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Summary

The large variation in brain size that exists in the animal
kingdom has been suggested to have evolved through the

balance between selective advantages of greater cognitive
ability and the prohibitively high energy demands of a larger

brain (the ‘‘expensive-tissue hypothesis’’ [1]). Despite over
a century of research on the evolution of brain size, empirical

support for the trade-off between cognitive ability and ener-
getic costs is based exclusively on correlative evidence [2],

and the theory remains controversial [3, 4]. Here we provide
experimental evidence for costs and benefits of increased

brain size. We used artificial selection for large and small
brain size relative to body size in a live-bearing fish, the

guppy (Poecilia reticulata), and found that relative brain
size evolved rapidly in response to divergent selection in

both sexes. Large-brained females outperformed small-
brained females in a numerical learning assay designed to

test cognitive ability. Moreover, large-brained lines, espe-

cially males, developed smaller guts, as predicted by the
expensive-tissue hypothesis [1], and produced fewer

offspring. We propose that the evolution of brain size is
mediated by a functional trade-off between increased cogni-

tive ability and reproductive performance and discuss the
implications of these findings for vertebrate brain evolution.

Results

One of the most distinct features of the human brain is its
unusually large size in relation to body size [1, 5, 6]. Yet, varia-
tion in relative brain size is extensive at all taxonomic levels
across vertebrates [7]. Theory aimed at accounting for this
variation argues that the brain has evolved through a balance
between selection for increased brain size and evolutionary
constraints [7, 8]. In particular, selection on cognitive ability
has been proposed as a key factor driving the evolution of
larger brains [6, 7, 9]. This hypothesis is supported by empir-
ical evidence from interspecific comparisons of brain size in
relation to fitness-related behaviors believed to be associated
with cognitive ability across a variety of taxa [10–17]. More-
over, larger brains seem to confer advantages in novel or chal-
lenging environments [14, 18]. But if a larger brain provides
a selective advantage through greater cognitive ability, what
limits the evolution of increased relative brain size in natural
populations? Alongside the digestive tract, the brain is the
most energetically expensive organ in the body ([12]; for
*Correspondence: niclas.kolm@ebc.uu.se
review, see [13]). Because of this, constraints originating
from the costs of maintaining the brain tissue have been sug-
gested to limit brain size [1]. The original ‘‘expensive-tissue
hypothesis’’ [1] attempted to explain variation in primate brain
size through a trade-off between brain tissue and gut tissue.
However, recent comparative analyses have not supported
this hypothesis [3] and have instead suggested that the
trade-off occurs between brain size and other costly aspects
of an organism’s biology, such as investment in muscle tissue
[11], gonads [4], fat storage [3], or reproductive effort [19].
The aforementioned comparative studies suggested that

evolution of a larger brain is driven by a selective advantage
of greater cognitive ability but at the same time constrained
by trade-offs with investment in other traits. However, correla-
tive comparative analyses make it difficult to exclude the
possibility that these patterns have arisen as a result of selec-
tion upon unknown correlated traits [2, 20]. Artificial selection,
on the other hand, is a powerful tool to provide experimental
evidence for costs and benefits of larger brain size [21, 22].
We therefore used artificial selection on relative brain size in
a live-bearing fish, the guppy (Poecilia reticulata), to provide
a direct test of the prediction that increased brain size is genet-
ically associated with increased cognitive ability but that
a large brain is also traded off against gut size and results in
reduced reproductive performance. First, we investigated
the evolutionary response to divergent selection on relative
brain size. Second, we tested the cognitive ability of large-
and small-brained individuals using an associative learning
assay designed to investigate numerical quantification, a rela-
tively advanced form of cognition [23]. Third, we tested for the
correlated evolutionary response of gut size in response to
direct selection on brain size. Fourth, we tested whether
important proxies of reproductive fitness (offspring number,
offspring size, age at first reproduction) are affected by brain
size evolution.
We selected for large and small brain size (brain mass) rela-

