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Abstract: The delays of radio signals transmitted by global navigation satellite system (GNSS)
satellites and induced by neutral atmosphere, which are usually represented by zenith tropospheric
delay (ZTD), are required as critical information both for GNSS positioning and navigation and
GNSS meteorology. Establishing a stable and reliable ZTD model is one of the interests in GNSS
research. In this study, we proposed a regional ZTD model that makes full use of the ZTD calculated
from regional GNSS data and the corresponding ZTD estimated by global pressure and temperature
3 (GPT3) model, adopting the artificial neutral network (ANN) to construct the correlation between
ZTD derived from GPT3 and GNSS observations. The experiments in Hong Kong using Satellite
Positioning Reference Station Network (SatRet) were conducted and three statistical values, i.e.,
bias, root mean square error (RMSE), and compound relative error (CRE) were adopted for our
comparisons. Numerical results showed that the proposed model outperformed the parameter ZTD
model (Saastamoinen model) and the empirical ZTD model (GPT3 model), with an approximately
56%/52% and 52%/37% RMSE improvement in the internal and external accuracy verification,
respectively. Moreover, the proposed method effectively improved the systematic deviation of GPT3
model and achieved better ZTD estimation in both rainy and rainless conditions.

Keywords: zenith tropospheric delay; GPT3 model; artificial neural network; GNSS

1. Introduction

The radio signal is delayed and bent during its passage through the neutral atmosphere
due to the interaction with water vapor particles and dry gases [1,2]. In global navigation
satellite system (GNSS) application, the tropospheric delay between receiver and satellite
varies from 2 to 20 m depending on the elevation angle of the satellite, making it a significant
error source that should be properly handled [3–5]. The zenith tropospheric delay (ZTD),
which is projected from the slant tropospheric delay by using the mapping function, is
a common parameter to describe the tropospheric influence on signal traveling. Studies
confirm that the accuracy of the ZTD has a crucial impact on GNSS positioning in terms of
convergence time and accuracy [6–10], and the ZTD is basis for retrieving the precipitable
water vapor (PWV) in GNSS meteorology [11–13]. Establishing a stable and reliable zenith
tropospheric delay (ZTD) model is one of the interests in GNSS research.

On the basis of the relationship between the ZTD and meteorological parameters
such as temperature, pressure, and water vapor pressure, researchers established a series
of parameter ZTD models such as the Hopfield model, Saastamoinen model, and Black
model [14–16]. These models can achieve ZTD values with centimeter-level accuracy by
inputting accurate measured meteorological parameters [17,18]. However, most GNSS sites
are not equipped with meteorological sensors, and there are often no collocated weather
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stations available for those sites. It is not feasible to directly use the above models to acquire
the ZTD values.

Many empirical ZTD models that feedback only by location and time of the sites
were developed to achieve ZTD estimates without measured meteorological parameters.
Collins and Langley (1997) proposed the UNB3 model, in which the meteorological pa-
rameters are stored in the form of a look-up table with a 15◦ interval from the equator to
the poles [19]. The modified versions of UNB model have been developed to accomplish
a more accurate estimation, such as the UNB3m model, UNBw.na model, and EGNOS
model [20–22]. These models cannot reflect zonal variation of ZTD resulting in large
model errors in some areas. Li et al. established the IGGtrop model using four years of
National Centers for Environment Prediction (NCEP) data based on a three-dimensional
grid. The implementation of vertical levels leads to a large data volume and requires
greater storage space compared with other models, making it difficult to promote this
model [3]. Krueger and Schuler obtained the seasonal and diurnal variation coefficients
for ZTD estimation by fitting NCEP meteorological data and established the TropGrid and
TropGrid2 model [23–25]. Yao et al. proposed the GZTD model using the Global Geodetic
Observing System (GGOS) Atmosphere data based on spherical harmonics [26] and devel-
oped the GZTD2 model considering diurnal variations [27]. Mateus et al. Developed an
hourly HGPT model based on the full spatial and temporal resolution of the new ERA5
reanalysis using the time-segmentation concept [28]. On the basis of the above models,
researchers proposed some other empirical ZTD models with their own characteristics,
such as the IGGtrop_SH and IGGtrop_rH models [29], the GZTDS model [30], the R_GZTD
model [4], the GRNN model [17], the CPT model [31], the SHAtropE model [32], and the
RGZTD model [18]. In addition, the global pressure and temperature (GPT)2w model
and GPT3 model, established on monthly meteorological data of 10-year (2001–2010) ERA-
Interim data with a global resolution of 1◦ × 1◦ geographical grid, can also provide precise
ZTD products [33,34]. The GPT3 model is the latest version, which is the one we used in
this paper.

