

Modelação Numérica 2022 Aula 1

Pedro Miranda, Susana Custódio, Carlos Pires pmmiranda@fc.ul.pt

Introdução ao curso, temas e objetivos, métodos de Avaliação. Conceitos básicos de modelação. Natureza da modelação numérica.

Modelação Numérica 2022

Mon	Tue	Wed	Thu	Fri	Mon	Tue	Wed	Thu	Fri	Mon	Tue	Wed	Thu	Fri
21-Feb	22-Feb	23-Feb	24-Feb	25-Feb	28-Feb	01-Mar	02-Mar	03-Mar	04-Mar	07-Mar	08-Mar	09-Mar	10-Mar	11-Mar
	T1	T2					T3	P1			T4		P2	
14-Mar	15-Mar	16-Mar	17-Mar	18-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar	28-Mar	29-Mar	30-Mar	31-Mar	01-Apr
	T5	T6	P3			T7		P4			T8	Т9	P5	
04-Apr	05-Apr	06-Apr	07-Apr	08-Apr	11-Apr	12-Apr	13-Apr	14-Apr	15-Apr	18-Apr	19-Apr	20-Apr	21-Apr	22-Apr
E1	T10	T11	Proj1			T12						T13	P6	
25-Apr	26-Apr	27-Apr	28-Apr	29-Apr	02-May	03-May	04-May	05-May	06-May	09-May	10-May	11-May	12-May	13-May
	T14		P7			T15	T16	P8			T17	T18	P9	
16-May	17-May	18-May	19-May	20-May	23-May	24-May	25-May	26-May	27-May					
	T19	T20	P10		E2			Proj2						

Projetos devem ser entregues (E1,E2) na semana da defesa.

Inicio dos Projetos: P1 e P6 Apresentação: Proj1, Proj2

Ficheiros a entregar: MN2022_Proj1_PL21_G1.py, *.pptx

Avaliação

Grupos de 2 membros

2 Projetos obrigatórios: Resolução em python; apresentação powerpoint; resposta a perguntas (60%)

Exame final: 40% (individual, deverá ser presencial, nota minima 8)

Oral final individual para notas >16

As aulas práticas serão mais produtivas se as prepararem. É essencial não faltarem às aulas. Notem que a cadeira depende de avaliação contínua.

Projetos

Proj 1: Análise espetral de séries reais

Proj 2: Solução numérica de equações diferenciais às derivadas parciais representando problemas espaço-temporais

Extra: Otimização de parâmetros em modelos (na Teórica e Exame)

Cada projeto terá um protocolo.

Em ambos serão consolidados conhecimentos de processamento genérico (input/output, gráficos, estatísticas, etc.)

Os Projetos devem ser originais. Será valorizada a inovação, a qualidade e legibilidade do código, a qualidade dos outputs, a qualidade das apresentações.

Cada projeto será apresentado em 12 minutos (6 por cada membro do grupo) e será seguido de perguntas.

Bibliografia recomendada

Langtangen, H. P., & Linge, S. (2017). Finite difference computing with PDEs: a modern software approach (Vol. 16). Springer. https://www.springer.com/gp/book/9783319554556

Também disponível online:

https://hplgit.github.io/fdm-book/doc/pub/book/pdf/fdm-book-4screen.pdf https://hplgit.github.io/fdm-book/doc/pub/book/html/fdm-book.html

Powerpoints das aulas: fenix

Texto em construção...

O que é um modelo?

Representação (simplificada) da realidade

(O conhecimento baseia-se sempre em "modelos")

- Modelos conceptuais (qualitativos, esquemáticos, identificando causas e efeitos e/ou evolução típica)
- Modelos teóricos (e.g. traduzidos em equações analíticas entre variáveis): Por vezes não têm solução...
- Modelos analógicos (túnel de vento, tanque hidráulico, sandbox)
- Modelos numéricos (traduzidos em relações matemáticas discretas entre variáveis)

Para que serve um modelo?

Experiências "controladas" (o que acontece se...)

Trabalhar na "escala laboratorial" (no espaço e no tempo): o modelo só é útil se for realizável...

