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Chapter 3
3. Thermodynamics in an expanding universe
* Natural Units;
» Classification and properties of elementary particles;

* Thermal evolution at equilibrium:
* Density of states and macroscopic properties
*  Number density, energy density and pressure
*  Ultra-relativistic limit
*  Non-relativistic limit

* Effective number of degrees of freedom
* Internal degrees of freedom of particles according to the
standard model of particle physics
*  Evolution of relativistic degrees of freedom

* Entropy at equilibrium
*  Effective number of degrees of freedom in entropy;
*  Entropy conservation an its consequences;
*  Entropy and Temperature — time scaling for relativistic particles

* Key events in the thermal history of the Universe 8
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Natural Units

In Particle Physics and Cosmology the expression “natural units” usually
refers to setting the following fundamental constants equal to unity:

These are the speed of light, the Boltzmann constant and the Planck
constant (h = h/2m).

As a consequence, the following fundamental properties (time; length,
temperature and mass) can be written in units of energy (usually
expressed in GeV, MeV, keV):

1s=1.5x10% GeV~!,
1m=5x10" GeV!,

1K=86 x10" GeV =8.6 x 107° eV,
1 kg = 5.6 x 10% GeV.

Where 1eV = 1.6 x 10-19) = 1J = 6.2 x 10°GeV. 1J =1 kg m?s~2



Natural Units

To prove these, use the definitions of the following constants in the IS system

and the definition of electron volt in Jules.

c=3x108 ms!,

G =6.67 x 10711 m?3 kg~ 1572
h=6.6x10"3Js,
e=16x10"1 C,
kp=1.38x10"2 JK!,

velocidade da luz no vécuo;
constante gravitacional;
constante de Planck;

carga elementar;

constante de Boltzmann.

Example: of the mass of known particles in MeV:

Espécie Simbolo Massa (MeV) Carga (e)
Protao p 938.3 +1
Neutrao n 939.6 0
Electrao e 0.511 -1
Neutrinos Ve y Vy , Vr ? 0
Fotao vy 0 0
Matéria Escura ? 07
Energia Escura ? ?

Classification of elementary particles

The Standard Model of Particle Physics (SMPF) predicts various families of
particles some of them are fundamental and other “composite” particles.

Fundamental particles are not know to have internal structure. Composite
particles have internal structure (i.e. are made of other particles).

All particles of the SMPF can by classified

in the following way:

Name Spin Examples

Baryons = qqq9 n + % pt n® A AL QE -
Hadvons

Mesons = g§ n n0E KOE 1/ DO BO g, -
Leptons % e, Ve, L™, Wy, T, Vr.
Gauge fields 1 v, 20 WE g0,




Classification of elementary particles

Gauge Fields (exchange Bosons): Standard Model of Elementary Particles
Are fundamental particles that mediate interactions: ot
» Photon y - electromagnetic; I I i
« 8 gluons g - strong interaction : u C t ' @ H
« Zand W — weak interaction 1w I cem I <o oo || v
*  Graviton? (hy,) - gravitational interaction e e
(quantum gravity) @@ |- @ ¥
down strange bottom photon
Leptons: : : : -
Are fundamental particles that interact via the - u & ;
electromagnetic and weak forces. M-z ||| rEn o || Zboson
» Come in doublets with respect to the week force
«  Only distinguishable by the mass e W@ @
» Stable doublet: is the electron/electron neutrino Sesiind | newtono || newetino | | Wboson
Hadrons:

Have internal structure and interact via all types of forces.
» are made of quarks, confined in sets of 2 (Mesons) or
3 (Baryons) particles: up, down; charm, strange; top; bottom (u, d, c, s, t, b)

Scalar Higgs Boson
 Higgs Field: The Higgs mechanism is believed to be the cause the Electroweak symmetry
breaking and describes the generation of the mass of all fermions and massive bosons

Thermal evolution at equilibrium

Fundamental assumptions about the primordial universe:
« All fluid species are assumed to behave as ideal fluids.

« Thermal equilibrium of a fluid species may be established
whenever the particles’ interaction rate, I'(t), (expressed as the
number of interaction events per unit of time) is larger than the
expansion rate of the Universe, H(t) = a/a:

I'(t) > H(t)

* The best way to describe a fluid component is through its
distribution function f(x, p, E, t).This gives the mean number of
particle states in the position, x + dx, with momentum, p + dp.