Due to the limitations of some factors, such as the time resolution and spatial resolution
of the modelling data, the accuracy of the empirical ZTD model is often lower than that
of the parameter ZTD model, especially when calculating ZTD in some certain regions.
Taking GPT3 model, which is currently the most accurate and most commonly used one,
as an example, its global average ZTD accuracy is 3.6 cm and the accuracy of most of
the sites in China reached 6 cm in a validation experiment [4,33–37]. Considering the
development of Continuously Operating Reference Station (CORS) [38], its GNSS sites
can provide ZTD products with high accuracy and high time resolution, which provides
opportunity for constructing a regional ZTD model with higher accuracy [39]. In this study,
we proposed a new modeling method for regional ZTD empirical model, which is based
on the artificial neutral network (ANN) and GPT3 model. This method makes full use of
the ZTD calculated from regional GNSS data and the corresponding ZTD estimated by
GPT3 model, and adopts the ANN to construct the correlation between ZTD derived from
GPT3 and GNSS observations. On the basis of this modeling method, we developed a
new regional ZTD model for Hong Kong on the basis of the Satellite Positioning Reference
Station Network (SatRet). Experimental results show that the new model can effectively
improve the regional ZTD accuracy and that it outperforms the parameter ZTD model and
the empirical model.

This article is organized as follows. The GPT3 model and ANN used to establish
the new regional ZTD model are introduced in Section 2. To evaluate the accuracy of the
proposed model, we conducted experiments and analysis, which are described in Section 3.
Section 4 discusses the performances of the proposed model in different weather conditions.
The conclusions are given in Section 5.
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2. Methodology
2.1. The GPT3 Model

The global pressure and temperature 3 (GPT3) model proposed by Landskron and
Bohm is the up-to-date version of GPT series [33,34,40,41]. GPT3 represents a very compre-
hensive troposphere model that can be used for a series of geodetic as well as meteorological
and climatological purposes. It provides the mean values plus annual and semiannual
amplitudes of a set of meteorological quantities that are consistent with previous versions.
These meteorological parameters are derived consistently from monthly mean pressure
level data of ERA-Interim fields with a global resolution of 1◦ × 1◦ geographical grid. The
pressure (P) in hPa, weighted mean temperature (Tm) in K, water vapor pressure (e) in hPa,
and water vapor lapse rate (λ) that are used for ZTD calculation are included, and they are
estimated by the following equation [41]:

r(t) = A0 + A1 cos
(

doy
365.25

2π

)
+ B1 sin

(
doy

365.25
2π

)
+A2 cos

(
doy

365.25
4π

)
+ B2 sin

(
doy

365.25
4π

) (1)

where r(t) represents the meteorological parameters to be estimated; doy denotes the day
of the year; A0 represents its mean value; and (A1, B1) and (A2, B2) are their annual and
semiannual amplitudes, respectively. After obtaining the needed meteorological quantities
at the four nearest sampling points, we adopt the bilinear interpolation algorithm to
interpolate the parameters of the site to be determined. Then, the ZTD values are calculated
by the following formulas [15,42]:

ZHD =
0.0022768× P

1− 0.00266× cos(2ϕ)− 0.00028× H
(2)

ZWD = 10−6
(

k′2 +
k3

Tm

)
Rd

(λ + 1)gm
e (3)

ZTD = ZHD + ZWD (4)

where ZHD and ZWD represent the zenith hypostatic delay and zenith wet delay, respec-
tively, and ϕ and H are the latitude and ellipsoidal height of the site, respectively. k′2
(16.52 K/hPa) and k3 (3.776*105 K2/hPa a) are the atmospheric refractive index constants,
Rd (287.0464 JK−1kg−11) denotes the dry air ratio gas constant, and gm (9.80655 m/s2)
denotes the mean gravitational acceleration [42].

