Planetary boundary layer

Lecture 6
Chap 6.1-6.4



Homework

6.5 — Maria
6.7 — Mariana
6.10 — Sara
6.14 — Catia
6.16— Diogo
6.17 — Florian
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Fig. 5.21  Typical ranges of Obukhov length (L) evolution over a diurnal cycle.



Obukhov length

One physical interpretation of the Obukhov length is that it is proportional to the height
above the surface at which buoyant factors first dominate over mechanical (shear)
production of turbulence. For convective situations, buoyant and shear production terms
are approximately equal at z=-0.5L . Fig 5.21 shows the typical range of variations of

the Obukhov length in fair weather conditions over land.
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Fig. 5.22 shows the variation of TKE budget terms with (, as { varies between 0
(statically neutral) and -1 (slightly unstable). The decrease in importance of shear and

increase of buoyancy as { decreases from O to -1 is particularly obvious.
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Unstable BL The dependence of the

Rl~ T Richardson number on z/L in
the surface layer. Solid lines
correspond to the equations,
while the shaded region
indicates the range of values
observed in the data. After
Businger, et al. (1971).
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Turbulence closure (Chap. 6)

Table 6-1. Simplified example showing a tally of equations and unknowns for various
statistical moments of momentum, demonstrating the closure problem for turbulent flow. The

full set of equations includes even more unknowns.
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Unknowns in each order of closure
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Rules to follow

Most importantly,the parameterization for an unknown quantity should be physically
reasonable. In addition, the parameterization must:

* have the same dimensions as the unknown.
 have the same tensor properties.
 have the same symmetries.

* be invariant under an arbitrary transformation of coordinate systems.

 be invariant under a Galilean (i.e., inertial or Newtonian) transformation.
e satisfy the same budget equations and constraints.



Example

As an example, Donaldson (1973) has proposed that the unknown ui'uj'uk' be

parameterized by:
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where A is a parameter having the dimension of length (m), and the knowns are €

(turbulence kinetic energy per unit mass, m?s? ) and ui'uj' (momentum flux, m?s2).



This parameterization has the same dimensions (m3s-3) and the same tensor properties
(unsummed i, j & k) as the original unknown. The symmetry of the original unknown is
such that the order of the indices i, j, k is not significant. The same symmetry is achieved
in the parameterization by having the sum of the three terms in square brackets. If only
one term had been used instead of the sum, then a change in the order of the indices would

have produced a different numerical result (because @ u'v' /0z is not necessarily equal to

du'w'/dy). Since the gradient of the momentum flux is taken in all three Cartesian

directions in the square brackets, any rotation or displacement of the coordinate system
will not change the result. Also, movement of the coordinate system at constant velocity
c; (a Galilean transformation) does not change the parameterization, as can be seen by
setting x; = X; +C; t.



First order closure
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— O
ujf; = *K-é;-;

K 1s known by a variety of names:
* eddy viscosity
o eddy diffusivity
* eddy-transfer coefficient
e turbulent-transfer coefficient
o gradient-transfer coefficient



Mixing length
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Fig. 6.1 Movement of an air parcel (shaded line} within a background having
linear moisture and wind gradients (heavy line). The superposition of
many such parcels, starting at different levels but all ending at level Z,
forms the conceptual basis for "mixing length theory."
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We recognize z'~ as the variance of parcel displacement distance. The square root of it is a
measure of the average distance a parcel moves in the mixing process that generated flux

R. In this way, we can define a mixing length, |, by P?=c z'z. Thus, the final
expression for moisture flux is

oU dq

\ 3z (6.4.4¢)
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This is directly analogous to K-theory if
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In the surface layer, the size of the turbulent eddies is limited by the presence of the

earth's surface. Thus, it is sometimes assumed that /2 = k222, where k is the von
Karman constant. The resulting expression for eddy viscosity in the surface layer is

o0

Z

Kg = k%22

(6.4.4g)

For SBLs, Delage (1974) proposed the following parameterization for mixing length
that has since been used as a starting point for other parameterizations (Estournel and
Guedalia, 1987; and Lasser and Arya, 1986):

N 1 + B (6.4.4h)
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6.4.5 Sample Parameterizations of K

The eddy viscosity is best not kep! constant, as mentioned earlier, but should be
parameterized as a function of the flows. The parameterizations for K should satisfy the
following constraints: * K =0 where there is no turbulence.

