Sources and sinks
(Faber 4.4)

* The 1/R potential
3D

* It describes isotropic flow with velocity O/4aR’

is a solution of Laplace’s equation in

¢

‘1¢/ﬂz

* [fQ>0itis asource anditis a sink otherwise. Q is the discharge rate.

/

* Free stream potential ¢ = Ux;. — w - U3
—

—
 Superposition of the two gives

u, = U + scos O, (s + uz)'® = ¢ = 8in 6,

Ny 47R 4R~
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Sources and sinks

* Or in spherical coordinates,

up = Ucos 6 + =, Uy = — Usin 6.

—
= O
A

(a) (b)

Figure 4.2 Lines of flow past (a) a point source, (b) a point sink. The surface
of revolution X encloses all the fluid coming from, or destined for, the source
or sink respectively.
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Excess pressure and force

The excess pressure vanishes at infinity where the velocity is that of the free stream.
Then Bernoulli gives for the dynamical pressure:

| pUQ cos 8 pQ°’

47R? 324%R?
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Total force in the direction x, exerted by this excess of pressure on the fluid inside a
spherical control surface centered on O, of an arbitrary R.

cos 7 sin &
¢ 87R2U ) 46 5 3 pUQ
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J (msz 0 sin 0 +
[
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Rate of change of momentum

* The total force is equal to the rate of change of momentum in the x

direction of the fluid, within the sphere:

=
Z? - pu U2 R” sin 8 d6
- Y P——————
SV moodA U * 6 % cos #
’ :J [U’-’cose+ Q1 + cos 6) | O cos }Z:rstianG
0 47R? 167°R?
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Reynolds transport theorem: By _d J pbdV + J pbV -1 dA
CV CS

7

— d [ 4 [ o
SF=— | pVdV + | pV(V-i)dA
dt ity -|L'.'F.
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Rate of change of momentum

/[/)%—7,{ 1Y
J

SR — eV
)

* There is then an additional force on the fluid in the x direction of
magnitude pUQ

* This has to be exerted by the source (sink) and thus the source (sink)
will experience a reaction force
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Two equal sources

Velocity at one source, due
to the other:

= U= Qlda(2d) < ’i‘!ﬂ@ —
_ & s
- |
[T d° |

On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

/Mﬂ _ 20 sin 6 B
4n(d sec 0)°

(
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Excess pressure and force

* Assuming that the excess pressure vanishes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

cron _ _ pQ7sin® O cost 0 - D
o e p

* The fluid to the left of the bissecting plane experiences a force due to
this excess pressure, given by

— | p*(0)27d tan 0 d(d tan §) =
J{p{}ﬂ& (ngp_ﬂ) T
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Analytical solutions of Laplace’s equation

(S.c b ()

(i) Two-dimensional circular polar coordinates (r, 8)

In this system Laplace’s equation becomes

5 0 az(p Vzaﬁ = O
9,99 9P _ 2
) rar[ ar}+aez 0 %2(‘”9_“4)%_/5&;0
DAL VS et

Single-valued solutions in which the variables are separated can readily be found.
They are:

¢ = constant,

¢ = ¢y = Inr, (4.22)
¢ = ¢, = r" cos (nbl), or ¢ =y, =7r"sin (né) (4.23)

[n = £1, £2, +3 etc.].

— (;‘D = constant + Au‘}f’u + E(An@n + an“)
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Ex.:

o ap) %
y P = 17008 (1), rzﬂlrﬁ "0
z/\’\ 741//"‘/‘ ~
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D_ '—V‘N/V\L m(f\’\ O)
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