2.2. Artificial Neural Network

An artificial neural network (ANN) is the piece of a computing system designed to
simulate the way the human brain analyzes and processes information. In principle, it
can efficiently handle input and output variables relations, without limitations in linear
relationships [43,44]. Two important characteristics of ANN are that they allow the user to
adapt the architecture to the task itself, and that they are fully data-driven approaches that
impose no limitations on the distribution of input data. The self-learning capabilities enable
ANN to produce better results as enough data become available. The ANN is composed
of an input layer, one or more hidden layers and an output layer, shown in Figure 1. The
most important parameter in ANN models is the number of neurons and hidden layers;
the greater the number of neurons and hidden layers, the higher the learning accuracy and
the weaker the generalization ability. Each neuron in one layer has directed connections to
the neurons of the subsequent layer and has an activation function. The activation function
is used to enforce a specific behavior to each neuron/layer. Thus, ANN can be used in
many tasks, e.g., classification and regression [45,46], and is also used in the geoscience
field [47,48]. In this study, we utilized the ANN as a modeling tool for regional ZTD model,
and adopted the MATLAB Neural Network toolbox.
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Figure 1. The diagram of artificial neural network (ANN).

2.3. The Regional ZTD Model

The Hong Kong Survey and Mapping Office (SMO) of the Lands Department makes
use of GNSS to develop a local satellite positioning system, i.e., SatRef. It consists of
18 CORSs that are distributed in the area of 113.80◦–114.45◦ for longitude and 22.15◦–22.6◦

for latitude, which is shown in Figure 2. The detailed coordinates of the GNSS stations,
including latitude, longitude and ellipsoid height, are listed in Table 1, and the average of
the distance between the two nearest stations is 6.9km. The GNSS observation and surface
meteorological data of these 18 sites can be freely downloaded via its website. On the
basis of the double differenced model, we can accurately calculate the GNSS ZTD by using
GAMIT 10.71 software. In this processing, the observations with a sampling rate of 30 s, a
cut-off elevation of 10◦, the International GNSS Service (IGS) precise ephemeris, and Global
Mapping Function (GMF) are adopted [49]. To reduce the well know strong correlation
of tropospheric parameters caused by the short baselines between GNSS sites [50], we
incorporated 3 IGS stations (SHAO, BJFS, and LHAZ) into this solution.
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Table 1. The coordinates of GNSS stations in Hong Kong.

Sites Latitude longitude Ellipsoidal Height (m)

HKCL 22.30 113.91 7.71
HKKS 22.37 114.31 44.72
HKKT 22.44 114.07 34.58
HKLM 22.22 114.12 8.55
HKLT 22.42 114.00 125.92

HKMW 22.26 114.00 194.95
HKNP 22.25 113.89 350.67
HKOH 22.25 114.23 166.40
HKPC 22.28 114.04 18.13
HKQT 22.29 114.21 5.18
HKSC 22.32 114.14 20.24
HKSL 22.37 113.93 95.30
HKSS 22.43 114.27 38.71
HKST 22.40 114.18 258.70
HKTK 22.55 114.22 22.53
HKWS 22.43 114.34 63.79
KYC1 22.28 114.08 116.38
T430 22.49 114.14 41.32

In this region, high-accuracy ZTD can be achieved at these 18 sites through GNSS
data processing, which is called GNSS_ZTD. In addition, the ZTD estimates of these sites
can also be easily obtained by GPT3 model without any external data, which is called
GPT3_ZTD. This gives an opportunity to explore the relationship between GNSS_ZTD
and GPT3_ZTD, which is the key to construct the new regional ZTD model. In this stage,
we selected the latitude and longitude of the sites as well as their GPT3_ZTD as the input
variables of the input layer, set the corresponding GNSS_ZTD as the output variable of the
output layer, and trained them using ANN. Note that repeated trainings were tested to
obtain an optimal neural network to construct the regional ZTD model, which also fed back
only by location and time information. Figure 3 is a flowchart showing the basic process of
constructing the regional ZTD model on the basis of GPT3 and ANN.
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3. Experiment and Verification

