The Homogeneous Universe

The background evolution

The dynamics of the expansion

 $H^{2}(\alpha) = H_{0}^{2} \int \Omega_{m} \alpha^{-3} + \Omega_{r} \alpha^{-4} + \Omega_{K} \alpha^{-2} + \Omega_{\Lambda}$

Given a model and a cosmology (**also called a universe**, **which at this level is determined by the values of the densities Ω and H₀) we need to integrate the** Friedmann equation to get the solution for a(t).

Note that the Friedmann equation is already a solution for H(a).

Solutions a(t) are easily found by solving integrals numerically.

Let us see some cases.

Note: all physical models (the ones that are not only mathematical solutions) need to include radiation, a fundamental species in the Universe. However, the measurement of the CMB radiation shows that Ω_r is very small. In terms of impact to the background dynamics it is only relevant in the early universe. We will not consider it in most of the following models.

Cosmological models with only one species

$$
\left(\frac{\dot{a}}{a}\right)^{2} = \frac{H_{o}}{a^{m}} \frac{\Omega}{a^{m}} \qquad (m = 3C^{l+w})
$$

$$
\Leftrightarrow \quad \frac{1}{\alpha} \frac{2}{\alpha} \frac{m-2}{\alpha} = \mu_0 \frac{2}{\alpha} \qquad \Leftrightarrow \qquad \frac{1}{\alpha} \frac{2}{\alpha} \frac{m-1}{\alpha} = \mu_0 \sqrt{\alpha}
$$

$$
\sigma' \int_{0}^{t} \tilde{a}^{\frac{n}{2}-1} da = H_{o} \sqrt{\Omega} dt \qquad \sigma_{1} \left(a^{\omega_{\ell_{2}}} \alpha t \right)
$$

$$
\frac{2}{m} \quad \frac{\alpha}{2} \quad \alpha^{\frac{m}{2}} = H_{\alpha} \sqrt{\alpha} \quad t
$$

Note the integration is made from $t=0$ (where $a=0$)

and so it does not introduce another free parameter
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{a} \qquad \overline{b} \qquad \overline{a}
$$
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{b} \qquad \overline{a} \qquad \overline{c} \qquad \overline{a} \qquad \overline{c} \qquad \overline{c}
$$
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{a} \qquad \overline{b} \qquad \overline{a} \qquad \overline{c} \qquad \overline{c}
$$
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{a} \qquad \overline{b} \qquad \overline{c} \qquad \overline{c}
$$
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{a} \qquad \overline{c} \qquad \overline{c}
$$
\n
$$
\overline{a} \qquad \overline{a} \qquad \overline{c} \qquad \overline{c}
$$
\n
$$
\overline{a} \qquad \overline{c}
$$
\n
$$
\overline{c} \qquad \overline{c}
$$
\n
$$
\
$$

So, for a one-species dominated fluid we find:

$$
I(a) = a^{-3(1+w)} \quad \text{and} \quad a = t^{\frac{2}{3(1+w)}}
$$

Einstein-de Sitter universe (sCDM): only matter, $\Omega_{\rm m} = 1$, $w = 0$

From the previous result:
$$
a \left(t\right) = \left(\frac{3\mu_0}{2} + \right)^{z_{3}}
$$
 expansion rate: ~2/3

We can also compute the evolution of H(t) = $\dot{a}(t)$ / a(t) ~ 1/t \rightarrow in the EdS universe the **Hubble radius** grows faster than the scale factor $\rightarrow r_H \sim t \sim a^{3/2}$

The expansion rate solution a(t) can be inverted to compute the **age of the universe**, which is just the value of t today, when $a(t_0) = 1$. For the EdS universe:

$$
\mathfrak{t}_0=2/(3~\mathsf{H}_0)
$$

Single-species universes are fully determined by the Hubble constant (they have only one free parameter).

