Example 4.3 Determine the current response of the series RLC circuit, Fig. 4-4{a), when a voltage V is

suddenly applied by closing the switch at ¢ = (. Initial current and initial charge on C are zero.
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or, differentiating with respect to time,
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i= i, = Ae™ + Ae™ (4.16)

where s, and s, are the characteristic roots of (4.15):
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and where the constants of integration, A; and A, may be determined from the initial conditions
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(See Problems 4.7 and 4.8.)

Because « is always a positive real number, the transient current (4.16) eventually decays in magnitude like
an exponential function. The more exact features of this decay depend on the circuit parameters R, L, and C as
they enter in the constant 8. We define wo = 1/V LC, the resonant frequency (in rad/s) of the circuit, so that

ﬂ \/a — Wy



B=\/a — Wy

Case 18 a > wo.
Here, B is real and positive, and 8 < a. The solution takes the form

i= Ale—(n—ﬁll+A2e—(a+ﬂ)l
i.e. the sum of two decaying exponentials. In this case the circuit is said to be overdamped.

Case 2: a= wy.
It can be shown that as 8 — 0, (4.16) goes over into

i=(A+ Azt)e“"

The circuit is said to be critically damped.

Case 3: a <wo.
Now B is a pure imaginary, 8 = j|8i, and (4. 16) becomes

i=e (A + Ay eI
or, equivalently (see Problem 4.21),

i=Ae ™sin (|8lt+¢)

(4.18)

(4.19)

(4.20)

(4.21)

As given by (4.21), the response is a damped sine wave, of frequency |8 (rad/s); the circuit is underdamped.

Figure 4-4(b) illustrates the three kinds of damping. In the critically damped and underdamped cases, the

response goes to zero essentially as e, and «a is called the damping coefficient.
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Andlise de circuitos com corrente alternada



9.2 SINUSOIDS

Consider the sinusoidal voltage
v(f) = Vi sinwf (9.1)
where
Vi = the amplitude of the sinusoid
w = the angular frequency in radians/s
wt = the argument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and in
Fig. 9.1(b) as a function of time. It is evident that the sinusoid repeats
itself every T seconds: thus, T is called the period of the sinusoid. From
the two plots in Fig. 9.1. we observe that T = 2.

2m
Tr=— (9.2)
w

The fact that v(r) repeats itself every T seconds is shown by replacing 1
byt + T in Eq. (9.1). We get

,,
vt +T)=Vysinw(t+7T) =V, sinw (; + ﬂ)
w

(9.3)
=V, sm(wt + 2m) =V, sinwt = v(r)

Hence.

vt +T) = v(r) (9.4)

that 1s. v has the same value at r + T as it does at 1 and v(r) is said to be
periodic. In general.



(9.5)

From Eqs. (9.2) and (9.5). it is clear that
w=2f (9.6)

‘While w 1s in radians per second (rad/s). f is in hertz (Hz).
Let us now consider a more general expression for the sinusoid.

v(r) = V,, sin(wr + ¢) (9.7)

where (wf + ¢) is the argument and ¢ is the phase. Both argument and
phase can be in radians or degrees.
Let us examine the two sinusoids

vi(t) =V, sinwt and va(t) =V, sin(wt + ¢) (9.8)

shown in Fig. 9.2. The starting point of v, in Fig. 9.2 occurs first in fime.
Therefore, we say that v, leads vy by ¢ or that vy lags v, by ¢. If ¢p £ 0,
we also say that vy and v, are out of phase. If ¢¢ = 0, then vy and v, are
said to be in phase; they reach their minima and maxima at exactly the
same time. We can compare v and v in this manner because they operate
at the same frequency: they do not need to have the same amplitude.

1 = ¥, sin wf
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FigUFE 92  Two sinusoids with different phases.



A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids. if is expedient to express both as either sine or
cosine with positive amplitudes. This is achieved by using the following
trigonometric identities:

sinfA = B)=smAcosBtcosAsinhB

9.9
cos(A Lt B)=cosAcosB FsinAsinB 09
With these identities, if is easy to show that
sin(wf = 1807) = — sinwt
cos(wt £ 180%) = —cos wt
(9.10)

sin(ewt £ 907) = £ cos wi
cos(wt £90°) = Fsinwf

Using these relationships. we can transform a sinusoid from sine form to
cosine form or vice versa.



A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Eqs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal
axis represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal. as usual in polar coordinates. This
graphical technique can be used to relate two sinusoids. For example. we
see in Fig. 9.3(a) that subtracting 90° from the argument of cos @t gives
sinwif, or cos(wif —90%) = sin wf. Similarly. adding 180° to the argument
of sin wt gives — sin wt, or sin(wt — 180”) = — sinwf, as shown in Fig.
9.3(b).

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add Acoswt and B sinwi, we note that A is the magnitude
of coswt while B is the magnitude of sinwt. as shown in Fig. 9.4(a).
The magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

Acoswt + Bsinwt = C cos(wt — #) (9.11)
where

B
C =+ A2+ B2, 6 = tan ! = (9.12)

For example, we may add 3 cos wf and —4 sin wf as shown in Fig. 9.4(b)
and obtain

3coswt —4sinwt = Scos(wt +53.17) (9.13)
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FigUI"E 93 A graphical means
of relating cosine and sine:

(a) cos(wt — 907) = smnawf,

(b) sm(wr + 1807) = — smat.



For example. we may add 3 cos wt and —4 sin wf as shown in Fig. 9.4(b)
and obtain

3coswt —4sinwt = 5cos(wt + 53.19) (9.13)
4
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FigUf‘E 94 (a) Adding A coswt and B sinwt, (b) adding 3 cos et and —4 sm at .