In our experiment, the 18 GNSS sites in Figure 2 were divided into two types, which
were represented by blue and red dots, respectively. Only the sites indicated by blue dots
were used to construct the regional ZTD model. The GNSS observations from 13 August
to 19 August, 2017 (DOY of 225 to 231, 2017) were processed to obtain GNSS_ZTD with
a temporal resolution of 30 min. The corresponding GPT3_ZTD was also obtained by
inputting epoch and location information to GPT3 model. The first 5 days of data from the
13 sites indicated by blue dots were used in ANN training to build the regional ZTD model,
and the data from the two types (training and test) of sites on the other 2 days served as
internal and external accuracy verification, respectively.

To assess the performance of the proposed ZTD model, we compared the ZTD values
estimated by different models using the GNSS_ZTD as a reference. The methods for calcu-
lating ZTD in the comparison were the new regional ZTD model (Method #1), the GPT3
model (Method #2), and the Saastamoninen ZTD model (Method #3). The Saastamoninen
ZTD model is the most commonly used parameter ZTD model, which can be represented
by the following equation [15,51], where the parameters are the same as in Equations (2)
and (3).

ZTD = 0.0022768 ·

[
P +

(
0.05 + 1255

T

)
· e
]

(1− 0.00266 · cos(2ϕ)− 0.00028 · H)
(5)

Three statistical quantities, i.e., bias, root mean square error (RMSE) and compound
relative error (CRE), were chosen as criteria to study the comparison [52]. Different
statistical values highlight different features of the results [53]. Bias is an unambiguous,
natural, measure of average error, which is expressed in the same unit as the ZTD itself.
RMSE is used as a measure of deviation from the observed value. It depends on the squared
error means and has sensitivity to large outliers. CRE is a measure of similarity between
the observed and interpolated values, namely, the ration between the mean squared error
and the variance of the observed values. The equations are described as follows:

Bias =
1
N

N

∑
i=1

(
ZTDi − ZTDG

i

)
(6)

RMSE =

√√√√ 1
N

N

∑
i=1

(
ZTDi − ZTDG

i
)2 (7)

CRE =

N
∑

i=1

(
ZTDi − ZTDG

i
)2

N
∑

i=1

(
ZTDG

i − ZTDG
)2

(8)

where ZTDi and ZTDG
i are the ZTD values from the different methods and the reference,

respectively. N refers to the number of the samples.

3.1. Analysis of ANN Training

The datasets for ANN training contained 3120 groups of data; each group of data had
latitude, longitude, and GPT3_ZTD for input layer, and GNSS_ZTD for output layer. In
the training process of ANN, the datasets mentioned above were divided into a training
set and validation set, accounting for 75% and 25%, respectively. The training set was
used to adjust the weights on the neural network, and the validation set was used to
minimize overfitting [42,44]. After repeated trainings, the ANN structure used in this
paper was as follows: the input layer had three nodes, which was the same as the number
of input parameters. The output layer had a single node, that is, the GNSS_ZTD. There
were two hidden layers, and the number of nodes was five. The Levenberg–Marquardt
and hyperbolic tangent were chosen as the training and activation functions, respectively.
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The maximum training number, learning rate, and error threshold were set to 6000, 0.01,
and 0.001, respectively.

When the optimal neural network for ZTD model is achieved, the statistical indices of
training set and validation set can be first used to show the accuracy assessment of the ZTD
model on the basis of ANN. The RMSE and correlation coefficient were 11.08 mm/0.97
and 12.41 mm/0.95 for the training and validation set, respectively. In Figure 4, the upper
panel represents the histogram of ZTD residuals for training and validation set, and the
absolute value of residuals were smaller than 40 mm. For the training set, the percentage
of residuals in the range of −10 to 10 mm accounted for 64%, while the percentage reached
to 93% when the range was set to −20 to 20 mm. These percentages were 57% and 91% for
the validation set, respectively. The lower panel of Figure 4 shows the linear regression
for training and validation sets, in which the scatter points of two graphs were close to
the 1:1 line. The distribution of scatter points and the straight lines showed a good linear
regression relationship both in training and validation sets. Specifically, the slopes of the
regression equation were 0.94 and 0.90 for the training and validation sets, respectively.
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3.2. Internal Accuracy Verification