If H₀ is large \rightarrow the universe is younger (for a given model)

The inverse of the Hubble constant defines the **Hubble time,** $t_H = 1/H_0$

 $4pc = 3.0857 \times 10^{16}$ m Ho = los h Kam/a/Mpc $14A = 31556926 A$

Its value is:
$$
t_{\mu} = 3.02577 \times 10^{17} h^{-1} \text{ s}
$$

\n $t_{\mu} = 9.778 h^{-1} Gyr$ \Rightarrow 13.97 Gyr (h=0.7)

From Friedmann's equation, we see that for any model, the age of universe i.e. the solution for t(a), is an integral times $1/H_0$.

So, any age can be given in terms of a Hubble time (that absorbs the uncertainty on the H_0 value).

Radiation-dominated universe: only radiation, $\Omega_r = 1$, $w = 1/3$

$$
a(t) = 240 Pr^{1/2}t
$$

Note the expansion is slower than in EdS because, due to pressure, "gravity is stronger"

The age of the universe in this case is $t_0 = 1/2$ t_H

 \rightarrow the radiation-dominated slow expansion leads to a universe that is younger than the one with a matter-dominated faster expansion

Milne universe: only curvature, $\Omega_{\rm K} = 1$, w = -1/3

 $a(t) = H_0 t$ Fast expansion

The age of the Milne universe is exactly the Hubble time $t_0 = t_H$

Note that we are consistently finding that **models with faster expansion rates lead to older universes.**

Does this seem counter-intuitive?

de Sitter universe: only cosmological constant, $\Omega_{\Lambda} = 1$, w = -1

In this case, the formula of the general solution is undetermined, and we need to go back to the Friedmann equation to find the solution,

$$
\left(\frac{\dot{\alpha}}{\alpha}\right)^2 = \frac{\Lambda}{3} \qquad \left(\frac{\Lambda}{3} = \Omega_{\Lambda} H_0^2\right)
$$

This tells us that if there is only a non-evolving species, then the Hubble function remains constant: H(a) = H₀, and the Friedmann equation is: $\dot{a}(t) = a(t) H_0$

The solution is an exponential expansion \rightarrow a (t) = C exp(H₀ t)

Given the condition $a(t_0) = 1$, the constant is C = 1 / exp $(H_0t_0) \rightarrow a(t) = exp [H_0(t-t_0)]$

Inverting this solution, we can find t(a): $H_0 t = \ln [a \exp(H_0 t_0)]$, i.e.

$$
t(a) = t_0 + t_H \ln(a)
$$

If we go from a=1 to a=0, $ln(a)$ is negative, and the time decreases from t_0 to $t(a=0) = -\infty$ \rightarrow the age of the universe is infinite.

Cosmological models with two species

Matter and radiation:
$$
\Omega_m + \Omega_r = 1
$$
 $(\alpha_{\ell\eta} = \frac{\Omega_r}{\Omega_{\ell\eta}}) = (1 - \Omega_m) / \Omega_m$

Now there is one free density parameter \rightarrow different cosmologies are possible **from one model**

$$
\left(\frac{\dot{a}}{a}\right)^{2} = H_{\alpha}^{2} \left(\frac{\Omega_{\Gamma}}{a^{4}} + \frac{\Omega_{\Gamma}}{a^{3}}\right) = H_{\alpha}^{2} \Omega_{\Gamma} a^{3} \left(1 + \frac{\Omega_{\epsilon}}{a}\right)
$$

$$
\frac{d_{\epsilon}}{dt} = H_{\beta} \frac{\sqrt{\Omega_{\Gamma}}}{\sqrt{\alpha}} \sqrt{1 + \frac{\epsilon_{\epsilon}}{a^{3}}} = H_{\alpha} \sqrt{\Omega_{\Gamma}} \sqrt{1 + \frac{1}{\sqrt{\rho}}}
$$

$$
y = a/a_{eq}
$$

It is possible to write an integral expression for t(a) and solve it analytically:

$$
t_{\text{(av)}} = \frac{t_{\text{H}}}{\sqrt{20\text{m}}} \alpha_{\text{ej}}^{3/2} \int_{0}^{3} \frac{y}{\sqrt{44y}} dy
$$

