
Kelvin’s circulation theorem

• An ideal fluid that is vorticity free at a given instant is vorticity free at 
all times.

• Demonstration: see Faber 120-122 

• In three dimensions the conservation of vorticity (which corresponds 
to the conservation of angular momentum in mechanics) takes a 
somewhat subtle form.

• The circulation of a velocity field is defined to be

where the line is a closed loop which moves with the fluid.
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Circulation and vorticity

• By Stokes’ theorem

where S(t) is a surface whose edges connect with C(t).

K is zero for all loops if Ω is zero in the domain! 

Kelvin´s theorem asserts that

𝐾 Ω

𝐷𝐾
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Demonstration
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The loop moves with the flow and thus

The second term is the relative velocity of two nearby
points on the loop and can be written as 

Hence
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If the fluid is incompressible, using Euler:

Therefore:



Superposition

• Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution. 

• For example, if 𝜙1 and 𝜙2 are each solutions of the Laplace 
equation, then A 𝜙1 + B 𝜙2 are also solutions, where A and B are 
arbitrary constants. 

• By extension, you may combine several solutions of the Laplace 
equation, and the combination is guaranteed to also be a solution.
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Uniform (free) stream

21



Line source or sink

Let the volume flow rate per unit depth, be the line source
strength, m

With solution

The components of the velocity are 
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Line source or sink at an arbitrary point
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Superposition of a source and sink of equal
strength
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Using



Line vortex

The radial component of the velocity is zero and

where Γ = 2𝜋𝑟𝑢𝜃, is the circulation, around a loop of radius r. 

Then,
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Superposition of a line sink and a line vortex
at the origin
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The stream function is

with streamlines

Note that velocity diverges at the origin, which is a singularity (unphysical).