For internal accuracy verification, we adopted 13 GNSS sites used in the ZTD mod-
elling. The statistical results, including RMSE, bias, as well as CRE, were counted for the
three methods. The maps of RMSE, bias, and CRE show the different performances of
the three methods at each site (Figure 5). It can be seen that the three statistical results
of Method #1 at all sites were obviously better than the other methods. Compared to
Method #2, Method #3 had a better performance at most of the sites, but four sites with
poor performance by Method #3 can still be observed. It is particularly visible that only
Method #3 had large differences in the performance of RMSE, bias, and CRE at different



Remote Sens. 2021, 13, 838 8 of 18

sites. It illustrates that the accuracy of parameter ZTD model, e.g., Saastamoinen model, is
likely to be affected by the changes of location and environment of the sites, resulting in
poor stability, while the empirical model such as the GPT3 model and the proposed model
showed good stability in the experimental areas.

For bias, Method #1 had only one site with positive bias, and the remaining sites were
negative bias; Method #2 had a positive bias large than 35 mm at all sites, and the positive
and negative values of Method #3 were randomly distributed. Note that the bias of Method
#1 was closer to 0 mm at each site compared to the other methods. For RMSE, Method #1
had only one site reaching 26 mm, and the remaining sites were less than 20 mm; the values
of Method #2 were greater than 40 mm at all sites, and Method #3 had a large distribution,
ranging from 21 to 65 mm. For CRE, their performances were similar to those of RMSE.
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The mean bias, RMSE, and CRE of the differences between the ZTD derived from
the three models and the referenced ZTD at all sites are summarized in Table 2. The
values within square brackets are the minimum and maximum. In terms of the mean
values, Method #3 performed better than Method #2, but the worst values of each statistics
appeared in Method #3. One can find from the statistical results that Method #1 significantly
outperformed the other two methods in terms of the minimum and maximum, as well as
the mean value. Specifically, the mean RMSE and CRE of Method #1 were 19.4 mm and
1.1, respectively, having an approximately 56%/52% and 77%/80% improvement over the
other two methods.
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Table 2. Summary of the performance evaluation of different methods for internal accuracy verification.

Bias (mm) RMSE (mm) CRE

Method #1 −7.7 [−15.7 1.3] 19.4 [14.7 26.2] 1.1 [0.9 1.6]
Method #2 39.9 [35.7 47.1] 43.8 [40.1 51.4] 6.1 [3.9 9.2]
Method #3 19.6 [−41.1 60.0] 40.0 [20.9 64.7] 5.5 [1.2 12.4]

The empirical distribution functions of ZTD differences calculated by different meth-
ods are plotted in Figure 6, in which colors represent different methods indicating the
percentage of each range of the ZTD differences. The maximum value of ZTD differences
reached to 62, 78, and 103 mm for Methods #1–3, respectively. The percentage of ZTD
differences smaller than 20 mm was 76% for Method #1; this percentage became 18% and
36% for Method #2 and Method #3, respectively. When the range was set to less than 40 mm,
the percentages were increased to 92%, 37%, and 63% for Methods #1–3, respectively. These
results show the advantages of the proposed model compared to the existing models.
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Figure 6. The empirical distribution functions of the ZTD differences for the three methods.

3.3. External Accuracy Verification

For external accuracy verification, the data from five sites, namely, HKTK, HKNP,
HKKS, HKSC, and HKLT, which were not included in the ZTD modeling were used. The
bias, RMSE, and CRE at each site were counted and shown in the form of a bar plot in
Figure 7. It can be seen that the biases of Method #2 were all positive values, the biases of
Method #3 were positive values except HKTK, while Method #1 obtained negative biases
except HKNP. Note that the bias of Method #1 reached −12 mm at HKLT and 23.7 mm at
HKNP, but they were still much smaller than those of the other two methods. Compared
to Method #2, the proposed model had a significant improvement both in RMSE and
CRE at each site, with an average improvement of 22.4 mm and 4.8 for RMSE and CRE,
respectively. It also can be seen that Method #1 outperformed Method #3 at each site in
terms of RMSE and CRE. The improvement at HKSC was the smallest, but it still reached
3.5 mm and 0.4 for RMSE and CRE, respectively. This identifies the fact that the proposed
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model improved the accuracy of the existing ZTD model, and that it can achieve the best
performance in ZTD estimation.
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Figure 7. Histogram of bias, RMSE, and CRE at five sites for the three methods.