 In classical mechanics f is defined as the number of particles per
phase space volume: dN = f(x,p,E,t) d3x d3p

» If space is homogeneous, the distribution function must be
independent of x. Moreover assuming isotropy, f must be a
functionof p = |p|, so f = f(p,E, t).



Thermal evolution at equilibrium

The phase-space of a species in Quantum physics:

Uncertainty principle (1927): AxAp = h
Phase space smallest
region of confinement:

One-dimension {x, p}:
Ax Ap = 2rth

Three-dimensions {x,p}:
Ax Ap = (2nh)3

2nh

Number of "cells”
in the Phase space:
(natural units A=1)

dxdp
(2mh)3

- f axap

Figure 2.4. Phase space of position and momentum in one dimension. Volume of each cell Phase space density
is 2nh, the smallest region into which a particle can be confined because of Heisenberg's

principle. Shaded region has infinitesmal volume dzdp. This covers nine cells. To count the 9
appropriate number of cells, therefore, the phase space integral must be [ dzdp/(27h).

Thermal evolution at equilibrium
The phase-space of a species in Quantum physics:

In quantum mechanics the momentum operator (P = i7V ) eigenstates of a free particle
inside a box of volume, V = L3, has a discrete spectrum of momentum/energy eigenstates,
described by the (time-independent) Schrédinger equation:

2 2%\ 72
Py IV By e v = k2
2m 2m
where, k* = 2mE/h* and p = hk. 3 :
The 1D solution for the boundary condition ¥ (0) = ¥(L) = 0 o
is of the form ¥ (x) = A sin(k,x), where: - R
kn =nn/L, withn > 0 V4
The energy of each mode # is: E F
P2 Rk R? X |
En - - = = — =N
2m 2m 2m L2

In 3D, the possible momentum and energy states are:

Lo P2 RKL R
P=hp (aymyna)  Ba= g =5 = g e (e 7+ d)

10



Thermal evolution at equilibrium
The phase-space of a species in Quantum physics:

Therefore the allowed momentum eigenstates in one octant of the n = (n,,n,,n,) space is

(Pr = 2m E): Pz
. hm I A
DPn = fn or n= %pn . . o ° o
So the number of points in this n-space octant is: - e o o e
L 3 L J : L] =3 L] L]
3. [ & 3 o
d n= (hﬂ-) d p . o . .
Generally, distribution function integrals are done over the whole > Py
{x, p}-space. That would lead to 8 times larger densities, so: T
3_1£33_£33_ 3. 13 Pa L
dn_8<7rh> d’p = . d’p = xd’p
Phase space density
If particle species have g internal degrees of freedom the density of states in natural units
in {x, p}is:
9 __9
h3  (2m)3
because h = h/(2r) = 1 and therefore h = 2. "
Thermal evolution at equilibrium
From quantum states to microscopic properties:
Under the assumptions of homogeneity and isotropy, the number of particles
dN = f(x,p,E,t) d®x d3p does not depend on x and is only a function of p = |p|.
The number density of particle states is therefore: p=
A
g 3 o o o o
—— d L[]
° = o | 10 A A
Likewise, one can obtain the energy density of particles D
in real space by weighting the each momentum eigen- ’ ot
state by its energy, £(p) = v/m? + p? , an therefore: ‘ > Dy
h
g 3 , T
—_— T a d E D L
P = amp / p f(p) E(p) !

The computation of the pressure of particles results in a similar way (This can be derived
using statistical mechanics assuming a gas of weakly interacting particles, see next slides).

2

__9_ P
P = (27r)3/d3pf(p) 3E 12




Thermal evolution at equilibrium

Derivation of (done in class),

2
P= o5 [&sw 3

Lets assume a gas of weakly interacting particles in statistical mechanics.

(from Baumann Chap. 3.2)

Consider the area element d A, in the figure on the left. Particles move with E (|v]).

The number of particles in the shaded volume dV = |v|dt dAg = |v|dt dQR?
is:

g 2
dN = FE) x R*|v|dtd2

Gy (B) x By
Not all particles in dV will hit dA.
Only a fraction of this particles, with 0.1 = cos(6),
i.e. with the direction, v, will hit dA. So, assuming
isotropy, the number of particles arriving on dA
Is:

AN, — |v-n|dA

o X AN = @’#Pf(E) x T

Thermal evolution at equilibrium

(Derivation continuation...)

v - A
47

_|o-n|dA

AN, = x dN = —J__f(E) x dAdt dQ

47 R? (2m)3

If these d N, particles collide elastically at dA, each particle transfers a momentum 2 |p. ii| (because
the particle is assumed to collide elastically, and is reflected with the same angle of impact).