$$
\frac{1}{4}a_{3} = \frac{1}{4}\pi a_{6}x_{2}^{3} \left(2y\sqrt{y+1}\right)_{0}^{3} - \int_{0}^{y}z\sqrt{y+1} dy
$$
\n
$$
= \frac{1}{4}\pi a_{6}x_{3}^{7/2} \left(2y\sqrt{y+1}\right)_{0}^{3} - \frac{1}{3}\left(y+1\right)^{7/2}\left(\frac{1}{3}\right)
$$
\n
$$
= \frac{1}{4}\pi a_{6}x_{3}^{7/2} \left(2y\sqrt{y+1}\right)_{0}^{3} - \frac{1}{3}\left(y+1\right)^{7/2}\left(\frac{1}{3}\right)
$$
\n
$$
= \frac{1}{4}\pi a_{6}x_{3}^{7/2} \left(2y\sqrt{y+1}\right)_{0}^{3} \left(2y-\frac{1}{3}\left(y+1\right)\right)_{0}^{3} = \frac{1}{4}\pi a_{6}x_{3}^{7/2} \left(2y+\frac{1}{3}\left(y+1\right)\right)_{0}^{3} = \frac{1}{4}\pi
$$

$$
\frac{t_{\alpha}}{\sqrt{2m}} \frac{t_{\alpha}}{\alpha e_{\beta}} \frac{t_{\alpha}}{3} \left[\sqrt{\frac{\alpha}{\alpha e_{\beta}} + 1} \left(\frac{a}{\alpha g} - 2 \right) + 2 \right]
$$

Note the free parameters are t_H (i.e. H₀) and a_{eq} (i.e. Ω)

Matter and curvature: $\Omega_{\rm m}$ + $\Omega_{\rm K}$ = 1

$$
\frac{da}{dt} = H_0 \sqrt{|\Omega_K|} \left(\frac{a_K}{a} + 1\right)^{1/2} \hspace{2cm} a_K = \frac{\Omega_m}{\Omega_K}
$$

This model can have various cosmologies, grouped in three types:

- $\Omega_{\rm K}$ > 0: **Open CDM (oCDM)**, a(t) expands fast, and the universe is older
- $\Omega_{\rm K}$ = 0: **Standard CDM (sCDM)**, a(t) expands slower
- $\Omega_{\rm K}$ < 0: **Friedmann-Einstein**, a(t) expands slower and contracts

These are the three well-known classical GR cosmologies

Cosmological models with three species

ΛCDM: Matter, curvature and cosmological constant: $\Omega_m + \Omega_K + \Omega_{\Lambda} = 1$

Note: remember ΛCDM also includes radiation, that we neglect here.

We are left then with two free density parameters, and we can place all the possible ΛCDM cosmologies in **the (Ωm , ΩΛ) plane**.

Let us find the possible qualitative behaviours of the various cosmologies:

So, we may look for **H(a) = 0 as an indicator of a transition from expansion to collapse (or collapse to expansion).**

This means that, using the Friedmann equation, it is useful to consider the **third-order polynomial f(a)**:

$$
\left[\mathcal{A}_{nm}+\mathcal{A}_{n}a^{3}+(\mathbf{1}-\mathcal{A}_{nm}-\mathcal{A}_{n})a^{n}\right]=\mathcal{J}_{n}(a)
$$

Its roots f(a)=0 (for a>0) will correspond to the instants of **transition**

if root a $\leq 1 \rightarrow$ transition in the past if root $a > 1$ \rightarrow transition in the future

The flat line $(\Omega_{\Lambda} = 1 - \Omega_{\rm m})$

Consider the particular case of $\Omega_{\rm K}$ = 0.

Then all ΛCDM cosmologies lie in the flat line

 Ω_{Λ} = 1- Ω m

 $\xi(a) = \Omega_{m} + (1 - \Omega_{m}) a^{3}$ and the transition polynomial simplifies to

with roots $a = \left(\frac{\Omega m}{\Omega_{\text{p}}-1}\right)^{1/3}$

This means that, for cosmologies with $\Omega_m > 1$, there is a transition and the larger is $\Omega_{\rm m}$ the earlier the transition occurs.

For cosmologies with Ω_m < 1 there is no transition

Flat cosmologies lie on this line, and they can be of two types: always expanding (e), or expanding + contracting (e+c).

