
The Homogeneous Universe

The background evolution



The dynamics of the expansion

Given a model and a cosmology (also called a universe, which at this level is 
determined by the values of the densities Ω and H0) we need to integrate the 
Friedmann equation to get the solution for a(t).

Note that the Friedmann equation is already a solution for H(a).

Solutions a(t) are easily found by solving integrals numerically.

Let us see some cases.

Note: all physical models (the ones that are not only mathematical solutions) need to include 
radiation, a fundamental species in the Universe. However, the measurement of the CMB 
radiation shows that Ωr is very small. In terms of impact to the background dynamics it is only 
relevant in the early universe. We will not consider it in most of the following models.



So, for a one-species dominated fluid we find:

Note that with only one species, its energy 
density is necessarily Ω = 1

0

t

Note the integration is made from t=0 (where a=0) 
and so it does not introduce another free parameter

Cosmological models with only one species



Examples are:

Einstein-de Sitter universe (sCDM): only matter, Ωm = 1 , w = 0

From the previous result:  

The expansion rate solution a(t) can be inverted to compute the age of the 
universe, which is just the value of t today, when a(t0) = 1. For the EdS universe:

t0 = 2/(3 H0)

Single-species universes are fully determined by the Hubble constant (they have 
only one free parameter). 

If H0 is large à the universe is younger (for a given model)

expansion rate: ~2/3

We can also compute the evolution of H(t) = å(t) / a(t) ~ 1/t à in the EdS universe the 
Hubble radius grows faster than the scale factor à rH ~ t  ~  a3/2



The inverse of the Hubble constant defines the Hubble time, tH = 1/H0

Its value is: 
13.97 Gyr (h=0.7)

From Friedmann’s equation, we see that for any model, the age of universe i.e.
the  solution for t(a), is an integral times 1/H0.

So, any age can be given in terms of a Hubble time (that absorbs the uncertainty 
on the H0 value).



Radiation-dominated universe: only radiation, Ωr = 1 , w = 1/3 

Note the expansion is slower than in EdS because, due
to pressure, “gravity is stronger”

The age of the universe in this case is t0 = 1/2 tH

à the radiation-dominated slow expansion leads to a universe that is younger than 
the one with a matter-dominated faster expansion



Milne universe: only curvature, ΩK = 1 , w = -1/3 

a(t) = H0 t Fast expansion

The age of the Milne universe is exactly the Hubble time  t0 = tH

Note that we are consistently finding that models with faster expansion rates 
lead to older universes. 

Does this seem counter-intuitive? 



de Sitter universe: only cosmological constant, ΩΛ = 1 , w = -1 

In this case, the formula of the general solution is undetermined, and we need to 
go back to the Friedmann equation to find the solution,

This tells us that if there is only a non-evolving species, then the Hubble function 
remains constant: H(a) = H0, and the Friedmann equation is:    å(t) = a(t) H0

The solution is an exponential expansion à a (t) = C  exp(H0 t)

Given the condition a(t0) = 1, the constant is C =  1 / exp (H0t0)  à a(t) = exp [H0(t-t0)]

Inverting this solution, we can find t(a): H0 t = ln [a exp(H0 t0)], i.e.

t(a) = t0 + tH ln(a)

If we go from a=1 to a=0, ln(a) is negative, and the time decreases from t0 to
t(a=0) = -∞ à the age of the universe is infinite.



Cosmological models with two species

Matter and radiation: Ωm +Ωr = 1 = (1 - Ωm) / Ωm

y = a / aeq

It is possible to write an integral expression for t(a) and solve it analytically:

Now there is one free density parameter à different cosmologies are possible 
from one model



Note the free parameters are
tH (i.e. H0) and aeq (i.e. Ω)



Matter and curvature: Ωm +ΩK = 1 

This model can have various cosmologies, grouped in three types:

- ΩK > 0: Open CDM (oCDM), a(t) expands fast, and the universe is older 

- ΩK = 0: Standard CDM (sCDM), a(t) expands slower 

- ΩK < 0: Friedmann-Einstein, a(t) expands slower and contracts

These are the three 
well-known classical 
GR cosmologies



Cosmological models with three species

ΛCDM: Matter, curvature and cosmological constant: Ωm + ΩK + ΩΛ = 1 

Note: remember ΛCDM also includes radiation, that we neglect here. 