Exemplos: modelos de doenças humanas em cobaias; tunel de vento (modelos analógicos)...

Caracterizar processos individuais (causa e efeito)

Prever o futuro, estudar cenários

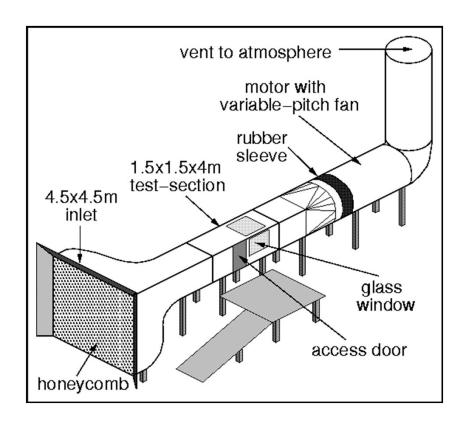
Como se constrói um modelo?

Seleção de variáveis

Seleção de equações constitutivas: leis básicas relacionando as variáveis

Dados experimentais: observações, condições fronteira

Algoritmo de solução


Validação da solução por comparação com dados experimentais independentes

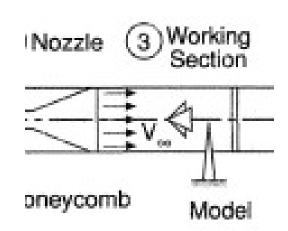
Análise da sensibilidade da solução a diferentes parâmetros

Aplicação

O paradigma do modelo analógico: o túnel de vento

Em que condições pode o escoamento na zona de trabalho (test-section) representar um escoamento real?

O paradigma do modelo analógico: o túnel de vento


Em que condições pode o escoamento na zona de trabalho representar um escoamento real?

Na centro da zona de trabalho a velocidade do vento pode ser estabilizada num valor $U \in [0, U_{Max}]$

As outras variáveis (T, θ, p, ρ, q) não são controladas...

O vento (e também as outras variáveis) vai ser perturbado pelo modelo: perceber essa perturbação é o objetivo.

Como se relaciona *U* na vizinhança do modelo (em escala reduzida), com o vento na vizinhança do objeto que o modelo representa?

O túnel de vento só pode estudar processos puramente mecânicos, controlados pela intensidade do escoamento

Semelhança dinâmica

É possível escrever as equações na forma adimensional, tornando-as independentes da escala do modelo. Nessas equações as diferentes escalas (distâncias, velocidades, densidades, etc) são processadas de forma consistente.

O teorema de Buckingham estabelece que se as diferentes combinações adimensionais de escalas (os números Π) forem idênticas existe semelhança dinâmica.

Análise de semelhança (Navier-Stokes)

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial y} - w \frac{\partial u}{\partial z} - \frac{1}{\rho} \frac{\partial P}{\partial x} + fv + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \xrightarrow{\text{Escala força de inércia}} u = U \hat{u}, t = \tau \hat{t}, \hat{u} = O(1), etc \dots$$

$$\frac{U^{2}}{L}$$
, $\frac{VVU}{H}$ Escala força de inércia (aceleração)

$$\frac{\frac{U}{\tau}\frac{\partial \hat{u}}{\partial \hat{t}} = -\frac{\frac{U^2}{L}\hat{u}\frac{\partial \hat{u}}{\partial \hat{x}} - \frac{\frac{U^2}{L}\hat{v}\frac{\partial \hat{v}}{\partial \hat{y}} - \frac{\frac{WU}{H}}{H}\hat{w}\frac{\partial \hat{u}}{\partial \hat{z}} - \frac{\frac{P}{\rho}\frac{1}{\rho}\frac{\partial \hat{P}}{\partial \hat{x}} + \frac{fU\hat{v}}{\rho} + \frac{\frac{VU}{L^2}}{\frac{\partial^2 \hat{u}}{\partial \hat{x}^2}} + \frac{\frac{\partial^2 \hat{u}}{\partial \hat{y}^2} + \frac{L^2}{H^2}\frac{\partial^2 \hat{u}}{\partial \hat{z}^2})$$