To further illustrate the performance of the three methods in different sites, we counted
the residuals between ZTD derived from the three models and the referenced ZTD, which
are shown in form of boxplot in Figure 8. Box plots were used to explore the statistical
characteristics of ZTD residuals, in which three characteristic values are shown. Q1 and Q3
located at the bottom and top of the box represent the first and third quartiles, respectively.
The interquartile range, defined as the difference between Q3 and Q1, reflects the discrete-
ness of a set of data. The second quartile (Q2) was located inside the box, representing the
median value. At each site, the length of the box and the range of bound in Method #1 (in
red) were smaller than those of other two methods (in blue and green), indicating better
residual distribution using the proposed model. In this verification, Method #1 had best
performance, with the median of residuals being −0.6, 29.5, 2.2, 1.2, and −3.3 mm, and
50% of the residuals were concentrated in the range of −7.2 to 7.5, 15.4 to 35.0, −5.4 to 5.7,
−8.8 to 6.6, and −22.6 to 1.0 mm for HKTK, HKNP, HKKS, HKSC, and HKLT, respectively.
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4. Discussion

The proposed model utilized the data from DOY of 225 to 229, 2017, during which
a spell of fine weather prevailed in Hong Kong, with a ridge of high-pressure extending
westwards from the Pacific to cover southeastern China. The daily rainfall was 0 mm in
this period of time, which is defined as rainless days. The experiment and verification in
Section 3 demonstrated that the proposed method can effectively improve the accuracy of
the ZTD model in the rainless condition. It is necessary to discuss the performance of the
proposed model in rainy conditions.

Thus, the period from 12 to 18 June, 2017 (DOY of 163 to 169, 2017), which covers
the rainy days, was selected in this discussion. In this period of time, the maximum daily
rainfall was up to 203.7 mm, the average daily rainfall was 66.8 mm, and the tropical
storm and southwest monsoon made the weather remaining rainy. Similar to the ZTD
modeling in rainless condition, the first 5 days of data from the 13 sites indicated by blue
dots were used for ANN training to build the regional ZTD model in rainy days, and
then the internal and external accuracy verifications were conducted. As most of the sites
lacked measured meteorological data such as relative humidity, in this section, we mainly
compare the accuracy of the two models without measured meteorological quantities,
namely, Method #1 and Method #2.

Similar to Figure 5, the RMSE, bias, as well as CRE of the 13 GNSS sites used in ZTD
modelling were mapped, as shown in Figure 9, showing the internal accuracy of Methods
#1 and #2 in rainy conditions. It was observed that the three statistical values obtained by
the two methods did not change much at different sites, indicating that they both had stable
performance in rainy days. From the values represented by the colors, the result of the
GPT3 model was far worse than the proposed model. It is particularly visible that Method
#2 showed negative bias at all sites, which is opposite to its bias in rainless conditions. This
is most likely due to the fact that GPT3 model cannot estimate the increase in wet delay
caused by the increasing water vapor in rainy days, which makes its ZTD estimates smaller.
In addition, the three statistical quantities of Method #2 in rainy conditions were much
larger than those in rainless conditions, showing that the accuracy of GPT3 model was
affected by weather condition. Specifically, Table 3 listed the mean bias, RMSE, and CRE as
well as their minimum and maximum values for the two methods in rainy conditions. The
mean and maximum value of bias, RMSE, and CRE were −83.7/−89.4 mm, 84.8/90.4 mm,
and 39.2/47.1 for Method #2, respectively. Compared to those in rainless conditions, the
three mean values obtained by Method #2 in rainy conditions increased by 43.8 mm, 41 mm,
and 33.1. However, Method #1 still obtained accurate results similar to rainless conditions,
in which the mean and maximum value of bias, RMSE, and CRE were −7.3/−20.3 mm,
19.9/31.3 mm, and 1.8/3.0, respectively, indicating that the proposed model can improve
the accuracy of GPT3 model under different weather conditions.
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Table 3. Summary of the performance evaluation for the two methods in rainy condition.