We are left then with two free density parameters, and we can place all the possible
ΛCDM cosmologies in the (Ωm , ΩΛ ) plane.

Let us find the possible qualitative behaviours of the various cosmologies:



So, we may look for H(a) = 0 as an indicator of a transition from expansion 
to collapse  (or collapse to expansion). 

This means that, using the Friedmann equation, it is useful to consider the 
third-order polynomial  f(a): 

Its roots f(a)=0 (for a>0) will correspond to the instants of transition 

The flat line  (ΩΛ = 1 - Ωm)

Consider the particular case of ΩK = 0. 

Then all ΛCDM cosmologies lie in the flat line

if root a < 1 à transition in the past
if root a > 1 à transition in the future



and the transition polynomial simplifies to

with roots  

This means that, for cosmologies with  Ωm > 1 , there is a transition and the larger 
is Ωm the earlier the transition occurs.

For cosmologies with Ωm < 1 there is no transition

Flat cosmologies lie on this line, and they can be of two types: always expanding (e), 
or expanding + contracting (e+c).

The line also separates positive curvature and negative curvature cosmologies.



The no-Λ line   (ΩΛ = 0)

In this particular case of ΩK = 1 - Ωm we have

flat

We recover the 3 classical cosmologies.

Note however that in general open curvature 
does not imply (e),

and closed curvature does not necessarily 
lead to (e+c)



The collapse in the future region  (a > 1)

Turning now to the general case,

let us consider examples of collapse in the future:

Cosmologies with this property (e+c with transition in the future) lie on these straight 
lines (one for each value of transition).

very negative ΩΛ or very large Ωm à
transition in the far future



The collapse in the past region  (a < 1)

Let us consider examples of collapse in the past. 

Note: since the universe is expanding today, these cases imply c+e (i.e., bouncing
models with no big bang), instead of e+c à GR allows models without Big Bang



Cosmologies with this property (c+e with 
transition in the past) lie on these straight 
lines (one for each values of transition).

Note: a measurement of the transition redshift would constrain the cosmology à
finding the line where the “real” cosmology is à values along the same line are 
degenerate with respect to this observable (the transition redshift)



The no-acceleration line  ( Ωm - 2ΩΛ = 0)

Introducing the three species in the second Friedmann equation, we can find a 
constraint for the cosmologies that do not have acceleration today:

Ωm a-3 +  ΩK [1+ 3(-1/3)] a-2 + ΩΛ (1-3)  =  0  (for a =1)

This is then   Ωm - 2ΩΛ = 0

ΩΛ

Ωm

Note: a measurement of the acceleration 
of the universe would constrain the 
cosmology à finding the line where the 
“real” cosmology is à values along the 
same line are degenerate with respect 
to this observable (the acceleration)

Note: the acceleration line intersects the curvature line. Two independent 
measurements (of the acceleration and the curvature) would allow us to find the 
intersection point of the two lines à breaking the degeneracy of the 
cosmological parameters.



The loitering line

Universes with a c+e transition but with no acceleration at the transition redshift, 
cannot leave the transition point à they remain trapped at that point with zero H(a) 
and zero acceleration.

They are called loitering cosmologies and lie on a line separating the no-big bang 
universes from the big bang universes.

Let us find out what are the scale factors at which the acceleration of a universe can 
go to zero. Again, from the second Friedmann equation, these are the scale factors 
that verify:

Ωm a-3 - 2ΩΛ =  0  à (the scale factor is different for each universe )

Now, we are looking for cases where this happens at a transition, i.e., 
which verify f(a)=0



Inserting in f(a): 

This is a curve in the (Ωm , ΩΛ ) plane. The well-known static Einstein universe is 
on this curve.



The ΛCDM model allows for all these very 
different universes. The background
properties of each ΛCDM universe (or 
cosmology) are determined by the values 
of the density parameters, while H0
determines its size and age.

transition
in the past

transition in the future

acceleration

deceleration
positive curvature

negative curvature



transition
in the past

transition in the future

acceleration

deceleration
positive curvature

negative curvature

Some well-known cosmologies are:

Age [tH] (for fixed H0)  

1/2

2/3

1

Radiation

EdS

Milne
Concordance

de Sitter

Einstein

Note: you can compute background properties (age and distances) of these cosmologies, using 
the on-line cosmology calculator:  http://www.astro.ucla.edu/wright/CosmoCalc.html



The concordance cosmology

All these cosmologies are ruled out 
by data. The high-precision of current 
data only leaves a small uncertainty 
around the region defined by 
Ωm = 0.3 , ΩΛ = 0.7 (and so ΩK = 0):
the concordance model  



However, there is still room for new models, 
because modern cosmological models are not spread out through-out this plane, 
since they need to be close to the concordance model. 