The line also separates positive curvature and negative curvature cosmologies.

The no- Λ **line** $(\Omega_{\Lambda} = 0)$

In this particular case of $\Omega_{\rm K}$ = 1 - $\Omega_{\rm m}$ we have

$$
\begin{cases}\n(a) = \Omega_{m} \cdot (1 - \Omega_{m}) a \\
\text{for } 0 \text{ or } \Omega = \Omega_{m} \\
\text{and} \\
\Omega_{m} \leq 1 \Rightarrow \text{No roots } a > 0\n\end{cases}
$$
\n
$$
\Omega_{m} \leq 1 \Rightarrow \text{No roots } a > 0
$$
\n
$$
\Omega_{m} \geq 1 \Rightarrow \text{Roots } \Rightarrow \text{From } \Rightarrow \text{Asomat } \text{necollapne}
$$

We recover the 3 classical cosmologies.

Note however that in general open curvature does not imply (e),

and closed curvature does not necessarily lead to (e+c)

The collapse in the future region (a > 1)

 $f(n) = \Omega_{m} (1 - \alpha) + \alpha + \Omega_{n} (\alpha^{3} - \alpha)$ Turning now to the general case, let us consider examples of collapse in the future:

Cosmologies with this property (e+c with transition in the future) lie on these straight lines (one for each value of transition).

The collapse in the past region (a < 1)

Let us consider examples of collapse in the past.

Note: since the universe is expanding today, these cases imply c+e (i.e., bouncing models with no big bang), instead of e+c \rightarrow GR allows models without Big Bang

$$
A_{m} (1-a) + a = -a_{A} (a^{3}-a)
$$

\n
$$
50 = -a_{A} (a^{3}-a)
$$

\n
$$
60 = 0.9
$$

\n
$$
a_{m} 0.9 + 0.1 = a_{A} 0.1
$$

\n
$$
a_{m} 0.9 + 0.1 = a_{A} 0.1
$$

\n
$$
a_{m} 0.9 + 0.1 = a_{A} 0.1
$$

\n
$$
a_{m} 0.1 + a_{m} = a_{A} a
$$

\n
$$
a_{m} 0.1 + a_{m} = a_{A} (-a.17)
$$

\n
$$
a_{m} 0.1 + a_{m} = -a_{A} (-a.17)
$$

\n
$$
a_{m} 0.1 + a_{m} = -a_{A} (-a.17)
$$

Cosmologies with this property (c+e with transition in the past) lie on these straight lines (one for each values of transition).

Note: a measurement of the transition redshift would constrain the cosmology \rightarrow finding the line where the "real" cosmology is \rightarrow values along the same line are **degenerate with respect to this observable** (the **transition redshift**)

The no-acceleration line $(\Omega_m - 2\Omega_\Lambda = 0)$

Introducing the three species in the second Friedmann equation, we can find a constraint for the cosmologies that do not have acceleration today:

$$
\frac{a}{a} = -\frac{4\pi}{3} (e+3p)
$$

$$
\Omega_{\rm m} \, a^{3} + \Omega_{\rm K} \left[1 + 3(-1/3) \right] a^{2} + \Omega_{\Lambda} \left(1 - 3 \right) = 0 \, \text{ (for } a = 1)
$$

This is then $\Omega_{\rm m}$ - 2 Ω_{Λ} = 0

Note: a measurement of the acceleration of the universe would constrain the cosmology \rightarrow finding the line where the "real" cosmology is \rightarrow **values along the same line are degenerate with respect to this observable** (the **acceleration**)

Note: the acceleration line intersects the curvature line. Two independent measurements (of the acceleration and the curvature) would allow us to find the intersection point of the two lines \rightarrow **breaking the degeneracy of the cosmological parameters.**

The loitering line

Universes with a c+e transition but with no acceleration at the transition redshift, cannot leave the transition point \rightarrow they remain trapped at that point with zero H(a) and zero acceleration.

They are called loitering cosmologies and lie on a line separating the no-big bang universes from the big bang universes.

