenamento das imagens

Landsat8:

ver ficheiro *MTL.txt

S2 (formato SAFE):

ver estrutura de diretorias.

Ver ficheiro MTD_MLSIL1C.XML e MTD_TL.XML tomar nota dos elementos relevantes Procurar "quantification value", "Solar_irradiance", ângulos solares (zenital e azimutal)

1.4 Visualização das imagens no SNAP

Os valores DN do S2 são refletâncias normalizadas (ρ_{λ} = DN / Quantification_value)

Conversão em radiâncias: $L_{\lambda} = \frac{\rho_{\lambda} ESUN_{\lambda} \cos(\theta)}{\pi d^2}$

1.4.1 Landsat

Abrir a imagem Landsat (ficheiro *MTL.txt)

Landsat 8 Operational	Bands	Wavelength (micrometers)	Resolution (meters)
Land Imager (OLI)	Band 1 - Coastal aerosol	0.43 - 0.45	30
and Thermal	Band 2 - Blue	0.45 - 0.51	30
Infrared Sensor	Band 3 - Green	0.53 - 0.59	30
(TIRS)	Band 4 - Red	0.64 - 0.67	30
Launched	Band 5 - Near Infrared (NIR)	0.85 - 0.88	30
February 11, 2013	Band 6 - SWIR 1	1.57 - 1.65	30
	Band 7 - SWIR 2	2.11 - 2.29	30
	Band 8 - Panchromatic	0.50 - 0.68	15
	Band 9 - Cirrus	1.36 - 1.38	30
	Band 10 - Thermal Infrared (TIRS) 1	10.60 - 11.19	100
	Band 11 - Thermal Infrared (TIRS) 2	11.50 - 12.51	100

Landsat: imagem de 16 bits; valor máximo= 65535

Visualizar: ver bandas e mascaras, analisar os valores

Visualizar a banda pancromática

Visualizar a composição RGB (open RGB image window)

Visualizar composição falsa cor (NearIR, Red, green)

Dividir em três o monitor e ver valores dos pixéis em diferentes ocupações do solo (conversão radiância para refletância: Preprocessing > Radiance-to-reflectance)

1.4.2 Sentinel2

Abrir a imagem Sentinel-2 (ficheiro Montemor*.dim)

Visualizar composição falsa cor (NearIR, Red, green)

Fazer reamostragem das bandas com menor resolução

> Raster > geometric operations > resampling > resampling parameters > By reference band (B2); resampling method (nearest)

1.5 Visualização das imagens no ENVI

1.4.1 Landsat

- a) Abrir a imagem Landsat (ficheiro *MTL.txt)
- b) Criar uma imagem apenas com as bandas multiespectrais (B2 a B5) da imagem Landsat-8.
 - > Raster Management/Layer Stacking

Import file > selecionar a primeira e escolher as bandas 2 a 5 (Spectral subset), OK

Import file > selecionar a banda pancromática

Enter OutputFilename > landsat layerStack B2-B5-P.img

- c) Usar "data management" para ler e apagar os ficheiros
- d) Ver formato da imagem criada. Analisar o *header* e dimensão do ficheiro imagem. Ver na web a estrutura do header (http://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html)
- e) Fusão de bandas.
 - > SPEAR > SPEAR Pan Sharpening

High Res File: banda pancromática

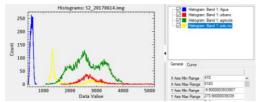
Low Res File: outras bandas Autogenerate seed points

Compara a imagem de resolução de 30 m com a de 15 metros.

1.4.2 Sentinel-2

- a) Ver formatos de dados admissíveis no programa
 - > Open as >
- b) Abrir imagem Sentinel-2 (B2, B3, B4, B8)

Resolução	Nº Banda	Nome da Banda	Comprimento de onda (nm)
10 m	B2	Blue	490
	В3	Green	560
	B4	Red	665
	B8	NIR	842
20 m	B5	Red Edge 1	705
	В6	Red Edge 2	740
	B7	Red Edge 3	783
	B11	Swir 1	1610
	B12	Swir 2	2190


- c) Criar uma imagem apenas com as bandas multiespectrais (B2, B3, B4 e B8) (fazer "subset" para reduzir tempo de cálculo)
 - > Raster Management/Layer Stacking
- d) Remover as bandas individuais

1.6 Histograma

- a) Melhoramento visual da imagem > Experimentar ferramentas de Stretch
- b) Alterar o brilho > ver zona de Montemor-o-novo
- c) calcular estatística da imagem
 - > Statistics > Compute Statistics
 - > ver o histograma de cada banda (Select Plot)
 - > exportar como imagem para incluir no relatório