« K=0 atthe ground (z=0).

» K increases as TKE increases.

o K varies with static stability (in fact, one might expect that a
different value of K should be used in each of the coordinate
directions for anisotropic turbulence).

o K is non-negative (if one uses the analogy with viscosity).
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Fig. 6.2 Typical variation of eddy

viscosity, K, with height in
the boundary layer. After
O'Brien (1970).




Ekman spiral

Even with first-order closure, the equations of motion (3.5.3) are often too difficult to

solve analytically. However, for the special case of a steady state [9( )/0t=0],

horizontally homogeneous [0( )/ox = 0, a('"S/ay = (], statically neutral [aéj/az = 0],

barotropic atmosphere [U; & _V_g constant with height] with no subsidence [W=0], the

equations of motion can be reduced to:

0 = -fc(vg-v) - a—(‘f;—_l

0= +fc("0;-ﬁ-) : a(‘a’:")




K=const, align with geostrophic wind

Atmosphere: The following derivations are based on the approach of Businger
— = 2 2.1
(1982). Define the magnitude of the geostrophic wind, G, by G =] ng + V: ] / . Pick

an x-axis aligned with the geostrophic wind; thus, —\7“ =0 and _0— = G. Use first-order

local closure K-theory, with constant K. ;. Hence, u'w' = -K_ dU/dz and v'w' = -K

m

0V/0z. Inserting these into (6.4.6a) leaves the following set of coupled second-order

differential equations:
f.V = -K B_Z_D:
¢ ™ 922
— — 237
f. (U - G) = 4K, 9V (6.4.6b)



The spiral

U=G [1 - e "E% cos (‘YEz)]

V=G [C'YEZ sin (sz)]

Yg = [fJQK )]V .
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Fig. 6.3 Ekman spiral hodographs for wind and current vectors. After
Businger (1982).




According to this solution, the surface wind vector is 45° to the left of the geostrophic
wind vector in the Northern Hemisphere. Hence, the surface stress is also in this

direction, because it is caused by the drag of the surface wind against the surface. Use

u«Z as a measure of the surface stress magnitude, where ul=[u'w)?2+ v'wH)2]? =

[(K,,0U/0z)? + (K,0V/0z)? ]2 evaluated at z=0. Inserting (6.4.6c) into this expression
yields:

uh = G(Knf,)"” (6.4.6d)



Ekman spiral in the ocean

Ocean. The ocean drift current is driven by the wind stress at the surface, neglecting
pressure gradients in the ocean. Hence, the equations of motion reduce to:

_ 2
£V = -Kmﬂaf%
_ 25

(0 = +K,, OV (6.4.6f)
0z?

This time, let us choose a coordinate system with the x-axis aligned with the surface

stress, and z positive up. Thus, the four boundary conditions become: K,,0U/0z = u.?

atz=0, 9oVPz =0 atz=0, U—0 asz— -0, and V— 0 asz — -0, Thus, the
current is assumed to go to zero deep in the ocean. In the equations above, K and uy

2 2

refer to their ocean values, where Py arerUskwater = Surface stress = PyirUskair -

The enlnutinn e



The solution is:

cl

I
Pl
&

P R ]

2

< Uk - |ic'fgz sin (YEZ . it_):' (6.4.6g)
(Km fc)

where K, and Vg now apply to ocean values. This solution gives a surface current that is
45° to the right of the surface stress, making it parallel to the geostrophic wind in the
atmosphere. Based on typical values of eddy viscosity in the air and ocean, the magnitude
of the surface drift current is roughly G/30. Deeper in the ocean the current reduces in
speed, and turns to the right as shown in Fig 6.3b. This causes horizontal convergence
in the ocean under atmospheric regions of horizontal divergence, and vice versa. Hence,
we expect downwelling water movement under synoptic high pressure systems, and

upwelling under lows.




In chapter 6

We won’t study 6.5 and after sections (higher order closures)



Past Homework

5.2 —Jason
5.3 — Mairia
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