So the pressure dP (defined as force / area = momentum / time / area) by these particles at dA is:

dP(|v]) =

2

_ 9 b 20 o
= f(E) x 27TE/COS 6 sinfdfde

2

g p
- (2m)3 8 f(E)3—E

where |v| = |p|/E and the integration is made dA
over the hemisphere of particles moving towards
dA (ie.with - = —cosf < 0)

Figure 3.3: Pressure in a weakly interacting gas of particles



Thermal evolution at equilibrium

Kinetic equilibrium

If particles exchange momentum and energy in an efficient way, the
system is said to be in kinetic equilibrium. If the system achieves a
maximum entropy state, then particles are distributed according to the
Fermi-Dirac or Bose-Einstein distribution functions:

1
) = —@o—wr 1

+ Fermions
— Bosons

Where T is the temperature of the system and u is the chemical potential
defined as the change of energy with respect of the number of particles, at
constant entropy, volume, and number other particle species.

“":<8Ni

ou

) or Hi=
S,V,Nj/i

_ (@)
AT

At low temperature T << E — u both distributions reduce to the Maxwell-

Boltzmann distribution:

f(p) ~ e~ E@-1/T 15

Thermal evolution at equilibrium

Particle distribution functions

Quantum Statistics Summary

Fermi-Dirac distribution Bose-Einstein distribution
. 1 . 1
: f(E)= f(E)=
Faneton &) exp|(E - u)/keT J+1 &) exp|(E - u)/keT |-1
Energy !
Dependence "

0 E

Quantum Particles

Undistinguishable particles
obeying to the Pauli’s Principle:
only one particle per state

Undistinguishable particles not subject
to the Pauli’s Principle: many
particles can occupy one state

Examples: electron, proton, neutron...

Spins semi-integer spins integer spins
G temper.ature oLLS, eat?h e itekd leyel S| At very low temperature, large numbers of
P i SreuRInd by W Fermipaiiclozwith Bosonsfallinto lowestenergy state
roperties opposite spins. 9y ’

Examples: photon, gluon, mesons...




Thermal evolution at equilibrium
Chemical equilibrium

» |f a particle species, i, is in chemical equilibrium, then y; is related to the
other species chemical potential. For example if one has the following
interaction (reaction) among species:

1+2<3+4 then M1+ pH2= U3+ 4

* Photons have chemical potential equal to zero, i.e. ,, = 0, because the
number of photons is not conserved. For example: double scattering
interaction e~ +v <> e~ +7+v

« This implies that a particle, X, and its antiparticle, X, ( X + X <> v+~ )
have symmetric chemical potentials uy = —pux.

Thermal equilibrium

» Thermal equilibrium is achieved for species which are both in kinetic
and chemical equilibrium. These species then share the same
temperature, 7, = T'.

17

Thermal evolution at equilibrium:

Using the distribution functions one can compute the number and
energy densities, and pressure from their expressions in slides 11, 12,

with, E(p) = vVm? + p?

n = (21)3 /d“pf(p) p = (2fr)3 /d3pf(p)E(p)

2

P = ks [ o) 1

* In general these expressions are solved numerically.

* However, for some cases of interest it is possible to derive
analytical solutions.

» These are the cases of ultra-relativistic particles (m « T) and

non-relativistic (m > T) with vanishing chemical potential (1 = 0)
18



Thermal evolution at equilibrium:

Whenever the chemical potential is zero (photons) or negligible (e.g.
electrons and protons) the number and energy densities can be written as:

00 2

g p
n=_—— dp
272 Jo exp [v/p?+m?/T| £1
g oo p2 p2 _+_m2

P~ om2 0 pexp[\/p2+m2/T]:}:1

Defining x = m/T and § = p/T these integrals can be written as

9 - [~ &
A I EY A e e
. _ [P EVEL?
p= 27T2T (@) J+() _/0 . exp [v/€2 + 2] £1

Which in some cases can be evaluated analytically using the Riemann-Zeta
and Gama functions. In particular one has:

/0 dgef_l =((n+1)T'(n+1),

/mdg,g"e—ﬁ2 =5T(3(n+1)),

0 19

Thermal evolution at equilibrium:
Ultra-relativistic limit: x - 0 (im < T and u = 0)
For x—0 (m « T) on has for the integral part of the number density:

[ Bosons:
.(0)=¢Q2+1Dr2+1)=27@3)~ 2.4

o0 2
Ii<0)=/0 a2 -

Fermions:

1\3 3 3
| L@ =1.(0)-2(;) O =210 =2¢3)

For Fermions the integral is not directly related with the Riemann integrals. However
one can use the mathematical equality,

112
e€+1 e -1 e%X—-1

and then apply the Riemann integral. -



Thermal evolution at equilibrium:

Ultra-relativistic limit: x > 0 (m <K Tand u=0)
So one obtains the following expressions for the number density:

n=®gT3{

bosons
7r2

1
% fermions

Doing a similar computation for the /1 (0), it is possible to derive the following
expression for the energy density:

2 1 bosons
T
p=o9T" < ,

30 8 fermions

To compute the pressure for ultra-relativistic particles, x—0, with u=0, it is
straightforward to show that:

P=_p
3 21

Thermal evolution at equilibrium:

Non-relativistic limit: x > 1 (m > T and u = 0)

Forx > 1 (m > T ) the number density integral gives the same expression for
Fermions and Bosons:
00 62
I ~ d
+(z) /0 § e

Most of the contribution to this integral comes from § << x . We can therefore expend
the square root in a Taylor expansion to the lowest order in & to obtain:

> 52 e [T 2,—€2/(2z) 3/2 -z > 2 —£2
Ii(x)z/o dfmze /0 d€ %e = (2z)"“e /0 d€ €%e

This last integral is related with the Gamma Function integral with n = 2. So one gets:

Ii(z) = \/gsc:;/z e

Which leads to: s



Thermal evolution at equilibrium:

Non-relativistic limit: x > 1 (m > T and u = 0)
The number density of non-relativistic particles

n_g(27r> e m/T

This tell us that massive particles are exponentially rare at low temperatures.

For the energy density, at low temperature one has

E(p) = \/m? + p? = m+p*/2m

The energy density integral can be obtained using this expression:

3
p=mn+ inT

The pressure can be also easily computed, giving

P =nT 2

Thermal evolution at equilibrium:

Non-relativistic limit: x > 1 (m > T and u = 0)
From these expressions one concludes that:

 The densities and pressure of non-relativistic particles are strongly suppressed, by
the exponential term e =™/T | as temperature, T, drops bellow the particles mass,
m. This is known as Boltzmann suppression and is due to particle annihilations.

 These annihilations occur due to changes in the interactions involving the particle
species. For example in the case of X 4+ X <+ v + ~ (particle-antiparticle pair
production) at low temperature (typically below ~m), the thermal particle energies
are not sufficient for pair production.

« Particle annihilations are typically N\ z LL% é

associated with phase transitions, A /

such as happens to the less massive / \
quarks in the QCD phase transition. é Léi / \

) Pair production (b) Annihilation



Thermal evolution at equilibrium:
Non-relativistic limit: x > 1 (m > T and u = 0)

From these expressions one concludes that:

« The transition from relativistic to non-relativistic behaviour is not instantaneous (in
fact about 80% of particle-antiparticle annihilations take place in the temperature
range T € [m/6, m]).

« Whenm > T the energy density and pressure of non-relativistic particles,

*p =n(m+§T) =~ nm
e P=nT Kp=nm

 This means that non relativistic particles have in general negligible pressure. They
behave as a “pressureless dust’, (i.e. as P=0 ‘matter’)

» Notethat P = nT & PV = NkgT (in Sl units) is the ideal gas law.

In a nutshell: decoupled non-relativistic particles behave as a gas of pressureless matter

Thermal evolution at equilibrium:

Effective number of degrees of freedom of relativistic species

For a plasma of relativistic species, with bosons (labelled by i) and fermions (labelled by
j) we have that:

2 -
() 4
P = QZT
S0 - = ) '—1h7A-+ > “_Thjﬂ
() _ 7 ’/T T4 ) bosoes 7 fermloes
= ——0j
830° |

The total energy density of relativistic species can therefore be written as:

2
T
pr=2)_pi=550(D)T"
)

where T = T, is the photons temperature and g.is the effective number of degrees
of freedom of the fluid at temperature T".