Bias (mm) RMSE (mm) CRE

Method #1 −7.3 [−20.3 −1.1] 19.9 [14.0 31.3] 1.8 [1.0 3.0]
Method #2 −83.7 [−81.4 −89.4] 84.8 [82.4 90.4] 39.2 [26.9 47.1]

These five sites not adopted in ZTD modeling were utilized to assess the external
accuracy of the two methods in rainy conditions, the detailed statistical results are listed in
Table 3, in which the results of rainless condition are also shown for further comparison.
Obviously, Method #2 had significant differences in the accuracy of ZTD estimation in
rainless and rainy conditions, mainly in the following two aspects: (1) the biases of rainless
days were positive and those of rainy days were negative, indicating that the ZTD estimated
by GPT3 model in rainless conditions was relatively large while the estimate ZTD value
was relatively small in rainy conditions; (2) the mean bias and RMSE of rainless days were
38.9 and 43.0 mm, respectively, while for rainy days, the values reached 82.2 and 83.3 mm,
having an increase of 53% and 48%, respectively. Method #1 achieved ZTD estimation
with high accuracy both in rainy and rainless days, with the mean bias and RMSE being
0.4/20.6 and −0.8/21.2 mm, respectively. For the three statistical values in this table,
Method #1 had an improvement of 38.5 mm/22.4 mm/4.8 and 81.4 mm/62.1 mm/36.9
over Method #2 in different weather conditions. These illustrate again that the proposed
model can effectively solve the above−mentioned defect that the accuracy of GPT3 model
is affected by weather conditions.

It is particularly visible from Table 4 that the proposed model performed relatively
poor at HKNP both in rainless and rainy conditions, with the three statistical values being
23.7 mm/31.6 mm/2.3 and 28.5 mm/32.0 mm/5.3, respectively. In particular, HKNP was
the only site with positive bias and was 11 mm/1.0 and 10.8 mm/2.8 larger than the average
RMSE and CRE in rainless and rainy days, respectively. The heights of all GNSS sites
of SatRef were counted, and we found that the height of HKNP reached 350.7 m, which
was 270 m higher than the average height of 80.7 m of the 13 modelling sites. This was
probably one of the reasons why the proposed method did not perform well in HKNP. The
phenomenon mentioned above did not appear in Method #2, since the influence of elevation
was considered by the GPT3 model when calculating the meteorological parameters. Thus,
the height of site could also be used as input parameters in the proposed model to explore
whether the accuracy of the model will be further improved.
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Table 4. Statistical results of the external accuracy verification for the two methods in rainless and
rainy conditions.