tive to body size (body length; see Supplemental Experimental
Procedures available online for details) in replicated lines and
found that brain size responded rapidly to divergent selection
(Figure 1; Table S1; Figure S1). Relative brain size was already
9% larger in the upward- compared to the downward-selected
lines after two generations of selection (estimated difference
across ‘‘down’’ and ‘‘up’’ selection lines for adults [henceforth
b, presented with 95% credible intervals (CI)]: b = 0.071 [0.06;
0.08] log (mg)/log (mm), p < 0.001; Figure 1; Table S1). This
difference was already apparent in newborn fish, as indicated
by a greater optic tectum width measured from digital micro-
scopic images (b = 0.041 [0.019; 0.061], p < 0.001; Table S1).
We used optic tectum width, an accurate predictor of overall
brain size [24, 25], as a proxy for brain size of neonates
because brains of neonates were too small to be removed
and weighed. There were no significant main effects of brain
size selection on body size in newborns or in adults (neonates:
b = 0.06 [20.17; 0.27], p = 0.60; Table S2; adults: b = 20.058
[20.26; 0.16] mm, p = 0.59; Table S2). The realized heritability
of relative brain size was substantial and congruent between
sexes: 0.48 (0.38; 0.63) in females and 0.45 (0.33, 0.59) in
males.

http://dx.doi.org/10.1016/j.cub.2012.11.058
http://dx.doi.org/10.1016/j.cub.2012.11.058
mailto:niclas.kolm@ebc.uu.se
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cub.2012.11.058&domain=pdf
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Figure 1. Relative Brain Size Responds Rapidly to Divergent Selection

F0 is the parental generation; F1 and F2 are the first and second brain

weight-selected generation, respectively. Depending on replicate, second-

generation large- and small-brained females (left panel) differ by 8.0%–9.3%

(p < 0.001) in relative brain size, while second-generation large- and

small-brained males (right panel) differ by 5.0%–8.3% (p < 0.001). Depicted

are the mean and SE values for residuals of brain weight regressed on

body size within each generation and replicate. See also Figure S1 for

experimental procedures and plots of raw data, and Table S1 for detailed

results.
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Figure 2. Cognitive Ability Improves with Increased Brain Size

Large-brained females outperform small-brained females in a numerical

learning task (p = 0.006), whereas there is no difference in males (p =

0.535). Depicted are the mean and SE values for the number of times, out

of eight tests, that an individual chose the correct option (after accounting

for the number of times each individual participated in the trials) of either

two or four objects in females and males selected for large and small brain

size. See Figure S2 for scheme of the testing apparatus.
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We then used a numerical learning test to assess the cogni-
tive ability of 48 of these fish and found an interaction between
selection and sex (generalized linear mixed model [GzLMM],
n = 47, selection: c2 = 2.12, df = 1, p = 0.145, sex: c2 = 3.47,
df = 1, p = 0.063, selection 3 sex: c2 = 5.44, df = 1, p = 0.020;
Figure 2). This interaction was caused by large-brained
females outperforming small-brained females in the learning
assay (GzLMMfemales, n = 23, selection: c2 = 7.58, df = 1, p =
0.006; Figure 2), thereby providing direct evidence for a posi-
tive association between relative brain size and cognitive
ability. Interestingly, no difference was found between males
of different brain sizes (GzLMMmales, n = 24, selection: c2 =
0.38, df = 1, p = 0.535; Figure 2).

We weighed the empty guts of fish from different lines and
found that selecting on large brain size caused a correlated
evolutionary decrease in gut size (b = 20.81 [21.14; 20.49],
p < 0.001). Gut size differed between selection lines by 20%
(CI = 0.11; 0.29) and 8% (CI = 0.007; 0.17) for males and
females, respectively (Figure 3A; Table S3). Our analysis of
the reproductive costs associated with increased brain size
showed that offspring number (b = 20.19 [20.33; 20.046],
p = 0.01; Figure 3B; Table S4), but not offspring size (b = 0.06
[20.17; 0.27], p = 0.60; Table S2) or age at first reproduction
(b = 0.71 [23.94; 5.28], p = 0.76; Table S4; for all model selec-
tion criteria, see Table S5), was affected by selection on brain
size. Offspring number was thus 19% lower in the large-
brained lines as compared to the small-brained lines, which
shows that the evolution of a larger brain has a strong negative
effect on an important reproductive trait.
Discussion