R, T\ A
gx = Z gz(f) +§ Z gj<T_J) .

1 bosoes 7 fermides




Thermal evolution at equilibrium:

Effective number of degrees of freedom of relativistic species

This expression allows that different species may not be in thermal equilibrium with the
photon component. In fact we can distinguish two situations:

 For relativistic particles in thermal equilibrium with the photons we have:

gih(T) = iz:%gz' + g ;gi

when a species become non-relativistic, it is removed from the sums in g&".
So, when T is away from the “mass thresholds” of particles g4 is independent of

temperature

« For relativistic particles that are not in thermal equilibrium (or decoupling)
from the photon fluid, g, varies with temperature:

TN\* 7 T\ 4
dec _ N _ N -
g:(T) = Zi:bg’(:r> T3 Zi:fg’(T)

27

Thermal evolution at equilibrium:

Inventory of internal degrees of freedom of fundamental particles

- —_J _J _J

type mass spin g Internal degrees of freedom of fundamental particles in the
_ X Standard Model of Particle Physics:
quarks t,t 173 GeV 3 2:2:3=12
b,b 4 GeV { +  Massless spin-1 (photons and gluons): 2 polarizations
¢, C 1 GeV
8,8 100 MeV [ Massive spin-1 (W, Z°): 3 polarizations
d,s 5 MeV
’ . ive spin- £ 4* %) 2 gpi
u 9 MeV [ Massive spin-1/2 leptons (e*, u™*, 7¥): 2 spins
[ gluons o 0 1 8.2=16 J [ *  Massive spin-1/2 quarks: 2 spin and 3 colour states
leptons i 77T MeV L 2.2-4 Neutrinos/anti-neutrinos: 1 helicity state
puE 106 MeV
et 511 keV
Vr iy <066V 1 2.1=2 So the int_erna! degrggs 9f freedom for relativistic bosons
Dy <066V and fermions in equilibrium are:
Ve, Ve <0.6eV g» =28  photons (2), W* and Z°(3- 3), gluons (8 - 2), and Higgs (1)
gauge bosons W+ 80 GeV 1 3 gy =90 quarks (6 - 12), charged leptons (3 - 4), and neutrinos (3 - 2)
w- 80 GeV This gives:
Z° 91 GeV -
v 0 2 =g+ - gr = 106.75
{ J 9x = Gb 8 gf 28
Higgs boson ~ H° 125GeV 0 1




Thermal evolution at equilibrium:

Evolution of relativistic degrees of freedom (SMPP)
I | I ] I ] I | I ] I | I | I

B t W* 2% H _
106.75 b
— 9625  geon ¥

|

100

61.75

Ll

EW

1

T>100 GeV:
All particles are
Jx (T) rZIativistic.
10 | By ~1OQ GeVlthe Higgs
-mechanism “gives mass”
= to the electro-week QCD
I~(EW) mediators causing

the “EW phase T~150 MeV:
transition” Quarks combine into

- baryons and mesons. 3.38
Below ~30 MeV all
= Hadrons except the Pions -
become non-relativistic

| | | | | | | | | | ] | ] | ]
10° 104 103 10? 10 1 0.1

T [MeV]

1

Ll

|

1

29
Figure 3.4: Evolution of relativistic degrees of freedom g.(T") assuming the Standard Model particle content.
The dotted line stands for the number of effective degrees of freedom in entroov a.<(T).

Thermal evolution at equilibrium:

Entropy at equilibrium
From to the first law of thermodynamics (dU = TdS — PdV ; with u; = 0) one has:

TdS = d(pV)+PdV — d[(p+ P)V] — VdP 5 Vo + (p+ P)V.

