Couette flow With applied pressure gradient
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Integrating twice yields

IP -

: , 1 9, 2
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* Applying the velocity boundary conditions
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* u(y) is the velocity profile of Couette flow between parallel plates
with an applied negative pressure gradient; the dashed red line
indicates the profile for a zero pressure gradient, and the dotted line

indicates the profile for a negative pressure gradient with the upper
plate stationary (¥ =10).
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Dimensional analysis

* The problem is set in terms of velocity u as a function ofy, h, V, m,
and dP/dx. There are six variables (including the dependent variable
u), and since there are three primary dimensions (mass, length, and
time), we expect 6 - 3 dimensionless groups. When we pick h, V, and
m as our repeating variables, we get the following result:
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Dimensional analysis

Dimensionless form of velocirty field:
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Oil film falling down a vertical wall

¥ 1. The wall is infinite in the yz-plane (y is into the page for a right-handed
@ L coordinate system).

P=Pw 2. The flow is steady (all partial derivatives with respect to time are zero).
oitilm: = . 3. The flow is parallel (the x-component of velocity, u, is zero everywhere).

- \ \ 4. The fluid is incompressible and Newtonian with constant properties,

wall ¢ and the flow is laminar.

5. Pressure P = P_,. constant at the free surface. In other words, there is
no applied pressure gradient pushing the flow; the flow establishes itself
- due to a balance between gravitational forces and viscous forces. In
“U=“ addition, since there is no gravity force in the horizontal direction, P=P_, _
everywhere.
6. The velocity field is purely 2D, which implies that derivatives in y are
zero.
7. Gravity acts in the negative z direction.
8. The boundary conditions are: no slip at the wall; atx=0,u=v=w =0.
At the free surface (x = h), there is negligible shear, which for a vertical

. . . ow
free surface, in this coordinate system, means P 0 atx=h.
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Reading for the next class: Cengel, examples 9-18 and 9-19



