Force balance

Navier-Stokes equation
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In most of the previous examples, the acceleration of the fluid elements is zero. It
means that the viscous force balance the external force (e.g., gravity) or pressure
gradients in such a way that the sum of forces acting on a fluid element is zero.



Alternative
derivation for flow in
a circular pipe

Obtain the momentum equation
by applying a momentum
balance to a differential volume
element, and we obtain the
velocity profile by solving it.

Free-body diagram of a ring-
shaped differential fluid
element of radius r, thickness dr,
and length dx oriented coaxially
with a horizontal pipe in fully
developed laminar flow.
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In fully developed laminar flow the axial velocity is, u= u(r). There is no motion
in the radial direction. There is no acceleration (check: calculate the
acceleration and verify that it is zero).

e Consider a ring-shaped differential volume element of
radius r, thickness dr, and length dx oriented coaxially
with the pipe.

* The volume element involves only pressure and
viscous effects and thus the pressure and shear forces
must balance each other. The pressure force acting on
a submerged plane surface is the product of the
pressure at the centroid of the surface and the surface
area. A force balance on the volume element in the
flow direction (x) gives
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Force balance implies
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and substituting the stress (component rz): r = —u(du/dry we find
-

Same equation obtained with NS (see slide 39): ;;(f%) =ﬁ% 59



Recall

Deviatoric stress tensor
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Stress tensor
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Different fluid element (r from 0 to R)
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Force balance:
aRIP g RYP + dP)y - 27 R dx =0
Simplifving:
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Separation of variables implies that the pressure gradient is constant % -

The velocity profile is obtained by integration and use of the boundary conditions:
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The average velocity is

In terms of which the profile becomes

u(r) = 31,-“1_;(1 - ;T)



Effect of gravity

* Gravity has no effect on flow in horizontal pipes,
but it has a significant effect on both the velocity
and the flow rate in uphill or downhill pipes.

* Relations for inclined pipes can be obtained in a
similar manner from a force balance in the
direction of flow. The only additional force in this
case is the component of the fluid weight in the
flow direction, which is
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Effect of gravity

The velocity profile, average velocity and flow rate are:
u(r) = — i (ﬂ + ppg sin H)(l — r:)
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* As expected, gravity opposes uphill flow, enhances downhill flow, and has no effect
on horizontal flow.

* Downhill flow can occur even in the absence of a pressure difference applied by a
pump. For the case of P1 = P2 (i.e., no applied pressure difference), the pressure
throughout the entire pipe would remain constant, and the fluid would flow
through the pipe under the influence of gravity at a rate that depends on the angle
of inclination, reaching its maximum value when the pipe is vertical.
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