1.7 Região de Interesse (ROI)

- a) Posicionar na região da Figueira da Foz
- b) Acionar ROI (topo da janela)
- c) New ROI > Roi Name: Água; mudar a cor para azul (desenhar 3 polígonos na água)
- d) repetir o procedimento para Zona Urbana, Vegetação, Solo Nu
- e) save as ...
- f) Options > Compute Statistics from ROIs
- g) ver histogramas por banda e por classe de ocupação do solo

1.8 Análise de componentes principais

PCA rotation > forward pca rotation Statistics > view statistics file (.sta file)

Plataforma CIRRUS

Para upload dos ficheiros executar o "nextcloud" Server address: cirrus.ciencias.ulisboa.pt

Aceder ao Cirrus: cirrus.ciencias.ulisboa.pt

Laboratório 2: temperatura da superfície

(http://semiautomaticclassificationmanual-v5.readthedocs.io/en/latest/thematic_tutorial_temperature.html)

Este tutorial é sobre a estimativa da temperatura da superfície com recurso a imagens Landsat-8 e Sentinel-2. A temperatura da superfície é dependente da emissividade da superfície que por sua vez é dependente da ocupação do solo. Por isso, vamos numa primeira fase determinar a ocupação do solo para calcular a emissividade da superfície. A relação entre a emissividade e a ocupação do solo é apresentada na tabela 2.1.

Tabela 2.1 Valores de emissividade para alguns tipos de ocupação do solo.

Ocupação do solo	Emissividade (e)
Água	0.98
Urbano	0.94
Vegetação	0.98
Solo nu	0.93

Será usada a banda do infravermelho térmico (B10, TIRS) para calcular a temperatura da superfície e avaliar a diferença de temperatura entre a cidade e as zonas rurais e estudar o fenómeno das ilhas de calor. A imagem Sentinel-2 será usada para comparação de resultados. Neste laboratório iremos converter a temperatura de brilho ao nível do satélite (At-satellite Brigntness Temperature) em Temperatura da superficie.

Algoritmo:

- 1. Conversão para TOA reflectancia e temperatura de brilho
- 2. Classificação de imagem: Classes: água, construção, vegetação e solo nu.
- 3. Reclassificar a ocupação do solo em emissividade (ver valores da tabela)
- 4. Converter a temperatura ao nível do satélite para surface temperature (formula 1). Para este efeito é usada a banda 10 do landsat8 (10.8 um)

1. Conversão para TOA refletância e temperatura de brilho

Para as bandas térmicas, a conversão do numero digital (DN) para temperatura do brilho (T_B) ao nível do satélite é dada por:

 $T_B=K_2/ln[(K_1/L_{\lambda})+1]$

em que

- K_1 = Band-specific thermal conversion constant (in watts/m² * str * μ m)
- K₂= Band-specific thermal conversion constant (in kelvin)

e L_{λ} é a radiância espectral ao nível do satélite (abertura do sensor), medida em watts/(m² * str * μ m).

Para o **Landsat 8**, os valores de K1 e K2 são fornecidos no ficheiro de metadados. Exemplo: K1 CONSTANT BAND 10 = 774.89;

K2_CONSTANT_BAND_10 = 1321.08

K1 and K2 are calculated as (Jimenez-Munoz & Sobrino, 2010):

 $K1=c1/\lambda^5$

 $K2=c2/\lambda$

where (Mohr, Newell, & Taylor, 2015):

- c1 = first radiation constant = 1.191*10⁻¹⁶Wm²sr⁻¹
- c2 = second radiation constant = 1.4388*10⁻²mK

Para o satélite Landsat-8 a radiância espectral (L_{λ}) ao nível da abertura do sensor é dada por (watts * m² * ster * μ m) é dado por:

$$L_{\lambda}=M_L*Q_{cal}+A_L$$

em que:

- M_L = Fator multiplicativo especifico de cada banda (RADIANCE_MULT_BAND_x, em que x é o numero da banda)
- AL = Fator aditivo especifico de cada banda (RADIANCE_ADD_BAND_x, em que x é o número da banda)
- Qcal = Valor do pixel calibrado (DN)

De referir que as imagens do satélite Sentinel-2 (Level-1C) são disponibilizadas como reflectancias.

No caso do Landsat, as imagens de radiância podem ainda ser convertidas para refletâncias TOA de modo a reduzir a variabilidade inter-imagem através de uma normalização da irradiância solar. A refletância TOA é calculada como:

$$\rho = (\pi * L_{\lambda} * d^2) / (ESUN_{\lambda} * cos\theta_s)$$

em que:

• L_{λ} é a radiância espectral ao nível do satélite (abertura do sensor

- d = distancia da terra ao Sol em unidades astronómicas (valor fornecido no ficheiro de metadados. È também disponibilizado um ficheiro excel com a distancia para cada dia do ano: http://landsathandbook.gsfc.nasa.gov/excel_docs/d.xls
- ESUNλ = Mean solar exo-atmospheric irradiances
- θs = Angulo zenital Solar em graus, que é igual a 90 graus menos o ângulo de elevação (θs = 90°-θe, em que θe é a elevação do Sol.