Let us find out what are the scale factors at which the acceleration of a universe can go to zero. Again, from the second Friedmann equation, these are the scale factors that verify:

 $\Omega_{\rm m}$ a⁻³ - 2 Ω_{Λ} = 0 \rightarrow α = $\frac{R_{\Lambda}m}{2 \Omega_{\Lambda}}$ (the scale factor is different for each universe)

Now, we are looking for cases where this happens at a transition, i.e., which verify $f(a)=0$

Inserting in f(a):

$$
\int_{C_{m}}^{C_{m}} (1-a) + a = -\Omega_{n}(a^{3}-a)
$$
\n
$$
\int_{C_{m}}^{C_{m}} \left(1 - \Omega_{m} - \Omega_{n}\right)^{1/3} (1 - \Omega_{m} - \Omega_{n}) - \frac{\Omega_{m}}{2}
$$
\n
$$
\int_{C_{m}}^{C_{m}} \left(1 - \Omega_{m} - \Omega_{n}\right)^{1/3} = 0 \implies \text{If in the following equations}
$$

This is a curve in the $(\Omega_m, \Omega_\Lambda)$ plane. The well-known static **Einstein universe** is on this curve.

Note: you can compute background properties (age and distances) of these cosmologies, using the on-line cosmology calculator: *http://www.astro.ucla.edu/wright/CosmoCalc.html*

The concordance cosmology

All these cosmologies are ruled out by data. The high-precision of current data only leaves a small uncertainty around the region defined by $\Omega_{\rm m}$ = 0.3, Ω_{Λ} = 0.7 (and so $\Omega_{\rm K}$ = 0): the concordance model

However, there is still room for new models,

because modern cosmological models are not spread out through-out this plane, since they need to be close to the concordance model.

They consist mainly of different evolutions for $\rho_{DF}(a)$ and $w_{DF}(a)$ (instead of being constant), but that lead to the same Ω_{DE} ~ 0.7 and w(a=1) ~ -1

Ezquiaga & Zumalacarregui 2018, https://arxiv.org/abs/1807.09241v1

The values of the density parameters determine the behavior of the homogeneous Universe (also called the **background**).

Even though there are several open problems, the cosmology favoured by the observations is the so-called **concordance cosmology** (given in round numbers):

 Λ CDM with $\Omega_{\rm m}$ = 0.3, Ω_{Λ} = 0.7, $\Omega_{\rm K}$ = 0, $\Omega_{\rm r}$ = 8 x 10⁻⁵, h = 0.7

Epochs of domination

Given these values and the functional forms of the densities, there is a sequence of **epochs of domination** in the evolution of the Universe: **the total density of the Universe is dominated by radiation, matter, and finally Λ .**

We can easily find the scale factor (or redshift) when the two transitions occur:

radiation / matter a_{eq}

$$
\ell_{m} (e) = \ell_{\text{net}} (e)
$$
\n
$$
\ell_{m} a_{\text{eq}}^{3} = \ell_{\text{eq}} a_{\text{eq}}^{-u}
$$
\n
$$
\ell_{m} a_{\text{eq}}^{3} = \ell_{\text{eq}} a_{\text{eq}}^{-u}
$$
\n
$$
\Omega_{m} a_{\text{eq}}^{-3} = \Omega_{r} a_{\text{eq}}^{-u}
$$

$$
a_{eq} = \Omega_r / \Omega_m = 2.67 \times 10^{-4}
$$

$$
z_{eq} = 3749
$$

matter / dark energy a_Λ

$$
e_{\text{max}}(z_{\text{max}}) = e_{\text{max}}
$$
\n
$$
a_{\text{max}} = (Q_{\text{max}} / Q_{\text{max}})^{1/3} = 0.75
$$
\n
$$
z_{\text{max}} = 3 = .2.5
$$
\n
$$
z_{\text{max}} = 0.33
$$

Age of the concordance universe

Knowing the values of the cosmological parameters, we can compute **the age of the concordance universe**

(hence age, if measurable, is another quantity - like distances, curvature, transition redshifts, horizon sizes, etc - that can constrain the parameters)