Our results show that the evolution of relative brain size in
vertebrates can be a fast process when under strong direc-
tional selection. The realized heritability of relative brain size
was also substantial in both sexes, matching those detected
in mother-offspring studies [26]. Furthermore, our demonstra-
tion of a direct association between brain size and cognition
suggests that selection for increased cognitive ability can be
mediated through rapid evolution of brain size. Because
cognitive abilities are important to facilitate behaviors such
as finding food, avoiding predation, and obtaining amate, indi-
viduals with increased cognitive abilities are likely to have
higher reproductive success in the wild [14]. However, the
link between a larger brain and cognitive abilities has recently
been challenged because of the high cognitive capacity of
some small-bodied and small-brained invertebrates such as
bees and ants [27]. Moreover, the field of cognitive evolution
has recently shifted toward emphasizing fine-scale structural
differences in the brain as the main feature linking brain
morphology and cognitive ability [2, 7]. Our results now show
that larger brains really can be better, at least on the within-
population level, and that variation in a relatively crude
measure of brain morphology, relative brain size, is directly
associated with variation in cognitive ability. Interestingly,
the effect of relative brain size on cognitive ability was only
evident in females. We offer two explanations for the sex-
specific response in our experiment. First, relative brain size
may not reflect cognitive ability in males to the same extent
as in females. We find this explanation unlikely because in
most species, general brain functions are usually shared
between the sexes [28]. Second, the design of our cognitive
test may have been more suitable for testing female cognitive
ability. In the guppy, females are more active and innovative
while foraging [29], most likely reflecting the fact that female
reproductive success is mainly food limited whereas males
are limited by their access to females [30]. Because females
feed more, they may thus have had more time to associate
the cue with food in our experimental design. Moreover, in
some populations, female guppies choose their partner based
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Figure 3. Individuals Selected for Large Brain

Size Decrease Gut Size and Offspring Production

(A) In guppies selected for large and small brain

size, gut size differed by 8% in females and

20% in males (p < 0.001, after controlling for

body size). Depicted are the mean and SE values.

See Table S3 for detailed results.

(B) Pairs selected for large brain size showed

a 19% decrease in the number of offspring in

the first clutch (p = 0.01, after controlling for

female age at reproduction). Depicted are the

mean and SE values. See Table S4 for detailed

results.
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onmalemelanin spot coloration [31]. The female visual system
may thus be preadapted for more efficient processing of the
black symbols used in this experiment.

Our demonstration of a reduction in gut size and offspring
number in the experimental populations selected for larger
relative brain size provides compelling experimental evidence
for the cost of increased brain size. This study thereby
provides the first direct support for the expensive-tissue
hypothesis [1] and corroborates recent comparative analyses
suggesting trade-offs between brain size and different costly
tissues in mammals [3]. The original expensive-tissue hypoth-
esis proposed that the increasingly greater incorporation of
animal products into the primate diet allowed for a smaller
gut, thereby freeing energy for brain development. The greater
cognitive abilities associated with larger brains in turn enabled
hominids to exploit even higher-quality food sources, reducing
gut size further. An alternative mechanism is that neural devel-
opment of the gut is traded off against neural development of
the brain. The gut forms a highly conserved, neuron-rich
control center of the enteric nervous system that controls
digestion [32] and is sometimes referred to as the ‘‘second
brain’’ [33]. This is an important additional aspect of the func-
tion of the gut, which we suggest future research should
target to fully understand the trade-off between the brain
and the digestive system. Regardless of mechanism, in the
controlled environment of our experimental setup, diet was
kept constant. Therefore, in the absence of any cognitive
benefits related to increased brain size, the genetic trade-off
between investment in brain size and other expensive tissues,
such as the gut, might have caused the reduction in reproduc-
tive performance that we observed.

Offspring number is one of the key determinants of lifetime
reproductive success [34], and reduction in this trait is very
likely to result in fitness costs. Because of this, we propose
that the existing variation in brain size among vertebrates
has been generated through the opposing evolutionary forces
of cognitive benefits and reproductive costs. Finally, our
results might help explain the evolution of larger brains in
primates and cetaceans (whales and dolphins) in comparison
to most other mammals. Both primates and cetaceans have
unusually low fertility among mammals [35]. This decrease in
fertility may therefore be a result of either an evolutionary
increase in relative brain size or, alternatively, the change
toward a slower life history [35] that allowed these orders to
evolve their unusually large brains.

Supplemental Information

Supplemental Information includes two figures, five tables, and Supple-

mental Experimental Procedures and Results and can be found with this

article online at http://dx.doi.org/10.1016/j.cub.2012.11.058.
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