As imagens Landsat são disponibilizadas com um ficheiro de metadados que contem os parâmetros de escala para cada banda que permitem a conversão direta de radiâncias para refletâncias TOA.

Exemplo:

```
REFLECTANCE_MULT_BAND_1 = 2.0000E-05
REFLECTANCE_ADD_BAND_1 = -0.100000
```

- a) Cálculo da radiância ao nível do sensor
 - 1. Abrir a ficheiro de metadados no ENVI (abre todas as bandas)
 - 2. Fazer Histograma da banda 10 e 11.
 - 3. BandMath: 3.3420E-04*float(b1)+ 0.10000 (valores obtidos nos metadados) Imagem output: radiancia_b10_band_math.img
 - 4. Importar metadados para a imagem:
 - > View metadata > Edit Metadata > Import : escolher imagem original
 - 5. Usar o comando "Radiometric Calibration" Imagem output: radiância b10 radiomentric caibration.img
 - 6. Comparar valores das duas imagens (cursor value)
 - 7. Efetuar o mesmo para a banda 11
- b) Temperatura de Brilho ao nivel do satélite
 - bandMath: 1321.08/ alog(774.89/float(b1) +1)
 b1 = radiancia_b10_band_math.img
 imagem output: TB band math.img
 - Usar o comando "Radiometric Calibration"
 Imagem output: TB_b10_radiomentric_calibration.img
 - 3. Comparar valores das duas imagens (cursor value)
 - 4. Efetuar o mesmo para a banda 11
- c) Classificação da cobertura do solo

1. Definição das regiões de interesse (ROI)

Classes: água, urbano, vegetação, solo nu

- 2. Usar as bandas: Azul, verde, vermelho, infra-vermelho, SWIR1 e SWIR2 (B2:B7)
- 3. save as: roi.xml
- 4. Classification > supervised Classification > Maximum likelihood

Probability Threshold: 0.1

Outpu Class file name: Classificacao.img

- Aplicar filtro para eliminar pixeis isolados (Filter > Convolution and morphology > median)
- 6. Reclassificar os pixéis

BandMath: 0.93*(b1 eq 1)+0.98*(b1 eq 4)+0.94*(b1 eq 3) +0.98*(b1 eq 2)

Save: emissivity.img

d) Temperatura da superfície

A temperatura da superfície é calculada a partir da temperatura do brilho ao nível do satélite como:

$$T=TB/[1+(\lambda*TB/c2)*ln(e)]$$
 (1)

where:

- λ = wavelength of emitted radiance
- $c2=h*c/s=1.4388*10^{-2}m K = 14388 \mu m K$
- h = Planck's constant = $6.626*10^{-34} \text{ J s}$
- $s = Boltzmann constant = 1.38*10^{-23} J/K$
- $c = velocity of light = 2.998*10^8 m/s$

Para o Landsat-8 o comprimento de onda da banda 10 e 11 é : 10.8 e 12um respectivamente.

1. Usar Bandmath para calcular a temperatura da superfície.

Temperatura = b1/(1+(10.8 * b1/14388)*alog(b2)) - 273 (para converter em Celsius)

B1: imagem temperatura de brilho

B2: imagem emissividade

2. Mudar a Color Table

Laboratório 3: determinação da área ardida com base numa imagem Multiespetral.

Estudo de caso: Incendio de Pedrogão (17 junho de 2017)

Metodologia: Calculo de índices de área ardida e índices de vegetação.

Bastarrika, A., Chuvieco, E., & Martín, M. P. (2011). Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 115(4), 1003-1012.

Índices	Designação	Referência	
NDVI	Normalized Difference Vegetation Index	Rouse et al., 1974	
GEMI	Global Environmental Monitoring Index	Pinty & Verstraete, 1992	
BAI	Burned Area Index	Martín et al., 1998	
BAIMS		Martín et al., 2005	
BAIML			
NBRS	Normalized Burn Ratio	Key & Benson, 1999	
NBRL			
MIRBI	Mid Infrared Burned Index	Trigg & Flasse, 2001	

