Planetary boundary layer

Lecture 3



Homework

3-1 - Diogo
3-10 — Florian
3-14 — Jason
3-17 — Maria
3-20 — Mariana
3-21 —Sara
3-23 — Catia



Simplifying the equations

Because the upcoming derivations are sometimes long and involved, it is easy "to lose
sight of the forest for the trees”. The following summary gives the steps that will be taken
in the succeeding sections to develop prognostic equations for mean quantities such as
temperature and wind:

Step 1. Identify the basic governing equations that apply to the boundary layer.

Step 2. Expand the total derivatives into the local and advective contributions.

Step 3. Expand dependent variables within those equations into mean and
turbulent (perturbation) parts.

Step 4. Apply Reynolds averaging to get the equations for mean variables within
a turbulent flow.

Step 5. Add the continuity equation to put the result into flux form.

Additional steps take us further towards understanding the nature of turbulence itself:

Step 6. Subtract the equations of step 5 from the corresponding ones of step 3 to
get equations for the turbulent departures from the mean.

Step 7. Multiply the results of step 6 by other turbulent quantities and Reynolds
average to yield prognostic equations for turbulence statistics such as
kinematic flux or turbulence kinetic energy.




Navier-Stokes (newtonian fluid, uniform rotation, constant
gravity)
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Specific volume:
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Deformation rate tensor:
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Continuity
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Thermodynamics:
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Thermal conductivity y, diabatic heating source Sg, potential temperature:
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Reference pressure Py, = 10°Pa.



Scalar conservation (water vapor,...):
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Virtual temperature:
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Simplifying...

Thermodynamic scaling:
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Reference state: hydrostatic, adiabatic, barotropic
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Dynamical scaling
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Reference scale of height:
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Applying previous relations between scales:
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Continuity

Going back to dimensional variables:
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This is the anelastic approximation.

If we can accept L, < H (shallow convection approach), we have the solenoidal (or
incompressible) approximation:
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3RD Navier-Stokes

Define
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Then:
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Replacing in Navier-Stokes for w leads to
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After some changes:
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With the Rossby number:
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When vertical acceleration is required

Linearize:
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Also for the state equation:
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Leads to Boussinesq equations (f = e the isobaric thermal expansion coefficient)
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We still need to apply Reynolds decomposition...

u; = U; + uj ...
Averaging, flux form
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If we take a “first order approximation”:
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