(iv) Three-dimensional spherical polar coordinates (R, 0, ¢)

Laplace’s equation in spherical polars has separated solutions which form a
complete set, like the two-dimensional solutions described by (4.22) and (4.23).
We nced not list them fully here, because we shall be concerned only with
problems in which the flow is axially symmetric, i.e. in which the flow potential
does not vary with the azimuthal angle ¢.” In these circumstances Laplace’s
equation simplifies to
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and its separated solutions may be written as «zb - & ( A.. ¢j + [L ¢M_)
¢ = ¢, = R" P, {cos 0}, e e
¢ > ¢, = R P, {cos O},

[7 =0, +1, +2, +3 etc.].

Laplacian in spherical coordinates
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The Legendre functions P, {cos 8} may be expanded as polynomials in their
argument, and we shall need the following expressions in particular:

Py{cos 0} = 1, (4.29)

— P;{cos 8} = cos 0, (4.30)
1

P,{cos 0} = 3 (3 cos™ 6 — 1). (4.31)

The full functions ¢, and ¢,, are properly called zonal solid harmonics. They are
orthogonal to one another, and all other solutions of Laplace’s equation in three
dimensions which share their symmetry (or asymmetry) may be expressed as
linear combinations of them [cf. (4.24)].

Some of the solutions described by (4.27) and (4.28) are of course trivial. Thus
¢¢ = 1 for all values of R and 6. As for
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Potential flow around a sphere and Magnus
effect




Solid hemisphere on a flat plate
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Due to high speed flow
at the top of the sphere,
we expect a low pressure
at the top of the sphere.
This pressure results in a
lift force on the
hemsiphere.

Potential
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Solutions of the Laplace equation
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General solution

Boundary condition
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We need only the term n=1. It would be complicated (probably impossible) to satisfy
this condition for any n.

dDJ :/]; \/\Hlé\—f)@

Thus

q5-: Ur &5 -F/;\Z_J:ﬁ@ = @@(W‘ %A;>
V\L

\/qZ

42







Pressure in r=a
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SIDE VIEW




Hemisphere weight
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Condition for the hemisphere to remain on the plate
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D’Alembert’s paradox: In
irrotational flow , the
aerodynamic drag force
on any body of any shape
immersed

in a uniform stream is
Zero.

“It seems to me that the theory

(potential flow), developed in all
possible rigor, gives, at least in
several cases, a strictly vanishing
resistance, a singular paradox which |
leave to future Geometers |[i.e.
mathematicians - the two terms were
used interchangeably at that time] to
elucidate”
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Irrotational flow approximation

Aerodynamic drag = 0
(a)

Real (rotational) flow field

Aerodynamic drag # 0
(B)

47



Drag force

Wind tunnel test section
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Moving belt Drag balance

In a real flow, the pressure on the back surface of the body is significantly
less than that on the front surface, leading to a nonzero pressure drag on
the body. In addition, the no-slip condition on the body surface leads to a
nonzero viscous drag as well.

Thus, the irrotational flow falls short in its prediction of aerodynamic drag
for two reasons: it predicts no pressure drag and it predicts no viscous

drag.
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