Grupo	Índices	Equação
VIS+NIR	NDVI	$rac{ ho_{NIR}- ho_R}{ ho_{NIR}+ ho_R}$
	GEMI	$\frac{\eta(1-0.25\eta)-(\rho_{R}-0.125)}{(1-\rho_{R})}\eta = \frac{2\left(\rho_{NR}^{2}-\rho_{R}^{2}\right)+1.5\rho_{NR}+0.5\rho_{R}}{(\rho_{R}+\rho_{NR}+0.5)}$
	BAI	$\frac{1}{(\rho_{NIR} - \rho_{cNIR})^2 + (\rho_R - \rho_{cR})^2}$
VIS+NIR+1SWIR	NBRS	$rac{ ho_{NIR}- ho_{SSWIR}}{ ho_{NIR}+ ho_{SSWIR}}$
	BAIMS	$\frac{1}{(\rho_{NIR} - \rho_{cNIR})^2 + (\rho_{SSWIR} - \rho_{cSSWIR})^2}$
VIS+NIR+2SWIR	NBRL	$rac{ ho_{NIR}- ho_{LSWIR}}{ ho_{NIR}+ ho_{LSWIR}}$
	BAIML	$\frac{1}{\left(\rho_{NIR} - \rho_{cNIR}\right)^2 + \left(\rho_{LSWIR} - \rho_{cLSWIR}\right)^2}$
	MIRBI	$10\rho_{LSWIR} - 9.8\rho_{SSWIR} + 2$

BAI: ρcNIR=0.06; ρCR=0.1; BAIMS: ρcNIR=0.05; ρCR=0.2;

Grupo	Índice	Bandas
VIS+NIR	NDVI GEMI	B4, B8
VISTNIK	BAI	64, 66
VIS+NIR+1SWIR	NBRS	B8, B11
	BAIMS	
	NBRL	
VIS+NIR+2SWIR	BAIML	B8, B12
	MIRBI	

É considerada área ardida se:

Diff_BAIMS > 46.8143 AND Diff_NDVI < -0.17767 AND Post_NBRS < -0.17079 AND Post_BAI > 188.88

Dados: Imagens do satélite Sentinel-2 do dia 14 junho 2017 e 4 de julho de 2017 (Level 1C) subset_0_of_S2A_MSIL1C_20170614T112111_N0205_R037_T29TNE_20170614T112422.dim subset_0_of_S2A_MSIL1C_20170704T112111_N0205_R037_T29TNE_20170704T112431.dim

Processamento:

- Extração das bandas necessárias ao calculo dos índices (B4, B8, B11)
- Calibração atmosféricas das imagens (Sentinel 2, são reflectâncias TOA)
- Cálculo do índice NDVI, NBRS, BAI e BAIMS
- Cálculo da imagem binária com a área ardida

Operação no ENVI e SNAP:

1. Instalar Sen2Cor

 $\frac{http://forum.step.esa.int/t/sen2cor-2-4-0-stand-alone-installers-how-to-install/6908}{install/6908}$

- a) descomprimir o ficheiro zip e criar a diretoria c:\temp\Sen2Cor-2.4.0-win64\
- b) Nessa diretoria executar: >L2a_process.bat I:\aWrk\catalao\aulas\DetecaoRemotaProcessamentoImagem\dados\S2\S2A _MSIL1C_20170614T112111_N0205_R037_T29TNE_20170614T112422.SAFE A execução demora cerca de 00 minutos
- c) O programa irá gerar uma nova imagem de nível 2A
- 2. Abrir as imagens de nível 1C e 2A no SNAP
- 3. Conversão de formato JPG2 para ENVI
 - > Save Product as ... (BEAM-DIMAP)
 - > ver estrutura de armazenamento da imagem (*.img *.hdr)
- 4. Abrir imagem no ENVI (bandas B2, B3, B4, B8, B11)
- 5. A banda 11 tem de ser reamostrada com a mesma dimensão das outras bandas.

comando: raster management\Resize Data

Output pixel size: 10 m

Output: b1_resample.img (ver ficheiro header)

6. Guardar as bandas num único ficheiro imagem.

Comando: raster management \layer stacking

> seleccionar as bandas: B2, B3, B4, B8, B11_resample

> gravar como: pedrogao 20170614.img

7. Visualização da imagem (explorar o "stretch", equalização, gaussiana)

8. cálculo dos índices para cada imagem

Comando: band math

(ver HELP, uso da função float())

> NDVI, BAIMS, NBRS e BAI

(analisar o resultado de cada índice)

8. Calculo das imagens diferença

Comando: band math

> dif BAIMS e Diff NDVI

9. Calculo da regra de classificação

Comando: band math

(ver HELP, ver Spectral Math)

>Diff_BAIMS > 46.8143 AND Diff_NDVI < -0.17767 AND

Post NBRS < -0.17079 AND Post BAI > 188.88

10. Visualizar o resultado e comparar com a imagem falsa cor

Laboratório 4. Desenvolvimento de um programa em python para automatização dos procedimentos do laboratório 3.