Find the amplitude. phase. period. and frequency of the sinusoid

v(t) = 12 cos(50t 4+ 107)
Solution:
The amplitude is V,,, = 12 V.
The phase is ¢p = 10°.
The angular frequency 1s @ = 50 rad/s.

2mr 2m
Theperiod T = — = — =0.1257 s.
0] 50

1
The frequency is f = 7= 7.958 Hz.



9.3 PHASORS

Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

AAAN
A phasor is a complex number that represents the amplitude and phase
of a sinusoid.

O

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources: solutions of such circuits would be intractable other-
wise. The notion of solving ac circuits using phasors was first introduced
by Charles Steinmetz in 1893. Before we completely define phasors and
apply them to circuit analysis. we need to be thoroughly familiar with
complex numbers.

A complex number 7 can be written in rectangular form as

I=x+4+jy (9.14a)

where j = /—1: x is the real part of z: y is the imaginary part of z.
In this context. the variables x and v do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless. we note that there are some
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FigUf‘E 9.6 Representation of a
complex number z = x + jy = r'ﬁ}.

z=r/¢ =rel? (9.14b)
where r is the magnitude of z. and ¢ is the phase of z. We notice that z
can be represented in three ways:

Z=Xx+jy Rectangular form
I=r ﬁ Polar form (9.15)
7 =rel? Exponential form

The relationship between the rectangular form and the polar form
1s shown in Fig. 9.6. where the x axis represents the real part and the y
axis represents the imaginary part of a complex number. Given x and v.
we can get r and ¢ as

1 ¥
r=+x24y2, ¢ = tan? = (9.16a)

On the other hand. if we know r and ¢. we can obtain x and y as
X =rcosg, vy =rsing¢ (9.16b)

Thus. z may be written as

Z :x+j_'-.-':rﬁ:r(cos¢+jsinqb) (9.17)




Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar

form. Given the complex numbers

z=x+jy=r/. a=x1+jn=n/¢
D=X2+ j2=r/$
the following operations are important.

Addition:
i+ =@ +x2)+ j(y+y) (9.18a)

Subtraction:

—2=x—x)+jy—») (9.18b)
Multiplication:
i =nrn /o + i (9.18c)
Division:
8| 5|
—=—/—P (9.18d)
Fily) r
Reciprocal:
1 1
—=—/¢ (9.18¢)
z r

Square Root:

Vi=r/¢)2 (9.180)



Complex Conjugate:
F=x—jv=r /—¢ = re 1% (9.18¢g)
Note that from Eq. (9.18e).

=—j (9.18h)



The idea of phasor representation i1s based on Euler’s identity. In
general.

et/ = cos¢ + jsing (9.19)

which shows that we may regard cos ¢ and sin ¢ as the real and imaginary
parts of e/?; we may write
cos ¢ = Re(e’?) (9.20a)
sing = Im(e/?) (9.20b)
where Re and Im stand for the real part of and the imaginary part of.

Given a sinusoid v(r) = V,, cos(wt + ¢). we use Eq. (9.20a) to express
v(t) as

v(t) = V,, cos(wt + ¢) = Re(V,e/ @9 (9.21)
or
v(t) = Re(V,, e/ el (9.22)
Thus.
v(t) = Re(Ve!™) (9.23)
where



Im v(f) = Re(Ve ™)
A A
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FigUFE 9.7 Representation of Ve/®': (a) sinor rotating counterclockwise, (b) its
projection on the real axis, as a function of time.
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Figure 98 A phasor diagram showing V = V,, /¢ and 1= 1,, /~ @ .



v(t) =V, cos(wt + ¢) — V= m&

(Time=-domain (Phasor-domain
representation) representation)
TABLES.!  Sinusoid-phasor transformation.

Time-domain representation  Phasor-domain representation

Vin cos(wt + ¢b) Ve / ¢
Ii"I'm Sj.ﬂ(&.]f + qb) l|"’r.'u qb — 907
I, cos(wt + H) 1, ﬁ

I, sin(ewt + 0) In /6 —90°




From Eqs. (9.23) and (9.24). v(f) = Re(Vel/®') = V,, cos (@f +¢b).
so that

dv
— = —wV, sin(wt + ¢) = wV,, cos(wt + ¢ + 90°
s ( $) ( & ) 926)

= Re(wV,,e/”e/?¢/®) = Re(jwVel®")

This shows that the derivative v(7) is transformed to the phasor domain
as joV

duv ,
ar — JoV (9.27)
(Time domain) (Phasor domain)

Similarly. the integral of v(#) is transformed to the phasor domain as
V/jw
/ :
vdt — — (9.28)
jw
(Time domain) {Phasor domain)



The differences between v(t) and V should be emphasized:

1. v(t) is the instantaneous or time-domain representation. while
V is the frequency or phasor-domain representation.

2. v(t) is time dependent. while V is not. (This fact is often
forgotten by students.)

3. v(r) 1s always real with no complex term. while V is generally
complex.



(a) (40,/50° 4+ 20/ — 30°)1/*

(a) Using polar to rectangular transformation.
40 /50° = 40(cos 507 + j sin 507) = 25.71 + j30.64
20/ —30° = 20[cos(—30°) + j sin(—30°)] = 17.32 — j10
Adding them up gives
40 /50° 420,/ — 30° = 43.03 + j20.64 = 47.72 /25.63°
Taking the square root of this.

(40/50° + 20,/ — 30°)"/> = 6.91 /12.81°



We begin with the resistor. If the current through a resistor R is
[ = Iy cos(wt + ¢), the voltage across it is given by Ohm’s law as

v=1iR = RI, cos(wt + ¢) (9.29)
The phasor form of this voltage is
V=RI,/¢ (9.30)
But the phasor representation of the currentis I = [, ﬁ Hence.

V=RI (931)
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FigUI’E 9.10  Phasor diagram for the
resistor.