Números Π (exemplo)

Equação adimensional

$$\frac{\partial \widehat{u}}{\partial \widehat{t}} = -\widehat{u}\frac{\partial \widehat{u}}{\partial \widehat{x}} - \widehat{v}\frac{\partial \widehat{v}}{\partial \widehat{y}} - \widehat{w}\frac{\partial \widehat{u}}{\partial \widehat{z}} - \frac{PL}{\rho U^2}\frac{1}{\widehat{\rho}}\frac{\partial \widehat{P}}{\partial \widehat{x}} + \frac{1}{Ro}\widehat{v} + \frac{1}{Ro}(\frac{\partial^2 \widehat{u}}{\partial \widehat{x}^2} + \frac{\partial^2 \widehat{u}}{\partial \widehat{y}^2} + \frac{1}{\alpha^2}\frac{\partial^2 \widehat{u}}{\partial \widehat{z}^2})$$

$$\tau = \frac{L}{U} = \frac{H}{W} \text{ (tempo advectivo)}$$

Números Π (exemplo)

$$Re = (U^{2}/L)/(vU/L^{2}) = \frac{Força\ de\ inércia}{Força\ viscosa} \ (Número\ de\ Reynolds)$$

$$Ro = (U^{2}/L)/fU = \frac{Força\ de\ inércia}{Força\ de\ Coriolis} \ (Número\ de\ Rossby)$$

$$\frac{PL}{\rho U^{2}} = \frac{Força\ Grad\ P}{Força\ de\ Inércia}$$

Nota: só analisámos a equação de Navier-Stokes (momento). Há outros números independentes.

O Número de números Π, define o Número de graus de Liberdade do modelo (a dimensão do seu "espaço de fases")

Em geral

Só é possível obter semelhança parcial, satisfazendo um subconjunto dos números Π .

Por outro lado, a análise que foi feita admitiu que cada variável era representada por uma única escala $(u=U\hat{u})$ o que é uma grande simplificação.

Modelação Numérica

A modelação analógica analisa sistemas "contínuos", sujeitos a leis macroscópicas (termodinâmica, mecânica dos meios contínuos, ...). A modelação numérica processa números computáveis, i.e. números discretos (inteiros ou pseudo-reais, e.g. floating point).

Tal como na análise de semelhança por números Π , a discretização implica uma perda de graus de liberdade (uma simplificação...).

Os números Π continuam a ser relevantes na modelação numérica (nomeadamente na solução numérica de equações diferenciais).

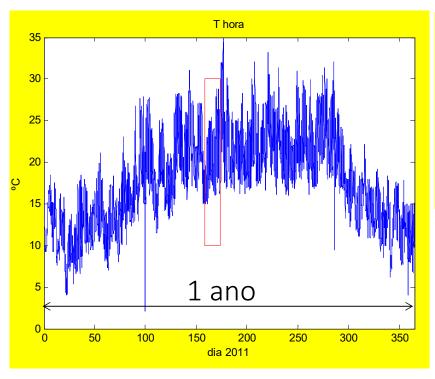
Mas a discretização implica um tipo de simplificação diferente.

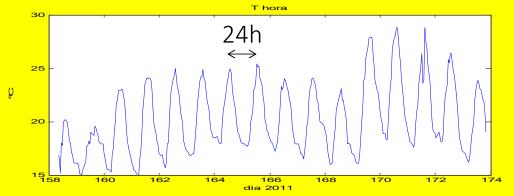
Funções (contínuas) de uma variável independente

$$V = V(t)$$

t é o tempo, mas pode ser outra variável (x ...)

Discretização: Amostra regular com *N* pontos


$$V_n = V(t_0 + n\Delta t), n = 0, ..., N-1$$


 t_0 – fase inicial (amostra 0)

 Δt – intervalo de amostragem (step)

 V_n – número float (truncado a 64 bit)

Exemplo: observações da Temperatura em Lisboa

Observações horárias são suficientes para descrever os "ciclos" diurno e annual. Não dizem nada sobre flutuações muito rápidas (sub-horárias).