From (3) one can derive that:
28\ Vv < a8 > _p+P
<8_p>v T ov), T

The Schwartz theorem applied to the thermodynamic variable Free Energy: dF = —SdT — PdV

allows one to write:
orP 9S p+P

T — oV T
From (2) and the above equation on obtains:

s = %(d[(p +P)V] - VdP)

= %d[(p+P)V] - %(p+ P)dT

B [p+P ] 30

T



Thermal evolution at equilibrium:

Entropy at equilibrium

This expression allows defining entropy and entropy density (or specific entropy), up to
a constant, as:

p+ P

Il

_ptP S _
=7 7 Ty T

S

The specific entropy of a relativistic boson species i can then be computed as (using
the expressions of p;, P;, obtained earlier):

.r,»-—7r—2~1+1 T—;—@-T?’ Relativistic B
i = 3ogz 3) T, TS g;d; elativistic Bosons

where the 1/3 term comes from the pressure P; = p; /3.
A similar result holds for relativistic fermion species:

7 w2 1 7 2 . ,
i=—— 14+ 2)gT? = -"gT3 Relativistic Fermions
° 830<+3>gl § 45 Y1t

31

Thermal evolution at equilibrium:

Entropy at equilibrium

For a plasma of relativistic species, with bosons (labelled by i) and fermions (labelled by
j) we have that:

272 73
SB = — 7 Yil; 2 2 79 2
45 T 3 i 3
- 8 — —— 'T~ —I_ —_— T
79r2 2 ettt 2 sTpet
Sp = ——giT?’ i bosoes i fermioes
8 45 ’

The total energy density of relativistic species can therefore be written as:

272
5= g g’

where T = T, is the photons temperature and g.is the effective number of degrees
of freedom in entropy of the fluid at temperature T

T\° 7 T\ 3
Gxs = Z gz(T—) +§ Z gj(fj)

i bosoes j fermides

32




Thermal evolution at equilibrium:

Entropy at equilibrium

One should note that g, is a function of (T;/T)3 whereas g., varies as (T;/T)*
This means that:

* Relativistic species in thermal equilibrium (T; = T):  g.s = -«

 Non-relativistic decoupling species (T; + T): Jss F G+

In other words, if one writes

9xs(T) = g(T) + g%(T)

One has that gt (T') = gt*(T")for relativistic species in thermal equilibrium, and
gdee(T) £ gdee(T) for non-relativistic species in the process of decoupling from fluid.

Slide 29 shows both g, (dotted line) and g, (solid line).

At high values of the degrees of freedom (i.e. higher temperatures) the curves appear
on top of each other because the differences are small and only more visible at low T.

Thermal evolution at equilibrium:

Conservation of Entropy

A most important result about the evolution of the fluid in thermal equilibrium is that its
entropy remains constant with the expansion (as opposed to its energy density that
decreases with time).

This can be proved by taking the time derivative of S:

ds d {erPV]

dt At | T
_V{d_p 1dv K{dP p—I—PdT]zo

=7 dﬁvaf’”’)]*zv

» The first term vanishes, because
p+ 3g(p +P)=0

(FLRW continuity equation) and V = L3a3.
* The second term also vanishes, because
op 35S (p+P) 34
oT oV T




Thermal evolution at equilibrium:

Conservation of Entropy

Entropy conservation has two important consequences:

e FromS = sV = const. 2 s x a3

In fact, whenever the number density n = N/V o a3 (i.e. away particle mass
thresholds) one also has that n/s = N/S . Since S = const., one can set it to 1,
to conclude that n/s = N. The same holds for individual species:

n.
Ni = —
S
S; 272 3 _ :
e Since g — =27 ws Ty and sV = const. one has:
45

g*S(T)T3a3 = Q*S(Ti)T?’a? = const. == | T g*_Sl/sa,_1

(2

Away from particle mass thresholds (g., = const.) one concludes that the temperature
1/3

of a relativistic fluid scales with the inverse of a(¢). More generally (4; = g, T;a;):
_ 7. g*S(Cr’i) 1/3% R A< . |
T=T, <g*s(T)) . =Aig,s'"a 35

Thermal evolution at equilibrium:

Conservation of Entropy: Temperature — time dependence

We can now combine this equation in energy density equation of relativistic particles and in the
Friedmann equation to relate temperature with density and time. We have:

2 2 4 2
_ e T S VE S Y —4/3\ —4
Pr = 3Og*T 309* (Az g.s a ) SOAz (9*9*5 )CL
Plugging this result in the Friedman Equation (accounting only for relativistic particles) one
obtains:

H? — 8rG _ 8nG m Al ( 74/3> a2

3 =g a0 (s

These results show that, whenever g, (T) and g.,(T) are constants (i.e. away from particle
mass thresholds) one obtains:

« the well know scaling for radiation p,. < a=*

« the solution of the Friedman equation with p = p, < a=*is: a « t1/2

At particle mass thresholds g, (T) and g.(T) are a function of temperature. The solution of the

