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Overview
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Understanding the derivation of the differential linear momentum equation for 
incompressible Newtonian fluids – the Navier-Stokes equation.

This is a set of partial differential equations that are valid at any point in the flow.

When solved, together with the continuity equation, these equations yield details about the 
velocity, density, pressure, etc., at every point throughout the entire flow domain. 

From these fields, by integration, we can find the gross features of the flow such as the net 
force on the walls or on immersed bodies. 

Obtaining analytical solutions of the equation of motion for simple flow fields.

Derivation of the Stoke’s equation for creeping flow. Obtaining the drag force on a sphere in 
a uniform stream.

Other applications of the Stoke’s equation.



Differential analysis: mass

We start with the conservation of mass, which through the RTT yields the continuity
equation
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The volumetric strain rate vanishes
for incompressible flows.



Recall
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Reynolds transport theorem (RTT)



• For a control volume the RTT gives the momentum equation:

• The total force acting on the control volume is equal to the rate at
which momentum changes within the control volume plus the rate at
which momentum flows out of the control volume minus the rate at
which momentum flows into the control volume.

• The divergence theorem implies that
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Differential analysis: momentum



and

• Re-arranging the terms, we find the equation

valid for any CV and thus, we obtain the Cauchy equation of motion
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Other derivations are possible, e.g. by starting from an infinitesimal CV.



Alternative form of Cauchy’s equation

• Clearly,

• The second term of Cauchy’s equation can be written as

• Substituting this into the Cauchy’s equation we find

• The continuity equation implies that the term in brackets vanishes
and then
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Cauchy’s equation in cartesian 
components
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