For this, we just need to compute the integral found from the Friedmann eq:

$$
(\frac{\dot{a}}{a})^{2} = H(a)
$$
 or $\frac{\dot{a}}{a} = H(a)$ or $d a = a H(a) dt = 0$ $t(a) = \int_{a}^{a} \frac{da}{a H(a)}$
\n $(=)$ $t(a) = \frac{1}{H_0} \int_{a}^{a} \frac{da}{a E(a)}$
\n $\int_{a}^{a} \frac{da}{a E(a)}$
\n t_{Hubble}
\n t_{Hubble}

$$
\begin{array}{ccccccc}\n\alpha, & in \text{ transo } q & \text{addnif} & & \\
& & 1+z=1 & & \text{and} & -\text{d}z \\
& & & & & \\
\end{array}
$$

To have a rough estimate of the age, let us compute the duration of each of the three epochs, considering the simplification that only one species is relevant during each of the epochs:

Radiation epoch

 z_{eq} = 3749 $\rightarrow t_{eq}$ = 4.0 x 10⁻⁶ t_H = 55 000 yr $(h = 0.7 \rightarrow t_H = 13.97 \text{ Gyr})$

Matter epoch

$$
\frac{1}{2}a_{mn} \cos \theta_{n}
$$
\n
$$
f_{n}^{top} = f_{H} - \frac{1}{\sqrt{a_{mn}}} \int_{\theta_{n}}^{\theta_{n}} \frac{dt}{(1+t)^{5/2}} = \frac{f_{H}}{\sqrt{a_{mn}}} \frac{2}{3} \frac{1}{(1+t)^{3/2}} \Big|_{\theta_{n}}^{\theta_{n}}
$$

 $z_A = 0.33 \rightarrow t_A = 0.61 t_H = 8.52$ Gyr

Dark energy epoch

$$
t_{0}-t_{A} = t_{H} \frac{1}{\sqrt{a_{A}}}\int_{0}^{a_{A}} \frac{dt}{1+t} = \frac{t_{H}}{\sqrt{a_{A}}}ln(1+t)\Big|_{0}^{a_{A}} = \frac{t_{H}}{\sqrt{a_{A}}}ln(1+t_{A})
$$

 t_{Λ} = 0.34 t_{H} = 4.76 Gyr

The radiation epoch is very short,

the matter epoch is the longest one,

the dark energy epoch did not start so recently as we might think

```
age of the Universe = 0.95 t<sub>H</sub> = 13.28 Gyr
```
Characteristic sizes

We can also compute various characteristic sizes and distances in the concordance Universe:

(remember a comoving distance is $dx = dt/a = da/a²H$)

- the **particle horizon H_p** at a given time is the distance travelled by light since the big bang up to that time.

It is thus given by
$$
H_p(a) = \int_0^a \frac{c}{a'^2 H(a')} da'
$$

- the **event horizon H**_e today is the maximum comoving distance that light can travel from today until the end of the Universe $(t = \infty)$. This implies that light emitted today by an object farther than that distance will never reach us.

It is given by (comoving):

$$
H_e(a=1)=\int_1^\infty \frac{c}{a'^2\,H(a')}da'
$$

- the **size of the observable Universe** at a given time is the distance between the observer at that time and the decoupling redshift (the last scattering surface that released the CMB radiation), beyond which the Universe is opaque.

It is thus given by
$$
D_c(a) = \int_{0.00091}^{a} \frac{c}{a'^2 H(a')} da'
$$

- the **Hubble radius**, given by (proper):

$$
r_H(a)=\frac{c}{H(a)}
$$

All these quantities are computed from the **Hubble function**, which in the concordance cosmology is given by:

$$
H(a)=H_0\left(\frac{0.3}{a^3}+\frac{8\times10^{-5}}{a^4}+0.7\right)^{1/2}
$$

Using the concordance values for the density parameters, h=0.7, and

$$
1+z_{eq} = 3750 \rightarrow a_{eq} = 2.67 \times 10^{-4}
$$

 $1+z_{dec} = 1101 \rightarrow a_{dec} = 9.1 \times 10^{-4}$

we can compute all these quantities.

Notice that an event horizon exists because the Universe is accelerating. In EdS the event horizon is infinite, all emission will eventually reach the observer.