− Weather Site Bias (mm) RMSE (mm) CRE

Method #1

Rainless
conditions

HKTK −2.0 14.8 0.9
HKNP 23.7 31.6 2.3
HKKS −1.6 13.4 0.9
HKSC −6.0 20.3 1.0
HKLT −12.0 22.7 1.1

average 0.4 20.6 1.3

Rainy
conditions

HKTK −20.7 20.0 2.2
HKNP 28.5 32.0 5.3
HKKS −5.0 14.8 1.1
HKSC −12.5 20.9 2.7
HKLT −4.3 18.4 1.2

average −0.8 21.2 2.5

Method #2

Rainless conditions

HKTK 34.8 37.9 6.2
HKNP 42.2 47.0 5.1
HKKS 42.3 44.4 10.3
HKSC 39.0 43.7 4.8
HKLT 36.3 42.0 3.9

average 38.9 43.0 6.1

Rainy
conditions

HKTK −81.9 83.0 37.7
HKNP −80.4 81.7 34.9
HKKS −81.6 82.8 35.5
HKSC −83.6 84.6 44.0
HKLT −83.3 84.3 44.8

average −82.2 83.3 39.4

Further, the histogram of ZTD residuals, namely, the values of subtracting the GNSS_ZTD
from model derived ZTD in terms of the mean, median, and mode values are shown in
Figure 10. The three indicators were −7.3, −7.5, and −22.3 mm for the proposed model,
which were better than those of the GPT3 model. From the histogram, the residuals of
the proposed model are shown to be concentrated around zero and the maximum and
minimum values reached around 50 and −50 mm, respectively, while the residuals of the
GPT3 model were smaller than −50 mm and the minimum value reached −120 mm. The
percentage of residuals in the range of −20 to 20 mm accounted for 70% in Method #1,
while more than 51% residuals of Method #2 were smaller than −80 mm. These illustrate
again that the GPT3 model had an obvious systematic deviation, and the proposed method
can effectively improve this defect.
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From the above comparison of the results between rainless and rainy weather condi-
tions, we found that the results of Method #2 on rainy days were far worse than those on
rainless days. This was because the spherical harmonics or trigonometric functions were
used to characterize the annual and semiannual changes in parameters to estimate ZTD
by empirical model. It is still difficult for this type of model to describe the variation and
changes of ZTD at a certain moment, even if the model considered the diurnal changes.
Further, the GNSS_ZTD, namely, the ZTD derived from GNSS data, in each GNSS site
during the two periods were collected and counted. In Figure 11, the horizontal and vertical
axes denote GNSS sites and GNSS_ZTD values, respectively. As expected, the values of
ZTD on rainy days (blue) at each site were larger than those of rainless days (red), and the
fluctuation of ZTD on rainy days was even larger from the spacings between the differ-
ent parts of the box. When comparing all the ZTD data for different weather conditions,
namely, the black plots, we found that the ZTD during the rainy period was relatively
unstable and had a wider range of changes. Thus, the empirical models, such as GPT3
model, had worse performance of ZTD estimation in rainy conditions with more frequent
ZTD fluctuations. The proposed model effectively considered the changes and variations
of ZTD at a certain moment by making full use of GNSS_ZTD, eliminated the differences in
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ZTD estimation under different weather conditions, and improved the accuracy of existing
empirical ZTD models.
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5. Conclusions

It is crucial to achieve ZTD estimation with high accuracy for GNSS positioning and
precipitable water vapor retrieval, especially for the sites not equipped with meteorological
sensors or not collocated with weather stations. To improve the accuracy of the existing
empirical model (GPT3 model) in regional ZTD estimation, we established a new regional
ZTD model based on GPT3 and ANN. The proposed model made full use of the ZTD
calculated from regional GNSS data and the corresponding ZTD estimated by GPT3 model,
and adopted the ANN to construct the correlation between GPT3_ZTD and GNSS_ZTD.

Using the GNSS data from SatRef, we developed the new regional ZTD model for
Hong Kong. Numerical results, namely, bias, RMSE, and CRE showed that the proposed
model had a better performance in ZTD estimation compared with the Saastamoinen ZTD
model and GPT3 model. Specifically, the proposed model achieved RMSE of 19.4 mm in the
internal accuracy verification in rainless condition, which were 24.4 and 20.6 mm smaller
than the parameter ZTD model and empirical model, having approximately 56% and 52%
improvements over them, respectively. The amount and percentage of RMSE improvement
by the proposed model also reached 22.4/52% and 12.1/37% over the other two existing
models, respectively, in the external accuracy verification. For the discussion on rainy
conditions, the proposed model outperformed the GPT3 model, having better statistical
values, whose bias, RMSE, and CRE were −0.8 mm, 21.2 mm, and 2.5, respectively.

There are different performances in ZTD estimation of various weather conditions for
the GPT3 model, which may affect by the stability of the ZTD in the research region during
the experimental period. In rainy days, the ZTD values and their fluctuations are relatively
large, and it is difficult for the GPT3 model to describe the variation and changes of ZTD at
a certain moment. The GPT3 model achieved a bias, RMSE, and CRE of 38.9 mm, 43.0 mm,
and 6.1 in rainless conditions, but the values deteriorated to −82.2 mm, 83.3 mm, and 39.4
in rainy conditions, respectively. However, the proposed model can effectively improve
this defect and can achieve good performance in different conditions.
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In this study, 5 days of data from 13 GNSS sites were used to construct the regional
ZTD model, providing a new idea for regional ZTD modelling with high accuracy. In
the follow−up research, the influence of the number of selected sites, the distribution of
selected sites, and the amount of data in the training set on the proposed regional ZTD
model should be studied in detail.
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