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Overview

Understanding the derivation of the differential linear momentum equation for
incompressible Newtonian fluids — the Navier-Stokes equation.

This is a set of partial differential equations that are valid at any point in the flow.

When solved, together with the continuity equation, these equations yield details about the
velocity, density, pressure, etc., at every point throughout the entire flow domain.

From these fields, by integration, we can find the gross features of the flow such as the net
force on the walls or on immersed bodies.

Obtaining analytical solutions of the equation of motion for simple flow fields.

Derivation of the Stoke’s equation for creeping flow. Obtaining the drag force on a sphere in
a uniform stream.

Other applications of the Stoke’s equation.




Differential analysis: mass

We start with the conservation of mass, which through the RTT yields the continuity
equation
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Streamline

Continuity equation in cylindrical coordinates:
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Steady continuity equation: V-i(pV) =10



Incompressible continuity equation:

Incompressible continuity equation in Cartesian coordinates:
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Incompressible continuity equation in cylindrical coordinates:
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The volumetric strain rate vanishes
for incompressible flows.
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Recall

Reynolds transport theorem (RTT)
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Two methods of analyzing the spray-
ing of deodorant from a spray can:
(a) We follow the fluid as it moves
and deforms. This is the system
approach—no mass crosses the
boundary, and the total mass of the
system remains fixed. () We consider
a fixed interior volume of the can. This
is the control volume approach—mass
crosses the boundary.
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Surface force acting on a differential surface element. dF
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Differential analysis: momentum

* For a control volume the RTT gives the momentum equation:
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* The total force acting on the control volume is equal to the rate at
which momentum changes within the control volume plus the rate at
which momentum flows out of the control volume minus the rate at
which momentum flows into the control volume.

* The divergence theorem implies that
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and
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* Re-arranging the terms, we find the equation
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valid for any CV and thus, we obtain the Cauchy equation of motion

d —s — —s — — —
Cauchv’s equation: E[,r.-"r"]- + V-(pVV) = pg + Vo

Other derivations are possible, e.g. by starting from an infinitesimal CV.



Alternative form of Cauchy’s equation

* Clearly, i aV  _ap
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* The second term of Cauchy’s equation can be written as

— —3

V-(pV V) = VV-(pV) + p(V-W)V
* Substituting this into the Cauchy’s equation we find
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* The continuity equation implies that the term in brackets vanishes

and then

Alternative form of Cauchy’s equation:
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Cauchy’s equation in cartesian
components