Friedmann equation is numerical and generally leads to deviations to the a o< £1/2 scaling.
36
Plugging this in the temperature scaling, one finally obtains T « g,,a™1 « t~1/2,



Thermal evolution at equilibrium:

Conservation of Entropy: Temperature — time dependence

Doing the maths, one can obtain the exact time dependence of the temperature of the
relativistic fluid. Typically one obtains:

(which allows to write the rule of thumb: T ~ 1 MeV at about 1 second after the Big-
Bang)

This expression allows one to establish a direct correspondence between a given energy
scale of the relativistic fluid and time until the end of the radiation domination period. Beyond
the radiation domination phase one needs to account for the other terms in the Friedman
equation (see next slide).

37

Thermal evolution at equilibrium:

Key events in the thermal history of the universe

Event time ¢  redshift 2 temperature T’

Inflation 10731 5 (7)

Baryogenesis ? ? ?

EW phase transition 20 ps 10%° 100 GeV

QCD phase transition 20 ps 1012 150 MeV The previous sets of equatlons
allows one compute all

Dark matter freeze-out ? ? ? thermodynamic properties of the

Neutrino decoupling s  6x10° 1 MeV primordial relativistic fluid and

. . ) - establish their dependence with

Jlectron-posit ihilati 6s 2 x 10f 500 ‘ :

ectron-positron annihilation 8 X 500 ke time and redshifts.

Big Bang nucleosynthesis 3 min 4 % 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV All we need to know is of what the
universe is made of and the

Recombination 260-380 kyr  1100-1400 0.26-0.33 eV thSiCS of each of its

Photon decoupling 380 kyr 10001200 0.23-0.28 eV Components!

Reionization 100-400 Myr 11-30 2.6-7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV
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Present 13.8 Gyr 0 0.24 meV




Thermal evolution at equilibrium:

Key events in the thermal history of the universe

Baryogenesis:

Quantum field theory requires the existence of anti-particles. This poses a problem: particle-
antiparticle creation and annihilation (allowed by the Heisenberg principle)
creates/destroys equal amounts of particle and anti-particles.

However, we do observe an excess of matter (mostly baryons) over anti-matter!

Models of baryogenesis attempt to describe this observational evidence using some dynamical
mechanism (instead of assuming this particle-anti-particle asymmetry ab initio)

Electroweak phase transition:

At ~100 GeV particles acquire mass through the Higgs mechanism. This leads to a drastic
change of the weak interaction. The gauge bosons Z°, W * become massive and soon after
decouple from thermal equilibrium.

QCD phase transition:

Above ~150 MeV quarks are asymptotically free (i.e. weakly interacting). Below this energy/mass
threshold the strong force (mediated by the gluons) becomes more intense; the more massive
quarks start to decouple from the fluid. The less massive become confined (with the gluons),
inside the baryons (3 quarks + gluons) and mesons (quarks+anti-quark + gluons)

Thermal evolution at equilibrium:

Key events in the thermal history of the universe

Dark Matter freeze-out:

Present observations indicates that dark matter is very-weakly interacting (or non-interacting).
Depending on the mass of the dark matter candidates one should expect that it should decouple
from the fluid early on. For example, if dark matter is made of WIMPs (weakly interactive massive
particle), one should expect that their abundance should freeze around 1 MeV

Neutrino decoupling:
Neutrinos only interact with the rest of the plasma through the weak force. They are expected to
decouple from the fluid at ~0.8 MeV.

Electron-positron annihilation:
Electrons and positron annihilate soon after the neutrinos. Positrons vanish, because electron-
positron pair production is strongly suppressed below ~1MeV

Big Bang Nucleosynthesis:
At ~0.1MeV (~3 minutes after the Big-Bang) protons and neutrons combine to form the first light
nuclear elements. 40



Thermal evolution at equilibrium:

Key events in the thermal history of the universe

Recombination:

At ~0.3 eV (260-380 kyr) free electrons combine with nuclei to form atoms. Predominantly
Hydrogen: e~ +p™ — H++~. Below this range of energies, this chemical reaction can no
longer occur in the reverse order.

Photon decoupling:

By ~0.23 eV (380 kyr) the primordial fluid is reduced to photons, that no longer interact with
matter (free electrons). The Cosmic Microwave Background radiation propagates freely in the
Universe.
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