They consist mainly of different evolutions for ρDE (a) and wDE(a) (instead of 
being constant), but that lead to the same ΩDE ~ 0.7 and w(a=1) ~ -1 

Ezquiaga & Zumalacarregui 2018, https://arxiv.org/abs/1807.09241v1  



The values of the density parameters determine the behavior of the homogeneous 
Universe (also called the background).

Even though there are several open problems, the cosmology favoured by the 
observations is the so-called concordance cosmology (given in round numbers):

ΛCDM with Ωm = 0.3, ΩΛ = 0.7, ΩK = 0, Ωr = 8 x 10-5 , h = 0.7

Epochs of domination

Given these values and the functional forms of the densities, there is a sequence of 
epochs of domination in the evolution of the Universe:  the total density of the 
Universe is dominated by radiation, matter, and finally Λ .



We can easily find the scale factor (or redshift) when the two transitions occur: 

radiation / matter  aeq

aeq = Ωr / Ωm = 2.67 x 10-4

zeq = 3 749

matter / dark energy  aΛ

aΛ = (Ωm / ΩΛ)1/3 = 0.75

zΛ = 0.33



Age of the concordance universe

Knowing the values of the cosmological parameters, we can compute the age of 
the concordance universe
(hence age, if measurable, is another quantity - like distances, curvature, 
transition redshifts, horizon sizes, etc - that can constrain the parameters)
For this, we just need to compute the integral found from the Friedmann eq:



To have a rough estimate of the age, let us compute the duration of each of the three 
epochs, considering the simplification that only one species is relevant during each 
of the epochs:

Radiation epoch

zeq = 3749 à teq = 4.0 x 10-6 tH = 55 000 yr

(h = 0.7 à tH = 13.97 Gyr)



Matter epoch

zΛ = 0.33 à tΛ = 0.61 tH = 8.52 Gyr

Dark energy epoch

tΛ = 0.34 tH = 4.76 Gyr



The radiation epoch is very short,

the matter epoch is the longest one,

the dark energy epoch did not start so recently as we might think

age of the Universe = 0.95 tH = 13.28 Gyr



We can also compute various characteristic sizes and distances in the 
concordance Universe:  

(remember a comoving distance is dx = dt/a = da/a2H)

- the particle horizon Hp at a given time is the distance travelled by light since the 
big bang up to that time.

It is thus given by 
(comoving):

- the event horizon He today is the maximum comoving distance that light can 
travel from today until the end of the Universe (t = ∞). This implies that light 
emitted today by an object farther than that distance will never reach us. 

It is given by (comoving):

Characteristic sizes



- the size of the observable Universe at a given time is the distance between the 
observer at that time and the decoupling redshift (the last scattering surface that 
released the CMB radiation), beyond which the Universe is opaque. 

It is thus given by
(comoving):

- the Hubble radius, given by (proper): 

All these quantities are computed from the Hubble function, which in the 
concordance cosmology is given by:

Using the concordance values for the density parameters, h=0.7, and 

1+zeq = 3750 à aeq = 2.67 x 10-4

1+zdec = 1101 à adec = 9.1 x 10-4

we can compute all these quantities. 



Feature aeq adec a0

Horizon_particle
comoving [Mpc/h] ([Mpc]) 73 (104) 197 (281) 9738 (13911) 

proper [Mpc/h] 0.019 0.18 9738
Hubble radius

comoving [Mpc/h] ([Mpc]) 64 (91) 143 (204) 3000 (4286)
proper [Mpc/h] 0.017 0.13 3000

Observable Universe
comoving = proper [Mpc/h] ([Mpc]) - - 9541 (13630)

Horizon_event
comoving = proper [Mpc/h] ([Mpc]) - - 3422 (4889)

Notice that an event horizon exists because the Universe is accelerating. In EdS the 
event horizon is infinite, all emission will eventually reach the observer.


